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Accurate Equivalent-Circuit Descriptions
of Thin Glide-Symmetric Corrugated Metasurfaces

Guido Valerio, Zvonimir Sipus,
Anthony Grbic, and Oscar Quevedo-Teruel

Abstract—Thin artificial surfaces that act as high frequency band-gap
structures have been recently studied for the design of gap waveguides,
hard surfaces, and planar lenses. Here, we propose a circuit-based method
to analyse glide-symmetric corrugated metasurfaces that are embedded
in a thin parallel plate waveguide. Our closed-form solution is based on
rigorous analytical derivations. It achieves remarkable agreement with
full-wave solvers, even when the waveguide thickness is extremely thin. In
contrast, classical homogenization approaches are shown to be inaccurate
for thin waveguides due to the interaction of higher-order Floquet modes
between the surfaces. Numerical results validate our theoretical analysis
and show the utility of the proposed method.

Index Terms—Equivalent circuit, homogenization, transverse reso-
nance method, dispersive analysis, corrugated surfaces, metasurfaces,
planar lenses, glide symmetry.

I. INTRODUCTION

Metasurfaces have emerged as an attractive solution for next
generations planar devices that control wave propagation at millimeter
waves [1]. Their low-cost, light-weight and simple integration with
electronic circuits make them an interesting candidate for reduced-
losses guiding-wave and high-gain radiating devices [2]-[5]. In addi-
tion, artificial gradient-index metasurfaces have been employed to
create beam scanning planar lens antennas [6], [7], [8], avoiding
the use of conventional lossy, expensive and bulky beam-forming
networks [9]. A number of artificial lenses embedded in parallel-
plate-waveguide (PPW) technology have also been proposed [10]-
[12].

Although these initial works are very promising, there have been
obstacles to the adoption of this technology as a competitive al-
ternative to well-established techniques. For example, initial im-
plementations had a narrow bandwidth of operation, due to their
strong frequency dispersion. This led to significant variations of the
effective refractive index with frequency. Furthermore, planar PPW
metasurface lenses usually require the presence of a dielectric slab
[7]. The dielectric slab may produce high losses arising from the
presence of high current densities on the small printed metallizations.
Finally, the dielectric slab must be truncated at the lens aperture to
produce radiation. However, the presence of waves mainly confined
in the dielectric inherently produces a mismatch between the lens and
the free-space region.

It has been recently demonstrated in [13] that these disadvantages
can be overcome by using all-metallic metasurfaces in a PPW. In
order to increase the bandwidth of operation and the equivalent
refractive index range, glide symmetry may be employed. Glide
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Figure 1. Geometry of the structures investigated in this paper, with definition
of the relevant geometric parameters. The origin of the axes is taken on the
lower PPW plate, in the middle of a groove (i.e., the unit-cell groove of the
lower plate lies on the plane z = 0 for |x| < w/2.). The upper PPW plate is
at z = hPPW. (a) PPW with a bottom corrugated plate. (b) PPW with two
corrugated plates, whose corrugations are shifted one respect to the other of
an arbitrary length, s. If s = p/2, the structure is glide-symmetric.

symmetry means that both the upper and the lower PPW plates
possess a periodic texture that are shifted by a half period with respect
to each other [14].

Since the interesting properties of glide symmetry structures have
only been recently discovered [13],[15], specific analysis methods
have not yet been proposed. In fact, modeling of these types of
structures imposes fundamental limitations due to the presence of
geometrical details at different scales: thin PPW slabs and relatively
large inclusions (corrugations, pins or holes). This contrast in scales
is required to obtain UWB performance in 2D-lenses [13] and is
a requirement in gap waveguide technology [3],[15]. These funda-
mental limitations are due to the close spacing of the textured plates,
leading to the interaction of high-order Floquet modes and a complex
field distribution on the metasurfaces. As a consequence, conventional
homogenized formulas for periodic surfaces [16] have a reduced
accuracy. On the other hand, full-wave models become prohibitively
time-consuming if a large structure must be simulated [17].

In this paper, we propose different methods to study the dis-
persion diagram of corrugated structures, including glide-symmetric
metasurfaces. For simplicity, two-dimensional structures periodic
in one dimension are studied. These structures are uniform along
one horizontal direction and periodic along the other. The vertical
direction is the direction orthogonal to the PPW plates (see Fig. 1).
To begin, a single-layer of corrugations in a thin PPW is considered
(see Fig. 1(a)). Since the PPW is thin, we propose a high-order sur-
face admittance method to accurately model the metasurface. Then,
arbitrary field variations on each corrugation and Floquet modes
are taken into account. However, this version of the method cannot
be used for glide-symmetric structures (see Fig. 1(b)). Therefore, a
second model, valid also for glide-symmetric structures is introduced
here. In this second method, the corrugations are described with an
equivalent two-port network, considering a transmission line along
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the propagation direction [18], [19].
The paper is organized as follows. In Section II, the standard

homogenized admittance for corrugated surfaces is briefly reviewed.
In Section III, a derivation of the homogenized high-order surface
admittance is described. In Section IV, the equivalent longitudinal-
circuit network is described, and in Section V, the implementation of
the method for glide-symmetric structures is discussed. In Section VI,
numerical results from the two methods are compared with those of a
commercial solver to validate the accuracy of the proposed methods.
In Section VII, conclusions are drawn.

II. UNIMODAL HOMOGENIZED-ADMITTANCE APPROACH

A single-corrugated waveguide, as shown in Fig. 1(a), has been
extensively studied by replacing the corrugated surface with an
homogenized admittance [16]. However, this approach is not possible
for the case of glide-symmetric structures, as shown in Fig. 1(b). A
single-corrugated waveguide consists of a PPW in which one of the
metallic plates is replaced with a corrugated surface. The period of
corrugations is denoted with p, the width of the groove with w, their
depth with hcorr, and the PPW height with hPPW. A time harmonic
dependence of ejωt is assumed throughout this paper. The structure is
two-dimensional, i.e. invariant along the y direction. Additionally, we
consider a TMx mode propagation along the horizontal x direction,
having field components Ex, Ez, Hy .

If the fields are assumed to be constant along the corrugations,
and the PPW thickness hPPW is sufficiently large to disregard
vertical interactions through higher-order attenuated Floquet modes,
the corrugated surface can be replaced with an impedance surface.
This admittance Y is obtained by computing the ratio between the
magnetic and electric field tangential to the surface Hcorr

y /Ecorr
x [20]:

Y =
Hcorr
y (x, z = 0)

Ecorr
x (x, z = 0)

=
j

η0

p

w
cot (k0hcorr) (1)

The accuracy of the approach can be increased by accounting
for higher-order harmonic interaction and field singularities at the
edge of the grooves. With these assumptions, a modified equivalent
admittance is obtained in [21] yielding perfect agreement with full-
wave simulations of a single corrugated surface. Although this kind
of approaches is usually very accurate, the presence of the upper
plate at a short distance from the corrugated surface will cause the
need to include not only higher-order harmonics in the PPW, but
also a horizontal variation of the field along the groove. This variation
depends on frequency, and becomes especially relevant when the ratio
w/p approaches to unity (i.e., large corrugations). The inaccuracy of
(1) in these particular cases will be discussed in Section VI.

III. MULTIMODAL ADMITTANCE APPROACH

In this section, we include higher-order Floquet modes in order
to overcome the limitations in accuracy of the unimodal admittance
model for a single-corrugated waveguide, Fig. 1(a). Additionally, a
more complex field variation on the groove width is employed. Re-
lating electric and magnetic fields on the corrugations, a multimodal
admittance will be obtained.

Specifically, the field representation inside the corrugations is

Hcorr
y (x, z) =

N∑
n=0

αnH̃y,n (x, z) , (2)

Ecorr
x (x, z) =

N∑
n=0

αnẼx,n (x, z) (3)

with

H̃y,n = cos
[nπ
w

(
x+

w

2

)]
cos [kz,n (z + hcorr)] (4)

and

Ẽx,n = − jη0kz,n
k0

cos
[nπ
w

(
x+

w

2

)]
sin [kz,n(z + hcorr)] (5)

where kz,n =
√
k20 −

(
nπ
w

)2 is the vertical wavenumber of the nth
mode of the waveguide. One can determine the higher-order surface
admittance terms Ỹn as

Ỹn =
H̃y,n

Ẽx,n
=

jk0
η0kz,n

p

w
cot (kz,nhcorr) (6)

A diagonal admittance matrix Y can be defined, whose (n, n) element
is Ỹn. This definition generalizes the unimodal admittance in (1). As
in that case, it leads to an expression for the magnetic field on the
surface z = 0, which is proportional to the electric field on the same
surface:

hy = Y · eTx (7)

where T stands for a vector transposition, and

hy =
(
H̃y,1, H̃y,2, . . . , H̃y,N

)∣∣∣
z=0

(8)

ex =
(
Ẽx,1, Ẽx,2, , . . . , Ẽx,N

)∣∣∣
z=0

. (9)

In order to determine αn in (2) and (3), expressions for fields in
the PPW region are needed to express boundary conditions on the
corrugation. Due the periodicity in the x direction within the PPW,
the field can be represented with the following double summation:

HPPW
y =

N∑
n=0

αn

NF∑
i=−NF

ξn,i cos [kz,i(z − hPPW)] e−jkx,ix (10)

EPPW
x = − jη0

k0

N∑
n=0

αn

NF∑
i=−NF

ξn,ikz,i

× sin [kz,i(z − hPPW)] e−jkx,ix

(11)

with kx,i = kx+2πi/p, and 2NF+1 is the number of Floquet modes
retained in the summation. From the E-field boundary condition on
the corrugated surfaces and as a consequence of orthogonality of
propagating Floquet modes, the coefficients ξn,i are determined by

ξn,i =−
kz,n sin (kz,nhcorr)

kz,i sin (kz,ihPPW)

× 1

p

∫ w/2

−w/2
cos
[nπ
w

(
x+

w

2

)]
e+jkx,ixdx.

(12)

The relative amplitude of each corrugation mode αn is determined
by applying the mode-matching procedure, i.e. after testing the
continuity equation for the tangential component of the magnetic field
with suitable test functions. A Galerkin approach is chosen here, i.e.,
the (mutually orthogonal) testing functions are:

fm(x) = cos
[mπ
w

(
x+

w

2

)]
, m = 0, 1, . . . , N. (13)

In the absence of a source, the resulting set of linear equations is
homogeneous. Zeros of the linear-system determinant are kx values
of the Floquet modes of the corrugated waveguide.

IV. LONGITUDINAL-CIRCUIT APPROACH

The homogenized admittance used in Section II is an attractive
description of the corrugated PPW: it replaces a periodic structure
with a homogeneous one. By establishing a transverse transmission
line along the z axis, the dispersion diagram can be easily obtained
since the surface impedance is known in closed form. Unfortunately,
its accuracy rapidly deteriorates when the PPW are very thin. The
method used in Section III overcomes this limitation, but requires
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the numerical determination of the field on the corrugation apertures
through a Galerkin testing procedure, and thus cannot give the
relevant dispersion diagram in closed form.

In this section, we propose a different circuit approach by estab-
lishing this time a longitudinal transmission line along the periodicity
x direction instead of the transverse z direction. Knowledge of the
circuit parameters of a unit cell lead to a straightforward evaluation
of the wavenumber of Bloch modes by considering a cascade of unit
cells in a periodic configuration [22],[23]. It should be stressed that
the present approach can be generalized to a two-dimensional lattice
[24].

The unit cell considered here is known in microwave waveguide
theory as a “T-junction,” consisting of a junction between orthogonal
parallel waveguides, as shown in Fig. 2(b). In our structure, one of the
two waveguides composing the T-junction is shorted with a metallic
plane at its end (top side). The length of the shorted waveguide
corresponds to the depth of the corrugation hcorr. The height of this
PPW (w) may be thick, in contrast to the other, whose height is
hPPW (possibly very small).

The T-junction has been extensively studied in the framework
of waveguide-based guiding and leaky-wave devices, and accurate
circuit models have been proposed [18], [25]. These models are based
on mode matching: imposing field continuity on the planes defining
the junction. The fields are computed by retaining two PPW vertical
modes. In this way, interactions between the corrugated surface and
the upper plate are taken into account in the circuit model, and reliable
results can be obtained even in the case of thin structures, as it will
be demonstrated in Section VI.

From the different circuits proposed, the one by Marcuvitz [18]
is selected here to study the corrugated PPW. Its range of validity
is within 10% as long as both PPW thickness and groove width are
smaller than half a wavelength (hPPW < λ/2 and w < λ/2). A
more accurate circuit has been proposed in [25] for values of hPPW

close to λ/2. However, these validity limits are never reached in
our applications. In low-profile surfaces, the PPW height is always
smaller than 0.1λ. Furthermore, the groove width is always smaller
than the unit-cell length, hence in subwavelength cells the groove is
always much smaller than the wavelength. This will be confirmed by
the numerical results shown in Section VI. An alternative circuit for
corrugated surfaces is proposed in [21], where different higher-order
harmonics and different modes in the corrugations can be retained,
thus tuning the required accuracy. However, a uniform electric field on
the groove aperture (apart from edge singularities) is there considered.
Since the mode-matching formulation of Sec. III confirms a non-
negligible impact of field variation along each aperture, Marcuvitz’s
circuit is employed here.

In order to summarize the results, the relevant formulas for the
circuit parameters of the unit cell in Fig. 2(b) are given below ((14)-
(21)):

Bsh =
1

η0
cot (k0l) (14)

Ba =
2w

λ0η0

(
arctan

1

α
+

ln
√
1 + α2

α

)
(15)

Bc =
λ0

2πwη0
(16)

Ba − 2Bb =
2hPPW

λ0η0

( π
3α

+A1

)
(17)

Bd =
w

λ0η0

( π
3α

+A2

)
(18)

‒jBc 
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Figure 2. Geometry of unit cell used in the structures in Fig. 1. (a) Unit cell
for the single-corrugated PPW in Fig. 1(a). (b) Circuit model of the unit cell
of the single-corrugated cell. (c) Unit cell for the double-corrugated PPW in
Fig. 1(b) (d) Circuit model of the unit cell of the double-corrugated cell. If
w1 = w2, hcorr,1 = hcorr,2 and s = p/2 the cell is glide-symmetric.

where, 2α = hPPW/w, η0 = 120π is the free-space impedance, and

A1 = −2α

π
e−

2 arctanα
α

{
1 +

5 + α2

4 (1 + α2)
e−

2 arctanα
α + (19)

+
4

1 + α2
+

(
5 + α2

1 + α2

)2
e−

4 arctanα
α

9

}
(20)

A1 +A2

2
=

α arctan
1

α
+

arctanα

α
+ ln

1 + α2

4α
−
π
(
1 + α2

)
6α

(21)

The expressions are obtained by applying Marcuvitz’s circuits for a
short-circuit junction. The corrugation is equivalent to a short-circuit
series stub. The higher-order interaction, which plays a relevant role
for thin structures and large corrugation widths, are described by the
reactive elements placed at the junction planes. Once the unit-cell
parameters are obtained, a periodic cascade of cells can be considered
in order to perform dispersion analysis. The wavenumber of the
fundamental Bloch-mode supported by the periodic structure can be
expressed in terms of its ABCD matrix as [22],[23]:

cos (kxp) =
A (f) +D (f)

2
= A (f) (22)

A (f) and D (f) are the first and fourth elements of the unit cell’s
ABCD matrix, written explicitly as a function of the frequency f .
It is assumed that A (f) = D (f), since the cell is symmetric.

The equivalent circuit also allows one to derive a simple expression
for the frequency fsb of the lower stop-band edge, by imposing the
condition kx = π/p at the frequency fsb in (22):

A (fsb) + 1 = 0 (23)

A numerical solution of this equation yields a very accurate esti-
mate of the pass-band of the periodic surface. It will be demonstrated
in Section VI that refinement through full-wave simulation is not
required. Surface design can then be simply performed by tuning
the stop-band edge obtained using (23) with a suitable variation of
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geometrical parameters (e.g., the depth of the corrugations hcorr or
the spatial period p).

V. GLIDE-SYMMETRIC CORRUGATED WAVEGUIDE

Another advantage of the formulation in Section IV is its ability to
analytically model a double-corrugated PPW (Fig. 1(b)), whose upper
and lower plates are both corrugated and shifted by a distance s. The
unit cell of the structure is composed of two corrugations, one on
the upper and one on the lower plate, as shown in Fig. 2(c). In other
words, the unit cell consists of two T-junctions connected through
a simple transmission-line section. In the first junction, the shorted
series stub, together with its reactive elements, are placed on the
upper line. In the case of the second junction, the same impedances
are placed on the lower line, as shown in Fig. 2(d). In order for
this model to be valid, we require that the two corrugations do not
overlap, i.e., min{s, p− s} > (w1 + w2)/2. As it will be shown in
Section VI, perfect agreement with full-wave results is obtained even
in the limiting case of min{s, p− s} = (w1 + w2)/2.

Let us consider a glide-symmetric PPW, where w1 = w2 = w,
hcorr,1 = hcorr,2 = hcorr and s = p/2. The structure is invariant
under glide symmetry: it is the composition of two geometrical
transformations, namely a translation in the x direction of s = p/2
and a reflection with respect to the plane z = hPPW/2 [14]. Glide-
symmetric structures are periodic, but the minimal transformation
defining them is the glide symmetry. As a consequence, it was shown
in [14] that no band-gap occurs at kx = π/p. Therefore, the strong
frequency dispersion that occurs next to a stop-band edge is not
present. As a result, reduced frequency dispersion is obtained over a
large range of frequency for modes having high equivalent refractive
indexes. This phenomenon was recently reported in one-dimensional
structures [26], [27], and extended to 2D-periodic configurations
in [13]. These atttractive features could have broad applications in
metamaterial design and synthesis.

It is interesting to stress that the stop-band suppression achieved
at kx = π/p leads to different features with respect to previous
extensive studies focusing on the suppression of open stop-band at
kx = 0 for optimized broadside radiation of leaky-wave antennas
[28], [29]. However, both phenomena can be regarded as due to
specific resonances of the equivalent circuits describing the unit cell
of the periodic structure [30], [29].

VI. NUMERICAL RESULTS

In this section, dispersion analysis is performed for PPWs with one
or two corrugated plates using the methods described in the previous
sections: unimodal homogenized admittance, multi-modal admittance
and longitudinal equivalent circuit. These methods are also compared
to full-wave results obtained with CST Microwave Studio [31]. The
real part β of the wavenumber of the fundamental mode kx of the
corrugated PPW will only be considered. This mode is of interest for
the design of artificial lenses and gap waveguides.

A. Single-corrugated waveguide

In Fig. 3, the Brillouin diagram of a PPW with a PEC and a
corrugated surface (see Fig. 1(a)) is shown for structures having
different PPW thicknesses, hPPW. In Figs. 3(a),(b), a thick PPW is
considered, hPPW = 3.5 mm. For a small period, p = 2 mm in Fig.
3(a), all the approaches accurately model the structure, independently
of the groove width w. In Fig. 3(b), a larger period is considered. In
this example, the results obtained using the homogeneous unimodal
admittance becomes less accurate. On the other hand, the multimodal
admittance and the equivalent longitudinal circuit lead to very accu-
rate results, indistinguishable from CST .
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Figure 3. Dispersion diagram for the fundamental mode of a single-corrugated
PPW as in Fig. 1(a) for: CST simulations, transverse resonance with the
unimodal admittance as in Section II, multimodal admittance as in Section
III, longitudinal circuit as in Section IV. hcorr = 4.33 mm for all cases. (a)
p = 2 mm and hPPW = 3.5 mm (b) p = 6 mm and hPPW = 3.5 mm (c)
p = 6 mm and hPPW = 0.1 mm.

Finally, in Fig. 3(c), an extremely thin PPW is considered, as in
the lens designed in [13] (hPPW = 0.1 mm). This design achieves
a large variation of the equivalent refractive index together with a
UWB frequency response. In this case, due to the strong interactions
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between the plates, the simple homogeneous unimodal admittance
does not provide accurate results. As anticipated in Section II, the
loss of accuracy is particularly significant as the ratio w/p increases.
Difficulty in the modeling is also found when using the multimodal
admittance: in order to obtain good results, 16 modes in the groove
have been retained.

A quantitative division between the thick and the thin case is
difficult to find, as the interaction between surfaces increases con-
tinuously. In the parameter ranges of interest in our applications
(relatively large subwavelength groove width and the absence of a
dielectric in the corrugations), a visible discrepancy between results
obtained with unimodal and a multimodal admittances arises when
10hPPW < w, which corresponds to a relative error of 10%.

These results show that the longitudinal equivalent circuit discussed
in Section IV is always able to reproduce the full-wave results,
even for the cases when the unimodal admittance fails. Finally,
the multimodal homogeneous admittance discussed in Section III
can accurately describe the dispersion behavior of the structure, but
several modes must be retained in each groove for larger values of
w/p combined with an extremely thin PPW.

B. Glide-symmetric corrugations

In Figs. 4(a) and (b), we apply the equivalent longitudinal circuit
to the study of glide-symmetric structures, i.e. the corrugations are
mutually shifted along the axis of periodicity. In such a configuration,
the homogenized admittance method cannot be employed, since after
the homogenization procedure, information about the exact location
of the corrugation is lost and the shift between the plates cannot
be described. Such a shift should be taken into account before
the homogenization and leads to a different transverse-resonance
condition. Therefore, this approach is not investigated here, and the
results of the longitudinal circuit are only compared to those from a
the full-wave commercial solver.

Two different PPW thicknesses are considered, as was done for
the previous single-corrugated case. The shift between the plates is
chosen to be s = p/2 leading to a UWB behavior as described in
[13]. In Fig. 4(a), the dispersion diagram is shown for a structure
whose thickness is hPPW = 3.5 mm, and for two different values of
the groove width, a small one (w = 1 mm) and a large one (w = 3
mm). The latter case is the maximum width which can be handled
by our equivalent circuit. If w > p/2, a T junction can no longer
be defined, due to superposition of the corrugations on the different
plates. In Fig. 4(b), the dispersion diagram is shown for a structure
whose thickness is hPPW = 0.1 mm, for the same values of the
groove width. In order to show the validity of the circuit method, a
larger frequency band is included in the figures. Again, the results
of the equivalent longitudinal circuit are practically indistinguishable
from the full-wave results in this extended frequency range, including
higher order modes, even for the extreme case w = p/2, both for
thick and for extremely thin PPWs. Very small errors start to be
visible for higher frequency bands in the thicker PPW, at around 14
GHz, confirming the validity range of the circuit for small values
of hPPW/λ. However, the agreement with full-wave results is still
reasonably good and sufficient for the most of practical applications.

As noted in Section IV, the equivalent longitudinal circuit is useful
for accurately estimating the lower stop-band edge, fsb, by solving
(23). In Fig. 5, the left-hand side of (23) is plotted as a function
of frequency for several structures differing by their geometrical
parameters. The zero of each curve is easily detectable with simple
root-searching algorithms, thanks to the smoothness of the curves
and to the absence of singularities and asymptotes. It should be
emphasized that the curves plotted are known in closed-form and
do not arise from any numerical approximation.
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It is interesting to note that different propagation regimes are
recognizable in this picture with and without the presence of glide
symmetry. When the single-corrugated waveguide has values between
−1 < A < 1 (0 < A+ 1 > 2 of in the picture), propagating modes
with real kx = β exist. These values occur from zero frequency
up to the stop-band edge frequency. At higher frequencies, A < −1
(A+1 < 0 in the picture), the wave enters an attenuated regime with
a complex kx = π/p − jα, where α is an attenuation constant. On
the contrary, the glide-symmetry waveguide has always −1 < A < 1
in the neighborhood of zeros (kx = π/p). Therefore, no stop-band
is created at the Brillouin-zone edge due to the symmetry of this
geometrical configuration, as explained in Section V.

VII. CONCLUSION

In this paper, we have discussed a novel method for accurately
modeling corrugated surfaces embedded in a PPW environment.
A homogenized model is not inaccurate for modeling moderately
small values of the PPW thickness. This method was enhanced with
the inclusion of higher-order harmonics to cover a wider range of
thicknesses. Furthermore, a longitudinal circuit, whose parameters
are known in close-form from rigorous mode-matching analysis,
has been proposed based on T-junction models. This latter method
shows close agreement with numerical full-wave simulations, even for
extremely small values of thicknesses. It shows promise for the design
of corrugated devices in gap waveguides [4] and artificial lenses
[6]. Finally, the longitudinal circuit model can accurately model and
explain a glide symmetry-corrugated waveguide. Glide symmetry has
recently attracted strong interest due to its ultra-wideband response
[13] and bandgap properties [15]. Extensive numerical results have
fully validated the theoretical analysis.
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