B. Dünweg and K. Kremer, Molecular dynamics simulation of a polymer chain in solution, The Journal of Chemical Physics, vol.99, issue.9, p.6983, 1993.
DOI : 10.1063/1.461346

I. Yeh and G. Hummer, System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions, The Journal of Physical Chemistry B, vol.108, issue.40, p.15873, 2004.
DOI : 10.1021/jp0477147

M. Fushiki, System size dependence of the diffusion coefficient in a simple liquid, Physical Review E, vol.42, issue.2, p.21203, 2003.
DOI : 10.1103/PhysRevA.42.5912

S. Tazi, A. Bot¸anbot¸an, M. Salanne, V. Marry, P. Turq et al., Diffusion coefficient and shear viscosity of rigid water models, Journal of Physics: Condensed Matter, vol.24, issue.28, p.284117, 2012.
DOI : 10.1088/0953-8984/24/28/284117

D. Rozmanov and P. G. Kusalik, Transport coefficients of the TIP4P-2005 water model, The Journal of Chemical Physics, vol.136, issue.4, p.44507, 2012.
DOI : 10.1021/jp0477147

S. Gabl, C. Schröder, and O. Steinhauser, Computational studies of ionic liquids: Size does matter and time too, The Journal of Chemical Physics, vol.137, issue.9, p.94501, 2012.
DOI : 10.1021/jp8017869

S. P. Singh, C. Huang, E. Westphal, G. Gompper, and R. G. Winkler, Hydrodynamic correlations and diffusion coefficient of star polymers in solution, The Journal of Chemical Physics, vol.2, issue.8, p.84901, 2014.
DOI : 10.1063/1.3077860

G. Kikugawa, S. Ando, J. Suzuki, Y. Naruke, T. Nakano et al., Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid, The Journal of Chemical Physics, vol.142, issue.2, p.24503, 2015.
DOI : 10.1063/1.1770695

G. Kikugawa, T. Nakano, and T. Ohara, Hydrodynamic consideration of the finite size effect on the self-diffusion coefficient in a periodic rectangular parallelepiped system, The Journal of Chemical Physics, vol.143, issue.2, p.24507, 2015.
DOI : 10.1006/jcph.1995.1039

A. Botan, V. Marry, and B. Rotenberg, Diffusion in bulk liquids: finite-size effects in anisotropic systems, Molecular Physics, vol.113, issue.17-18, p.2674, 2015.
DOI : 10.1021/jp408884g

URL : https://hal.archives-ouvertes.fr/hal-01484356

M. Vögele and G. Hummer, Divergent Diffusion Coefficients in Simulations of Fluids and Lipid Membranes, The Journal of Physical Chemistry B, vol.120, issue.33, 2016.
DOI : 10.1021/acs.jpcb.6b05102

M. H. Ernst, E. H. Hauge, and J. M. Van-leeuwen, Asymptotic Time Behavior of Correlation Functions. I. Kinetic Terms, Physical Review A, vol.32, issue.5, p.2055, 1971.
DOI : 10.1016/0375-9601(70)90584-0

J. Hansen and I. R. Mcdonald, Theory of Simple Liquids, 2013.

B. J. Alder and T. E. Wainwright, Velocity Autocorrelations for Hard Spheres, Physical Review Letters, vol.45, issue.23, p.988, 1967.
DOI : 10.1063/1.1727891

D. Levesque and W. T. Ashurst, Long-Time Behavior of the Velocity Autocorrelation Function for a Fluid of Soft Repulsive Particles, Physical Review Letters, vol.2, issue.5, p.277, 1974.
DOI : 10.1103/PhysRevA.2.2514

M. A. Van-der-hoef and D. Frenkel, Long-time tails of the velocity autocorrelation function in two- and three-dimensional lattice-gas cellular automata: A test of mode-coupling theory, Physical Review A, vol.1, issue.8, p.4277, 1990.
DOI : 10.1103/PhysRevA.40.1539

C. P. Lowe, D. Frenkel, and A. J. Masters, Long?time tails in angular momentum correlations, The Journal of Chemical Physics, vol.1, issue.4, p.1582, 1995.
DOI : 10.1063/1.857667

M. A. Van-der-hoef and D. Frenkel, Computer simulations of long-time tails: What's new?, Transport Theory and Statistical Physics, vol.42, issue.6-8, p.1227, 1995.
DOI : 10.1063/1.463300

C. P. Lowe and D. Frenkel, The super long-time decay of velocity fluctuations in a two-dimensional fluid, Physica A: Statistical Mechanics and its Applications, vol.220, issue.3-4, p.251, 1995.
DOI : 10.1016/0378-4371(95)00208-O

T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi et al., Resonances arising from hydrodynamic memory in Brownian motion, Nature, vol.74, issue.7367, p.85, 2011.
DOI : 10.1063/1.1584085

T. Li and M. G. Raizen, Brownian motion at short time scales, Annalen der Physik, vol.376, issue.4, p.281, 2013.
DOI : 10.1016/j.physleta.2012.05.038

URL : http://arxiv.org/abs/1211.1458

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss, Science, vol.12, issue.15, p.1493, 2014.
DOI : 10.1007/BF02894699

H. J. Clercx and P. P. Schram, Brownian particles in shear flow and harmonic potentials: A study of long-time tails, Physical Review A, vol.174, issue.4, p.1942, 1992.
DOI : 10.1016/0378-4371(91)90337-C

T. S. Chow and J. J. Hermans, Effect of Inertia on the Brownian Motion of Rigid Particles in a Viscous Fluid, The Journal of Chemical Physics, vol.55, issue.6, p.3150, 1972.
DOI : 10.1007/BF01007243

D. Lesnicki, R. Vuilleumier, A. Carof, and B. Rotenberg, Molecular Hydrodynamics from Memory Kernels, Molecular Hydrodynamics from Memory Kernels, p.147804, 2016.
DOI : 10.1080/00268976.2013.791731

URL : https://hal.archives-ouvertes.fr/hal-01484777

B. J. Alder and T. E. Wainwright, Decay of the Velocity Autocorrelation Function, Physical Review A, vol.26, issue.1, p.18, 1970.
DOI : 10.1103/PhysRevLett.18.988

H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, Journal of Fluid Mechanics, vol.13, issue.02, p.317, 1959.
DOI : 10.1143/JPSJ.13.633

S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, 2001.

R. W. Nash, R. Adhikari, and M. E. Cates, Singular forces and pointlike colloids in lattice Boltzmann hydrodynamics, Physical Review E, vol.11, issue.2, p.26709, 2008.
DOI : 10.1017/S0022112003006967

URL : http://arxiv.org/abs/0707.1299

P. J. Dellar, Bulk and shear viscosities in lattice Boltzmann equations, Physical Review E, vol.61, issue.3, p.31203, 2001.
DOI : 10.1103/PhysRevE.61.6546

Y. Li and X. Shan, Lattice Boltzmann method for adiabatic acoustics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.13, issue.8, p.2371, 2011.
DOI : 10.1063/1.1352630

E. M. Viggen, Viscously damped acoustic waves with the lattice Boltzmann method, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.228, issue.1, p.2246, 2011.
DOI : 10.1016/j.jcp.2008.10.021

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.664.1782

N. I. Prasianakis and I. V. Karlin, Lattice Boltzmann method for simulation of compressible flows on standard lattices, Physical Review E, vol.78, issue.1, p.16704, 2008.
DOI : 10.1103/PhysRevE.66.026311

T. D. Kühne, M. Krack, and M. Parrinello, Static and Dynamical Properties of Liquid Water from First Principles by a Novel Car?Parrinello-like Approach, Journal of Chemical Theory and Computation, vol.5, issue.2, p.235, 2009.
DOI : 10.1021/ct800417q

M. H. Hagen, I. Pagonabarraga, C. P. Lowe, and D. Frenkel, Algebraic Decay of Velocity Fluctuations in a Confined Fluid, Physical Review Letters, vol.31, issue.19, p.3785, 1997.
DOI : 10.1209/0295-5075/31/8/006

K. Huang and I. Szlufarska, Effect of interfaces on the nearby Brownian motion, Nature Communications, vol.9, p.8558, 2015.
DOI : 10.1371/journal.pone.0085173