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ABSTRACT
Tackling the vocabulary mismatch has been a long-standing and
major goal in information retrieval. �e state-of-the-art solutions
mainly rely on leveraging either the relational semantics provided
by external resources or the distributional semantics, recently inves-
tigated by deep neural approaches. Guided by the intuition that the
relational semantics might improve the e�ectiveness of deep neural
approaches, we propose the Deep Semantic Resource Inference
Model (DSRIM) that relies on a two-fold contribution: 1) a repre-
sentation of raw-data that models the relational semantics within
text representations by jointly considering objects and relations
expressed in a knowledge resource, and 2) an end-to-end neural
architecture that jointly learns the query-document relevance and
the combined distributional and relational semantic representation
of documents and queries. �e experimental evaluation is carried
out on two TREC datasets from TREC Terabyte and TREC CDS
tracks, and two di�erent knowledge resources, respectively Word-
Net and MeSH. �e results indicate that knowledge resource-driven
representations allow obtaining similar representations for similar
documents while discriminating non-similar documents. Also, we
show that our model outperforms state-of-the-art semantic and
deep neural information retrieval models.

CCS CONCEPTS
•Information systems → Retrieval models and ranking;
•Computing methodologies → Semantic networks; Neural
networks;

KEYWORDS
Ad-hoc IR, knowledge resource, semantic document representation,
deep neural architecture

1 INTRODUCTION

Tackling the vocabulary mismatch has been a long-standing
and major goal in information retrieval (IR). To infer and match
discrete word senses within the context of documents and queries

�is is the author’s pre-print version of the work. It is posted here for your personal
use, not for redistribution. �e de�nitive version will be published in Proceedings of
ICTIR 2017

being matched, one line of work makes use of hand-labelled ex-
ternal knowledge resources. �e la�er can be classi�ed into two
categories: 1) those representing linguistic knowledge, either gen-
eral (e.g., WordNet) or domain-oriented (e.g., UMLS), and 2) those,
known as knowledge graphs (e.g., DBpedia, Freebase), representing
factual information about entities and semantic relations between
entities. In IR, such resources allow to exploit objects and their
relations (e.g., synonymy, hyperonymy) within, e.g., query or docu-
ment expansion [1, 36] to lower the vocabulary mismatch between
queries and documents; this is referred to as the relational semantics.

Another line of work a�empts to automatically infer hidden
word senses from corpora using word collocations by performing
dimensionality reduction techniques [8]. Based on this approach,
there is a recent growth interest toward learning algorithms that
map words and their contexts into a lower dimensional dense
vector space [21, 29]. �e use of such latent representations
through deep neural networks for supporting a search task has
been the focus of recent work [10, 12, 30]. Although those deep IR
models have been evaluated on large datasets (e.g., search logs of
commercial search engines), the learning of a relevance function,
and accordingly of latent representations from plain text, su�ers
from several limitations: 1) tackling traditional IR models, such
as BM25 or language models, remains a di�cult task [10–12], 2)
learning the relevance function on full text does not allow the
network convergence, leading to focus on a query-document title
matching [10, 12, 30], and 3) latent learned representations of
word senses from corpora are unable to model distinct meanings
and to convey meanings provided by existing semantic resources
[13]. Recently, several authors investigated learning the relevance
model from plain text by modeling documents and queries through
local interactions of terms [10, 11]. �e authors [10] also argue
that there is a crucial need to build deep learning models satisfying
both the matching task based on the semantics of text as usually
done in natural language processing (NLP), and the exact matching
task rather adapted to ad-hoc IR.

Guided by the intuition that the relational semantics could im-
prove the e�ectiveness of deep neural IR models [24], we investigate
how to leverage both knowledge resources and deep learning ap-
proaches to perform ad-hoc IR.
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To the best of our knowledge, this is one of the �rst approach
combining the distributional and the relational semantics of docu-
ments and queries with the goal to jointly enhance 1) the learning
of text representation obtained in a low-dimensional common se-
mantic feature space and 2) the underlying ranking function. More
particularly, the paper contributions are twofold:
• A Deep Semantic Resource Inference Model (DSRIM) combining

the distributional and the relational semantics of documents and
queries through:

- A knowledge resource-driven representation, modeling the re-
lational semantics of text at the raw data level using knowledge
resources. More particularly, the premise of our representation
relies on two assumptions: A1) a text is a bag of identi�ed objects
from a knowledge resource, and A2) semantically similar texts are
deemed to entail similar/related objects. To do so, we present a
method consistent with both assumptions that jointly projects ob-
jects and their relations in a unique vector. To deal with a large
number of object-to-object relations (e.g., word-to-word or concept-
to-concept) in the knowledge resource, we propose the relation
mapping method that aims at projecting pairs in a low-dimensional
space of object clusters. Our method is �exible since it can be used
with any resource providing objects and relations between objects.

- An end-to-end neural network which learns an enhanced
document-ranking function using input vectors combining both
the distributional and the relational semantic representations of
document/query. While the �rst representation is modeled using
the ParagraphVector model [2], well-known for capturing complex
information structure in plain text, the second representation refers
to our proposed knowledge resource-driven representation.
• A thorough experimental evaluation aiming at assessing the

quality of the knowledge resource-driven representation and the
e�ectiveness of our DSRIM model. Our evaluation is carried out on
two TREC datasets, namely TREC PubMed CDS and TREC GOV2
Terabyte, and two widely used knowledge resources, respectively
MeSH1 and WordNet2. It is worth mentioning that, unlike previous
contributions [12, 30] experimentally evaluated on document titles,
our experiments are performed using full-texts.

�e rest of this paper is organized as follows. A�er reviewing the
related work in Section 2, we motivate our contribution and present
the research questions in Section 3. We describe in Section 4 the
DSRIM model. Section 5 details the datasets and the evaluation
methodology. Section 6 presents and discusses the experimental
results. Section 7 concludes the paper and introduces perspectives.

2 RELATEDWORK
2.1 On the Semantic Representation of Words,

Documents, Objects, and Relations.
�e potential of word semantic representations learned through
neural approaches has been introduced in [21, 29], opening several
perspectives in NLP and IR tasks. Beyond word embeddings, several
work focuses on the representation of sentences [22], documents
[16, 32], and also objects and relations expressed in knowledge re-
sources [5, 14, 20, 33]. Within the la�er, most of work investigates
1h�ps://www.nlm.nih.gov/mesh/
2h�p://wordnet.princeton.edu

the representation of objects and relations on the basis of object-
relation-object triplets. �e main principle has been introduced
in the TransE model [5], relying on the assumption that the em-
bedding of object oi should be close to the embedding translation
of object oj by relation r , namely oi ' oj + r . �en, extensions
have been proposed considering, e.g., di�erent object representa-
tions according to the semantic relation type (TransH) [33] or a
dynamic mapping between objects and relations constrained by
their diversity (TransD) [14].

Moreover, knowledge resources have been used to enhance the
distributed representation of words for representing their underly-
ing concepts [9, 18, 37, 38]. For instance, Faruqui et al. [9] propose a
“retro��ing” technique consisting in a leveraging of lexicon-derived
relational information, namely adjacent words of concepts, to re�ne
their associated word embeddings. Other work [37, 38] proposes
an end-to-end oriented approach that rather adjusts the objective
function of the neural language model by either leveraging the
relational and categorical knowledge to learn a higher quality word
embeddings (RC-NET model) [37] or extending the CBOW model
[38] with a function based on prior relational knowledge issued
from an external resource.

2.2 On using Knowledge Resources in IR.
Both general/speci�c linguistic bases (e.g., WordNet or UMLS re-
spectively) and large-scale knowledge graphs (e.g., Freebase) repre-
sent external resources that o�er valuable information about word
semantics through objects (e.g., words, entities, or concepts) and
their associated relations (e.g., “is-a”, “part-of”). Based on the use
of such resources, a �rst line of work in IR aims at increasing the
likelihood of term overlap between queries and documents through
query expansion [25, 36] or document expansion [1]. Among mod-
els expanding queries, Xiong et al. [36] propose two algorithms
relying on the category of terms in FreeBase. While the unsu-
pervised approach estimates the similarity between the category
distribution of terms in documents and queries, the supervised ap-
proach exploits the ground truth to estimate the in�uence of terms.
Authors in [25] propose a query expansion technique using terms
extracted from multiple sources of information. For each query
term, candidate expansion terms in top retrieved documents are
ranked by combining their importance in pseudo-relevant docu-
ments and their semantic similarity based on their de�nition in
WordNet. Di�erently, Agirre et al. [1] propose a document ex-
pansion technique based on the use of a random walk algorithm
identifying from WordNet the most related concepts. �e second
line of work leverages relations modeled in knowledge resources at
the document ranking level [35]. For instance, authors in [35] pro-
pose a learning-to-rank algorithm based on objects of knowledge
resources that are related to a given pair of query-document.

2.3 On using Deep Neural Networks in IR.
Recently, a large amount of work has shown that deep learning
approaches are highly e�cient in several IR tasks (e.g., text match-
ing [12], question-answering [4]). A �rst category of work uses
neural models for IR tasks [2, 23, 39] to integrate embeddings in IR
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Figure 1: �e general issue of our contribution: matching query and documents through a deep neural network by leveraging
objects and relations expressed knowledge resources.

relevance functions. �e second category of work, closer to our con-
tribution, consists in end-to-end scoring models that learn the rele-
vance of document-query pairs via latent semantic features [11, 12].
For instance, the Deep Semantic Structured Model (DSSM) [12]
performs well on web search tasks. �is model applies a siamese
deep feed-forward network on document and query representations
obtained by a word hashing method. �e network aims at learning
their latent representations and then measuring their relevance
score using a cosine similarity. As an extension of the DSSM, Shen
et al. [31] propose to use a convolutional-pooling structure, called
Convolutional Latent Semantic Model (CLSM). In the same mind,
Severyn and Moschi�i [30] apply a convolution on the input layer
to learn the optimal representation of short text pairs as well as the
similarity function. However, these model parameters are hard to
learn, which leads authors to only consider the matching between
query-title pairs. To bypass this limitation, another line of work
[10, 19, 26] rather aims at building a local interaction map between
inputs, and then uses deep neural networks to learn hierarchical
interaction pa�erns. For instance, the DeepMatch model [19] inte-
grates a topic model into a fully connected deep network based on
the word interaction matrix while the MatchPyramid model [26]
applies a convolution to an interaction matrix estimated on the
basis of word representation. Guided by the intuition that interac-
tion matrix is more appropriate for the global matching and lacks
of the term importance consideration, authors in [10] propose to
model local interactions of terms through a histogram estimating
the matching occurrences of query-document terms.

3 MOTIVATION
�e literature review highlights that: 1) plain text and knowledge
resources are complementary for both learning distributional rep-
resentations and enhancing IR e�ectiveness [1, 25, 36], and that 2)
neural approaches in IR have a great potential for ad-hoc search but
could still be improved to compete with traditional IR models [10].
In this contribution, we address the problem of bridging the seman-
tic gap in IR by leveraging both deep learning approaches [12, 30]
and valid knowledge expressed in knowledge resources [25, 36].
In contrast to previous work on the semantic representation of

objects and relations leveraging knowledge resources [5, 9, 33, 37],
our main concern is to build a semantic representation of docu-
ments that simultaneously takes into consideration objects and
their pairwise relations expressed in a knowledge resource. As
shown in Figure 1, we investigate the potential of siamese neural
architectures, such as DSSM [12], and propose a model able to
match queries with full texts, instead of titles as done in [12, 30], by
jointly leveraging distributional and relational semantics of texts.

Accordingly, we address here two main research questions:

• RQ1: How to model the relational semantics of texts at
the raw data level by jointly leveraging objects and their
relations expressed in knowledge resources?

• RQ2: How to jointly learn the query-document relevance
function and a representation of text combining relational
and distributional semantics?

4 DSRIM: DEEP SEMANTIC RESOURCE
INFERENCE MODEL

We detail here our DSRIM model aiming at tackling the semantic
gap between documents and queries through a deep neural ap-
proach leveraging knowledge resources. More particularly, our
contribution relies on 1) the modeling of a knowledge resource-
driven representation of texts at the raw data level taking into
account the semantics of objects identi�ed in a text and their under-
lying relations expressed in a knowledge resource, and 2) a siamese
neural network architecture aiming at learning the text latent repre-
sentation and the ranking function on the basis of a vector modeling
both the plain text and its relational semantics expressed through
knowledge resources. �is two-branch architecture is used in sev-
eral contributions in IR [11, 12, 30] but, in contrast to work relying
on raw-text features, we use a semantic-based input. Below, we
present our semantic representation of texts based on knowledge
resources and then present the network architecture.
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Figure 2: Intuition of the transitive property in knowledge resource-driven representation of documents

4.1 Knowledge Resource-driven
Representation Vectors

Our aim here is to model a document/query representation that
conveys their semantics with respect to a knowledge resource. �e
premise of this representation relies on the following assumptions:
(A1) a text is a bag of identi�ed objects from a knowledge resource,
and (A2) semantically similar texts are deemed to entail similar
and related objects.

Formally, a knowledge resource is built upon a relational graph
G = (V ,E) where V is a node set and E is a edge set. Each node
vi =< oi ,desci , > includes an object oi (e.g., word, entity) and its
textual label desci (e.g., preferred entry). Each object oi is associ-
ated to a distributional representation xdi (e.g., its ParagraphVector
[2] obtained on the basis of its textual labels desci ). Each edge
ei,i′ expresses a semantic relation between objects oi and oi′ . We
suppose that given the set O of objects in the knowledge resource
G, we can identify, for each text T , a set O(T ) ⊂ O of objects o.

While assumption A1 is easy to formalize through a binary
vector modeling objects oi ∈ V or a vector combining their
distributional representation xdi , it does not allow to ful�ll
assumption A2. To cope with this issue, the perspective of a
vector representing object-object pairs could be a good option
to simultaneously capture: 1) the objects belonging to a text,
2) their similarity as well as their relatedness. However, the
large number of potential pairwise objects, or more precisely
object-to-object relations, in a knowledge resource would lead
to a high dimensional and sparse vector. To face this issue, we
propose the relation mapping method, that: 1) similarly to the word
hashing method [12], aims at reducing the dimensionality and the
sparsity of the vector representation to make it scalable, and 2)
allows building representations of both objects belonging to text T
and their relations according to assumption A2. We describe below
our approach for achieving these two sub-goals.

• Sub-goal 1) Text representation vector space: A naive approach
consists in considering objects from the knowledge resource as
unit vectors of a |V |-dimensional space. Even if the number of
objects in the resource is signi�cantly lower than the number
of object-to-object relations, the scalability of the underlying
framework remains questionable. To �t with sub-goal 1) and lower
the dimensionality of the vectorial representation space, we rather
consider clusters of objects as representative of each dimension

of the vectorial space. Assuming that object-to-object relations
might express topical relatedness between objects, we propose to
build k topical clusters c j of objects oi ∈ O assumed to be mutually
independent. �e la�er refers to the referential R = {c1, . . . , ck } of
the knowledge resource. In practice, we use the k-means clustering
algorithm on the topical representation of objects, where the
number of topical clusters k would be experimentally tuned (see
Section 6.1). �us, we consider a k-dimensional space, in which k
is the number of topical clusters of objects.

• Sub-goal 2) Knowledge resource-driven text representation: �e
representationxKR of textT (document or query) is a k-dimensional
vector xKR = (xKR1 ,x

KR
2 , ...,x

KR
k ). To ful�ll sub-goal 2, our intu-

ition is that two documents are likely to be similar if they mention
objects that are gathered around the same topical clusters. Nat-
urally, the degree of similarity between those documents would
depend on the average relatedness and similarity of their objects
with each object in the topical clusters c j of the referential R. �is
refers to as a transitive property, illustrated in Figure 2. Each doc-
ument D1 and D2 is modeled through a 2-dimensional vector in
which each element represents a topical cluster. �e gray levels in
the document representation express the relatedness and similarity
degree of document objects with respect to the topical clusters.
Although documents D1 and D2 are not characterized by the same
objects, they are as close to the referential, and accordingly, have
similar representations.

We compute the components xKRj with respect to assumption
A2. �ese values are expressed as a combination of the importance
wT
j of the topical cluster c j according to text T and the relatedness

Sr elat (c j ,O(T )) of objects O(T ) belonging to text T with respect to
topical cluster c j , given by the following formula:

xKRj = wT
j ∗ Sr elat (c j ,O(T )) (1)

4.1.1 Topical cluster importance score. �e importance score
wT
j of topical cluster c j expresses to what extent the set O(T ) of

objects belonging to text T are topically similar to objects belong-
ing to topical cluster c j . Intuitively, the degree of topical cluster
contribution allows discriminating documents according to their
degree of topical matching with those clusters. Accordingly, the
more topically similar the objects mentioned in the representations
of texts T and T ′ with respect to the topical clusters, the more
similar texts T and T ′.
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Assuming that objects belonging to a text represent a topical
cluster, we rely on previous work dealing with clustering similar-
ity [15] suggesting to estimate the similarity between two sets of
objects by aggregating similarities between objects of these two
di�erent sets. More formally, the topical cluster importance score
between topical cluster c j and object set O(T ) is estimated as:

wT
j = Aдд Function(om,on )∈O (T )×c j simt (om ,on ) (2)

where Aдд Function expresses an aggregation function (we con-
sider here the maximum to capture the best topical similarity be-
tween objects); simt estimates the topical similarity between vector
representations of objects (here, the cosine similarity between the
vectorial representations of object textual descriptions).

4.1.2 Topical cluster-text relatedness score. �e topical cluster-
text relatedness score Sr elat (c j ,O(T )) measures to what extent
objects oi ∈ O(T ) belonging to text T are related to those of topical
cluster c j . Our intuition is that if the objects mentioned in texts T
andT ′ are related to the representative of the same topical clusters,
texts T and T ′ are more likely to be similar. Having in mind that
state-of-the-art relatedness measures [28] rely on the computation
of paths between objects, a scalable way allowing to measure this
score is to consider the relatedness of objects O(T ) with respect
to a representative object R(c j ) of topical cluster c j (e.g., the most
frequent object in the collection among objects belonging to topical
cluster c j ). �e impact of the method used for identifying the
representative is experimentally investigated (see Section 6.1). More
formally, given a representative object R(c j ) of topical cluster c j ,
the topical cluster-text relatedness Sr elat (c j ,O(T )) estimates the
path length between object R(c j ) and the object set O(T ):

Sr elat (c j ,O(T )) =
∑

om ∈O (T )
log (1 + simr (R(c j ),om )) ·

avд no

|O(T )| (3)

where om is an object of the object setO(T ) characterizing textT .
simr is a relatedness measure between objects (eg. the Leacock
measure [17]); avд no is the average number of objects belonging
to documents in the collection. We introduce a normalization factor
avд no
|O (T ) | to avoid bias due to possible signi�cant di�erences in text

lengths in terms of the number of objects.

4.2 Model Architecture
4.2.1 Input. Based on previous �ndings in semantic IR high-

lighting that the combination of evidence from both words and
concepts is e�ective [36], each text T (whether extracted from a
document or a query) is characterized by an input vector xinput =
(xt ,xKR ) modeled as a vector composed of two parts:
• Plain text representation xt . �is feature represents words of

full textT . Based on previous �ndings highlighting the e�ectiveness
of distributed semantic representations (in contrast to sparse word
count representations [30]) to tackle the issue of large vocabulary,
we estimate the low-dimensional semantic vector by using the
ParagraphVector model [2].
• Knowledge resource-driven representation xKR . �is feature ex-

presses the objects belonging to text T and their semantic relations
expressed in the knowledge resource. �is representation is built
upon the relation mapping method (see Section 4.1).

4.2.2 Learning the latent representation. For each sub-network
branch, the input vector xinput of text T is projected into a latent
space by means of L hidden layers li (i = 1, · · · ,L) so as to obtain a
latent semantic vector y combining the distributional and relational
semantics of text T . Each hidden layer li and the latent seman-
tic vector y are respectively obtained by the following non-linear
transformations:

l0 = xinput

li = f (Wi−1 · li−1 + bi−1) i = 1, ...,L (4)
y = f (WL · lL + bL)

whereWi and bi are respectively the weight matrix and bias term
of the ith layer. �e activation function f (x) performs a non-linear
transformation, namely the ReLU: f (x) =max(0,x). �e use of the
ReLU function is motivated by the fact that it does not saturate to 1
when x is high in contrast to the hyperbolic tangent [12], avoiding
to face to the gradient vanishing problem.

A�er obtaining the latent semantic vectors yD and yQ of doc-
ument D and query Q through the non-linear transformations of
hidden layers, the document-query cosine similarity score R(D |Q)
is estimated between vectors yD and yQ .

4.2.3 Loss function. Since the ad-hoc retrieval task refers to a
ranking problem, we optimize the parameters of the neural net-
work using a pairwise ranking loss based on the distance ∆ of
similarity between relevant document-query pairs, noted (Q,D+),
and irrelevant document-query pairs, noted (Q,D−p ). Unlike [12],
it worth mentioning that we use the hinge loss function, more
adapted for learning-to-rank tasks [6]. To do so, we build a sam-
ple of document-query pairs in which we oppose, for the same
query Q , one relevant document D+ for n irrelevant documents
D−p , p = [1..n], as suggested in [12]. �e di�erence ∆ between
the similarity of the relevant pair (Q,D+) and the irrelevant ones
(Q,D−p ) is de�ned as:

∆ =

[
sim(Q,D+) −

n∑
p=1

sim(Q,D−p )
]

(5)

where sim(•, •) is the output of the neural network.
�en, the DSRIM network is trained to maximize the similarity

distance ∆ using the hinge loss function L:
L =max(0,α − ∆) (6)

where α is the margin of L, depending on the ∆ range.

5 EVALUATION PROTOCOL
We present here the experimental evaluation which, respectively
to research questions RQ1 and RQ2 (Section 3), aims at assessing
1) the quality of our knowledge resource-driven representation of
texts and 2) the e�ectiveness of our DSRIM model.

5.1 Datasets
We consider two datasets (statistics are presented in Table 1):
• �e GOV23 dataset gathering .gov sites used in the TREC

Terabyte campaign. We use topics from the 2004, 2005, and 2006
campaigns and the narrative part of each topic as a query.
3h�p://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm
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Table 1: Statistics of the GOV2 and the PMC datasets

GOV2 PMC
# Documents 25,000,000 733,138
Average length of documents (#words) 1132.8 477.1
# �eries 150 60
# Relevant pairs 25,100 8,346

•�e PMC OpenAccess4 dataset containing biomedical full-texts
from PubMed used in the TREC-CDS campaign. �e summaries
of topics of the 2014 and 2015 evaluation campaigns are used as
queries.

To learn the text semantics, we use external knowledge resources
matching each dataset application domain. For GOV2, we consider
WordNet5 which is an English lexical database including about
117,000 synsets (groups of words associated with the same concept).
�ese synsets are connected by 6 semantic relations. For instance,
the most common one is the “IS-A” one (hyponymy or hyperonymy
relation) which we exploit in our experiments. For the PMC dataset,
we use the 2015-Mesh version6, produced by the National Library
of Medicine. �is resource includes over 27,000 concepts, also called
descriptors, organized in 16 categories, hierarchically structured
from the most general to the most speci�c in up to 13 levels.

5.2 Implementation Details and Evaluation
Methodology

To build the input layer, we pre-train a ParagraphVector model
on the plain text corpus for learning vector xt . �e vectors are
sized to 100, which is consistent with previous results outlining
that low-dimensional paragraph vector models are able to capture
complex topic structures [2]. �e concepts used for building
our knowledge resource-driven representation are extracted
using appropriate tools, namely SenseRelate [27] for the GOV2
dataset and Cxtractor7 relying on MaxMatcher [41] for the PMC
dataset. Concerning our model architecture, we set the number of
hidden layers to 2 with a hidden vector size equals to 64 leading
to an output layer of 32 nodes. Similarly to [12], the number n
of irrelevant document-query pairs opposed to a relevant one
is 4 (Equation 5). Relevant/irrelevant document-query sets are
randomly extracted from each dataset ground truth, supplying
graded relevance judgments from 0 to 2 (relevance criteria: 1 and 2).

To train our model parameters, we apply the 5-fold cross-
validation method. �e topics in each dataset are divided into
5 folds. For each fold retained as the test set for model evaluation,
the other 4 folds are used to train and validate the model. �e �nal
retrieval results are averaged over the test results on 5 folds. �e
model is optimized using a 5-sample mini-batch stochastic gradient
descent (SGD) regularized with a dropout equals to 0.3. Our model
generally converges a�er 50 epochs over the training dataset.

4h�ps://www.ncbi.nlm.nih.gov/pmc/tools/open�list/
5h�p://wordnet.princeton.edu
6h�ps://www.nlm.nih.gov/mesh/
7h�ps://sourceforge.net/projects/cxtractor/

For evaluating the ranking performance of our model and the
di�erent baselines, we perform a re-ranking [3] which is carried
out over the top 2,000 documents retrieved by the BM25 model.
Final results are estimated using the top 1000 documents of each
re-ranking model according to the MAP metric.

5.3 Parameter Settings
According to our �rst experimental goal dealing with the quality of
the knowledge resource-driven representation xKR , we adopt dif-
ferent se�ings related to two parameters: 1) the number of topical
clusters: we set the number k of topical clusters to k ∈ {100, 200};
2) the choice of the representative object R(c j ) within each topical
cluster: we use three strategies: id fmin , namely the most frequent
object; id fmax , the less frequent one; and centroid , the closest ob-
ject to the centroid, that have been evaluated with respect to a naive
baseline. �e la�er consists in selecting the top k frequent objects
in the document collection as the representative objects, where
k ∈ {100, 200}. Combining these se�ings leads to eight possible
con�gurations of our knowledge resource-driven representation.

5.4 Baselines
Our second experimental goal refers to the e�ectiveness evaluation
of our model. To measure the impact of the di�erent evidence
sources taken into consideration for representing texts (query and
documents), three scenarios built upon our model are presented:
• DSRIMp2v : Our proposed neural model based on an input
representation of texts restricted to the plain text, namely xt .
• DSRIMkr : Our proposed neural model based on our knowledge
resource-driven representation of text, namely xKR .
•DSRIMkr+p2v : Our proposed neural model based on an enhanced
representation of texts combining plain text representation xt and
our knowledge resource-driven representation xKR .

To evaluate our model e�ectiveness, we use three types of base-
lines: exact term matching models (BM25, LM-DI) to highlight the
impact of both leveraging relation semantics and deep learning
approaches, latent semantic based matching models (QE, LM-LDA)
to outline the impact of a deep neural approach guided by knowl-
edge resource for learning text semantics, and deep neural semantic
matching models (DSSM, CLSM) based on a siamese:
• BM25: �e well-known probabilistic model (BM25).
• LM-DI: �e language model based on Dirichlet smoothing which
is another e�ective retrieval model with exact term matching [40].
• LM-QE: A language model applying a concept-based query ex-
pansion technique [25] in which candidate terms are ranked based
on their similarity with descriptions in the knowledge resource.
Default parameters mentioned in the paper are used.
• LM-LDA: �e LM-LDA is a latent model using the language
modeling framework [34]. To perform a fair comparison with our
model, we set the number of topics equal to the size of the output
vector y in our model, namely 32.
• DSSM: �e state-of-the-art deep structured semantic matching
model [12]. We adopt the publicly released code8 with default pa-
rameter values. We also evaluate the DSSM on full-text documents.
• CLSM: �e DSSM extension model in which the feed-forward
8h�ps://www.microso�.com/en-us/research/project/dssm/
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Table 2: Cosine similarities of the knowledge resource-driven representation onmost similar (Top 10) and less similar (Less 10)
documents, averaged on 100 random pivotal documents. di�: di�erence between Top 10 and Less 10

GOV2 PMC

Clustering

#Clusters k Repres. obj. R(ci ) Top 10 Less 10 di� Top 10 Less 10 di�

#Cluster 100
idf max 0.7490 0.5776 0.1714 0.5455 0.3035 0.2420
centroid 0.7411 0.5693 0.1719 0.4807 0.2862 0.1945
idf min 0.7018 0.5501 0.1518 0.4975 0.2717 0.2259

#Cluster 200
idf max 0.7595 0.5814 0.1781 0.6359 0.3885 0.2475
centroid 0.7344 0.5536 0.1808 0.6464 0.3842 0.2621
idf min 0.7645 0.5660 0.1985 0.6485 0.4234 0.2251

Top frequent concepts Top 200 0.9034 0.9013 0.0021 0.9861 0.9616 0.0245
(naive baseline) Top 100 0.9123 0.9049 0.0074 0.9817 0.9572 0.0245

neural network is replaced by a convolutional network for be�er
capturing �ne-grained contextual structures [31]. We also apply
the publicly released CLSM code8 on full-text documents and use
the default parameter values.

6 RESULTS
6.1 Analyzing the Semantic Representation of

Documents
In this section, we propose to analyze our knowledge resource-
driven representation through a twofold objective: 1) identifying
the optimal parameter se�ing of the vectorial representation and 2)
assessing the validity of the built document vectors xKR .

To perform our analysis, we assess the vectorial representation
quality based on the intuition that semantically similar texts, mod-
eled as bags of concepts, should have similar vectorial represen-
tations built following our approach; such representations should
also discard non-similar documents [16, 21]. In practice, given a
randomly selected document (called a “pivotal document”), a good
vectorial representation should 1) ensure that the distance between
the pivotal document and each other document of the collection
is non-uniform, and 2) maximize the distance between its most
similar documents and its less similar ones. To this end: 1) we
�rst identify for each given pivotal document, the set Dp

+ of its
10 most semantically similar documents and the set Dp

− of the 10
less semantically similar documents over the whole dataset using a
concept-oriented metric proposed in [7], called in the remaining
the Corley measure; and 2) then we compute the average cosine
similarity of the representations of the pivotal documents with the
sets Dp

+ and Dp
− . Table 2 presents the comparative results of the

eight se�ings for 100 randomly selected pivotal documents and
suggests the following statements:
• Regarding the method used for de�ning the vectorial repre-

sentation space (See sub-goal 1; Section 4.1), we can see that our
proposed approach for identifying the referential based on the ob-
ject clustering is more e�ective than the naive baseline based on
the top frequent concepts. Indeed, the similarity di�erences of both
document sets are very small (< 0.02 for both datasets vs. higher
than 0.5 for our clustering approach) and cosine values between the
pivotal documents and the most/less similar documents are very

high (> 0.9 for both datasets). In contrast, we outline that cosine
values for our clustering approach seem to be more intuitive, with
an average cosine for the GOV2 dataset higher than 0.6 for the
most similar documents and lower than 0.6 for the less similar ones
(respectively 0.5 for the PMC dataset). �ese statements suggest
that our referential building approach based on topical clustering
seems reasonable. Moreover, the di�erence in terms of cosine value
range between both datasets (higher for the GOV2 dataset) conjec-
tures that representing texts using objects and relations expressed
in a knowledge resource seems to be more di�cult for the PMC
dataset. �is could be explained by the fact that this dataset fo-
cuses on a particular application domain (namely, the medical) that
might implies a more technical vocabulary, in contrast to the GOV2
dataset, which remains on generic word senses. Moreover, we can
see that the dimension used for the vectorial representation k im-
pacts the similarity degree between documents. Indeed, the average
similarities between pivotal documents and the set of top similar
ones are more important for a higher number of clusters (e.g., up
to 0.6485 for k = 200 vs. 0.5455 for k = 100 for the PMC dataset).
Also, this se�ing allows obtaining higher di�erences between the
most vs. less similar documents (with at least 0.2251 vs. 0.1945
for respectively k = 200 and k = 100 for the PMC dataset, and
0.1781 vs. 0.1518 for the GOV2 dataset). �ese results highlight the
importance of achieving a reasonable ratio between the knowledge
resource size (in terms of the number of object-object-relations) and
the number of representative clusters of objects to be�er capture
the semantic representation of documents.
• Focusing on the methods used for the knowledge resource-

driven representation (See sub-goal2; Section 4.1) and more partic-
ularly, the one used for choosing the topical cluster representative
(See Section 4.1.2), we can notice that, for k = 200, the best sce-
nario consists in selecting the closest object to the cluster centroid
(centroid) for the PMC dataset while these are no signi�cant di�er-
ences between the three methods for the GOV2 dataset. Given that
the centroid method is more intuitive with the assumptions used
for building the referential, we retain the se�ing with 200 topical
clusters and the centroid method for extracting the representative
object.
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Table 3: E�ectiveness comparison of baselines and DSRIM on GOV2 and PMC collections. % Chg: Signi�cant improve-
ment/degradation of DSRIMkr+p2v w.r.t each baseline is indicated (+/-). p-value: Signi�cance t-test: * : 0.01 < α ≤ 0.05, ** :
0.001 < α ≤ 0.01, *** : α ≤ 0.001

GOV2 PMC
Model Type Model MAP %change p-value MAP %change p-value

Exact
Matching

BM25 0.1777 +4.84 0.6691 0.0348 -1.15 0.9628
LM-DI 0.1584 +17.61 0.1644 0.0379 -9.23 0.7109

Semantic
Matching

LM-QE 0.0738 +152.44 0.0001 *** 0.0106 +224.53 0.0008 ***
LM-LDA 0.0966 +92.86 0.0001 *** 0.0185 +85.95 0.0323 *

Deep
Matching

DSSM 0.0418 +345.69 0.0001 *** 0.0095 +262.11 0.0008 ***
CLSM 0.0365 +410.41 0.0001 *** 0.0069 +398.55 0.0001 ***

Our approach
DSRIMp2v 0.1115 +67.09 0.0001 *** 0.0183 +87.98 0.0460 *
DSRIMkr 0.1801 +3.44 0.7461 0.0307 +12.05 0.6829

DSRIMkr+p2v 0.1863 0.0344

6.2 Measuring the Model E�ectiveness
We present here the performance of our model on both datasets
GOV2 and PMC. Table 3 shows a summary of e�ectiveness values
in terms of MAP for our model and the di�erent baselines.
Comparing di�erent con�gurations of our approach, namely
DSRIMp2v , DSRIMkr , and DSRIMkr+p2v , we can see that the
DSRIM model applied only on our knowledge resource-driven rep-
resentation xKR provides be�er performance according to the MAP
metric than the one with only the plain text-based representation xt

(e.g., respectively 0.0307 and 0.0183 for the PMC dataset). �is result
reinforces the intuition claimed in recent work dealing with the use
of text representations based on local interactions of terms and/or
non-learned features [10]. Moreover, when combining the distri-
butional and the relational semantics through the DSRIMkr+p2v

model, we could see that the MAP value slightly increases, with for
instance a signi�cant improvement of +67.09% and +87.98% for the
GOV2 and PMC datasets respectively with respect to DSRIMp2v .
�is opens interesting perspectives in the combination of those
word-sense approaches as we claim in this paper.

With this in mind, we comment the baseline comparison with
respect to the DSRIMkr+p2v model. From a general point of view,
we can see, on the one hand, that exact matching models are non-
signi�cantly di�erent from our proposed model, with a particular
a�ention to the GOV2 dataset with small improvements with re-
spect to BM25 (+4.84%) and LM-DI (+17.61%). On the other hand,
our approach overpasses semantic and deep matching models with
signi�cant improvements. For instance, our model reports signif-
icant be�er results for the GOV2 dataset according to the MAP
compared with the LM-QE, LM-LDA, DSSM, and CLSM baseline
models for which our model obtains a MAP value up to +410.41% of
improvement rate. �ose observations are similar for both datasets,
highlighting the fact that our model is e�ective for leveraging
general (WordNet) as well as domain-oriented (MeSH) knowledge
resources. More particularly, we can formulate the following state-
ments:
•�e BM25 and the language models are well-known as strong

baselines in IR which are di�cult to outperform with deep match-
ing models learned with small training datasets that do not allow
to generalize the task. It is worth noting that, in contrast to most

previous neural approaches [12, 30, 31] that rank short documents
(titles) and use large-scale real collection for training their model,
we rather experiment our model on long full-text document collec-
tions (average length is 1132.8 words for the GOV2 and 477.1 for
the PMC datasets). To get a be�er understanding of this result, we
investigate to what extent the e�ectiveness of our model depends
on the level of di�culty of queries. More particularly, we classify
queries according to three levels of di�culty (“easy”, “medium”,
“di�cult”) using the k-means algorithm applied on the BM25 MAP
values. Statistics of the obtained classes are presented in Table 4. We
can outline that, for the PMC dataset, di�cult queries signi�cantly
include more terms and more objects than easy and medium ones.
However, there is no signi�cant di�erences between the di�erent
query types with respect to the number of terms and objects for
the GOV2 dataset. Focusing on the retrieval e�ectiveness, it can
be seen that DSRIMkr+p2v improvements according to BM25 are
both positive and signi�cant for di�cult queries for both GOV2 and
PMC datasets. Moreover, it is worth mentioning that the improve-
ment rates for di�cult queries (+63.60% for the PMC dataset) are
signi�cantly di�erent from the ones for medium and easy queries
(respectively −25.78% and −0.22% for the PMC dataset, with no sig-
ni�cant improvement di�erence between easy and medium queries,
p > 0.5). Interestingly, combining the improvement rates and the
number of objects for medium queries of the GOV2 dataset, we
can see that the signi�cant e�ectiveness decrease of our model
(−5.15%) could be explained by the lowest number of objects as-
sociated to this query set. �ese results highlight that leveraging
the relational semantics through our knowledge resource-driven
representation is more e�ective for solving di�cult queries. �is

Table 4: Statistics on queries w.r.t their di�culty level

Di�culty level #Words #Objects %Change

GOV2
Easy 22.95 12.11 -16.60%

Medium 20.79 11.79 -5.15%*
Di�cult 22.15 12.14 +87.15%***

PMC
Easy 13 5.4 -0.22%

Medium 16.68 5.36 -25.78%
Di�cult 18.5 6.3 +63.60%*
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Table 5: Average similarity of relevant document-query
pairs at the I/O layers

GOV2 PMC
Input Output Input Output

DSSM 0.1482 0.3955 0.1049 0.1111
DSRIM 0.1988 0.7386 0.3659 0.6283

is coherent since those queries are generally characterized by a
high number of words and extracted objects. Accordingly, we can
reasonably argue that our model is particularly devoted to lower
the semantic gap between word-based and concept-based repre-
sentations of documents and queries which probably favors the
discrimination between relevant and irrelevant documents.
•�e LM-QE baseline performs a knowledge resource-based

query expansion. Since the DSRIM outperforms the LM-QE model,
we can suggest that the semantic based representations of docu-
ments and queries which are learned starting from the input built
upon the relation mapping method, is more e�ective than the ex-
panded queries with relevant object descriptors.
•�e LDA-LM model is based on a probabilistic generative model

able to identify relevant topics. Our model generally outperforms
this baseline with a signi�cant improvement of 89.95% for the MAP
metric on the PMC dataset. �is is consistent with previous work
[12], highlighting the e�ectiveness of deep latent representations
of texts in comparison to those obtained by generative models.
• In the category of neural IR models, our model outperforms

the DSSM and the CLSM models (with a MAP reaching 0.0418 and
0.0095 for both datasets respectively). �ese results suggest that
the integration of relational as well as the distributional semantics
at the document level (rather than the word level) into the input
representation allows enhancing the learning of the deep neural
matching model. Interestingly, the convolutional CLSM model
initially overpassing the DSSM in [31] through experiments carried
out on a large-scale real-world data, is less e�ective than the DSSM.
One explanation might be that it is trained using TREC collections
characterized by a limited number of queries (as also shown in
[10]). �is observation combined with the comparison of our
model with the BM25 baseline gives rise to research opportunities
in neural IR in terms of representation learning on small training
datasets by introducing for instance distant supervision approaches.

In order to further investigate the impact of incorporating ev-
idences issued from the external knowledge in a deep model, we
report in Table 5 the measures of the cosine similarity between
document-query vectors of input and output relevant pairs ob-
tained using both DSSM and DSRIM. As can be seen from Table 5,
although input similarities are of the same range for both datasets,
the similarity improvement between input/output representations
is more important for our model than for the DSSM model for both
datasets: 166.88% for DSSM vs. 271.51% for DSRIM for the GOV2
dataset, 5.91% for DSSM vs. 71.71% for the PMC dataset. �ese
results suggest that the use of evidence from relational semantics
underlying queries and documents allows a be�er discrimination
between relevant and irrelevant documents.

7 CONCLUSION
We propose the DSRIM model, a deep neural IR model combin-
ing the distributional and the relational semantics underlying texts.
While the former is modeled using state-of-the-art work, namely the
ParagraphVector algorithm, the la�er is modeled through a knowl-
edge resource-driven representation of texts aiming at jointly mod-
eling objects and structured relations between objects from a knowl-
edge resource. To tackle the issue faced by the high-dimensionality
representation of pairwise object relations, we propose the relation
mapping method based on the premise that similar documents en-
tail similar and related concepts. Experimental evaluation on two
TREC datasets, namely the GOV2 and the PMC Open Access, are
performed. Results show that 1) our knowledge resource-driven
representation allows to discriminate similar from non-similar texts,
and 2) our model overpasses semantic-driven approaches as well as
state-of-the-art neural IR models. In the near future, we plan to fur-
ther the knowledge resource-driven representation by taking into
account both the heterogeneity of objects and the heterogeneity
of the relations between objects. Another interesting perspective
would be to explore the usefulness of the relation mapping method
for estimating local interactions of terms/objects between queries
and documents, as [10, 19, 26].

ACKNOWLEDGEMENT
�is research was supported by the French FUI research program
SparkInData.

REFERENCES
[1] Eneko Agirre, Xabier Arregi, and Arantxa Otegi. 2010. Document expansion

based on WordNet for robust IR. In ICCL. 9–17.
[2] Qingyao Ai, Liu Yang, Jiafeng Guo, and W. Bruce Cro�. 2016. Analysis of the

Paragraph Vector Model for Information Retrieval. In ICTIR. ACM, 133–142.
[3] Qingyao Ai, Liu Yang, Jiafeng Guo, and W. Bruce Cro�. 2016. Improving Lan-

guage Estimation with the Paragraph Vector Model for Ad-hoc Retrieval. In
SIGIR. ACM, 869–872.

[4] Antoine Bordes, Sumit Chopra, and Jason Weston. 2014. �estion Answering
with Subgraph Embeddings. In EMNLP. 615–620.

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and
Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NIPS. 2787–2795.

[6] Wei Chen, Tie yan Liu, Yanyan Lan, Zhi ming Ma, and Hang Li. 2009. Ranking
Measures and Loss Functions in Learning to Rank. In NIPS. 315–323.

[7] Courtney Corley and Rada Mihalcea. 2005. Measuring the semantic similarity of
texts. In Workshop on empirical modeling of semantic equivalence and entailment.
ACL, 13–18.

[8] Sco� Deerwester, Susan T. Dumais, George W. Furnas, �omas K. Landauer, and
Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American Society for Information Science 41, 6 (1990), 391–407.

[9] Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris Dyer, Eduard Hovy, and
Noah A. Smith. 2015. Retro��ing Word Vectors to Semantic Lexicons. In NAACL.

[10] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Cro�. 2016. A Deep Relevance
Matching Model for Ad-hoc Retrieval. In CIKM. 55–64.

[11] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional
neural network architectures for matching natural language sentences. In NIPS.
2042–2050.

[12] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In CIKM. 2333–2338.

[13] Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto Navigli. 2015.
SensEmbed: Learning Sense Embeddings for Word and Relational Similarity. In
ACL. 95–105.

[14] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge
Graph Embedding via Dynamic Mapping Matrix. In ACL. 687–696.

[15] Benjamin King. 1967. Step-Wise Clustering Procedures. J. Amer. Statist. Assoc.
62, 317 (1967), 86–101.

[16] �oc V Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents.. In ICML. 1188–1196.

9



[17] Claudia Leacock and Martin Chodorow. 1998. Combining local context and
WordNet similarity for word sense identi�cation. WordNet: An electronic lexical
database 49, 2 (1998), 265–283.

[18] Xiaojie Liu, Jian-Yun Nie, and Alessandro Sordoni. 2016. Constraining Word
Embeddings by Prior Knowledge – Application to Medical Information Retrieval.
In AIRS.

[19] Zhengdong Lu and Hang Li. 2013. A deep architecture for matching short texts.
In NIPS. 1367–1375.

[20] Andrew McCallum. 2015. Embedded Representations of Lexical and Knowledge-
Base Semantics. In ICTIR. ACM, 1–1.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
estimation of word representations in vector space. arXiv:1301.3781 (2013).

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Je�rey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In NIPS. 3111–3119.

[23] Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caruana. 2016. A dual
embedding space model for document ranking. arXiv:1602.01137 (2016).

[24] Gia-Hung Nguyen, Lynda Tamine, Laure Soulier, and Nathalie Bricon-Souf.
2016. Toward a deep neural approach for knowledge-based IR. arXiv preprint
arXiv:1606.07211 (2016).

[25] Dipasree Pal, Mandar Mitra, and Kalyankumar Da�a. 2014. Improving query
expansion using WordNet. Journal of the Association for Information Science and
Technology 65, 12 (2014), 2469–2478.

[26] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text Matching As Image Recognition. In AAAI. AAAI Press, 2793–2799.

[27] Ted Pedersen and Varada Kolhatkar. 2009. WordNet::SenseRelate::AllWords: A
Broad Coverage Word Sense Tagger �at Maximizes Semantic Relatedness. In
NAACL-Demonstrations. 17–20.

[28] Ted Pedersen, Serguei V.S. Pakhomov, Siddharth Patwardhan, and Christopher G.
Chute. 2007. Measures of semantic similarity and relatedness in the biomedical
domain. Journal of Biomedical Informatics 40, 3 (2007), 288 – 299.

[29] Je�rey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global Vectors for Word Representation. In EMNLP. 1532–1543.

[30] Aliaksei Severyn and Alessandro Moschi�i. 2015. Learning to rank short text
pairs with convolutional deep neural networks. In SIGIR. 373–382.

[31] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
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