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This paper discusses non-resonant modes excited on 
holey metasurfaces, and their influence on the properties 
of spoof plasmonic states supported by the metasurface 
when a second surface is placed in its proximity. We 
consider here a metallic surface with periodic holes 
drilled in it. The field excited on each hole is projected 
onto a set of non-resonant modes in order to discuss 
their relative relevance. While previous simpler models 
were assuming only the presence of the fundamental 
mode, we show that the simultaneous presence of several 
modes occurs when the surface is placed next to a 
metallic plate. Therefore, higher-order modes are 
responsible for the peculiar physical properties of wave 
propagation of spoof plasmons between two surfaces, 
which can lead to new gradient-index flat lenses for 
transceivers for space communications. 

OCIS codes: (240.6680) Surface plasmons; (160.3918) Metamaterials; 
(350.5500) Propagation.  
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Over the past years, propagation of plasmon waves [1]-[3] along 
perfect conductors (PEC) with structured geometry has been 
explored. Holes or corrugations drilled into a PEC surface have 
been shown to support surface waves, named “spoof plasmons,” 
resembling those supported by a plasmonic surface [4]-[12]. They 
are of great interest from a theoretical and practical perspective 
[13]. In several areas micro-structured surfaces are gaining ground 
[14]-[18], due to their simple realization, low profile and the ability 
to make them conformal [19]. Recently, the use of two drilled 
metasurfaces in a glide-symmetric arrangement was shown to 
completely suppress frequency dispersion, thus obtaining a 
constant effective refractive index over an ultra-wide frequency 
bandwidth [20]. 

In order to explain the propagation of spoof plasmons, several 
equivalent-plasma models have been proposed in the past [6]-[9]. 
However, no accurate models have been discussed for holey 
surfaces strongly interacting with a ground plane. For example, 
recent research shows that placing a conductor atop a holey 
surface gives rise to interesting phenomena that cannot be 
predicted by existing models [20], [21]. 
In view of these developments, we propose a simple but accurate 
model of a holey metallic surface with a top conducting plate (Fig. 
1), and discuss the impact of high-order harmonics and multiple 
non-resonant modes on the computation of the eigenstates of the 
electric and magnetic fields. A set of modes is used to express the 
field on each hole. The non-resonant nature of each mode is due to 
the small size of each hole, where the mode is defined. The modal 
amplitudes are found by enforcing field continuity between the in-
plate region and the drilled regions. While in previous simpler 
models only the fundamental mode was retained [6], we show that 
a certain number of them should be considered in order to 
correctly predict the dispersive properties of the structure. The 
impact of these modes on the equivalent refractive index seen by 
the spoof plasmon wave is then discussed. 
The formulation introduced in this paper, does not only explain the 
complexity of the spoof plasmonics waves, but can also be used to 
rapidly solve for the propagation characteristics of these 
structures, which could find broad application in space technology. 
The structure considered in this letter is shown in Fig. 1. A perfect 
electric conductor (PEC) is drilled with a periodic array of vertical 
holes with square cross section, and dimensions a×a. The spatial 
period is d. On top of the holey surface, another PEC (not drilled) is 
placed along the z = –t plane. The holes are closed on the bottom 
side at z = h by a PEC. Note that arbitrarily shaped holes could also 
be chosen and the same qualitative phenomena would appear. The 
time dependency of all fields is assumed to be i te ω−  and 
suppressed in the formulation. 
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Fig. 1   3-D view of the structure studied in this paper: holey perfect 
conductor placed at z = 0 with a perfect conductor on the top z = ‒t. 
The holes have a squared cross section of lateral dimension a and are 
in a periodic squared lattice of spatial period d. The depth of the holes is 
h, and they are terminated with PEC. Each hole is filled with a dielectric 
material of refractive index n. 
 
The structure can be regarded as the junction between different 
domains. A parallel-plate waveguide (PPW) is delimited by the two 
PEC plates at z = ‒t and z = 0. The bottom plate has a periodic array 
of rectangular waveguides (i.e. rectangular holes), which are closed 
with a PEC at z = h. These holes may be filled with a dielectric 
material (εr). 
As in a previous model [6], the fields in the two regions can easily 
be expressed. Above the holey surface at z = 0−, the horizontal 
electric field is 
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where a sum of spatial harmonics (p,q) has been used by virtue of 
the periodicity. x

pqA  and y
pqA  are the amplitudes of each spatial 

harmonic, kx,p and ky,q are the wavenumbers describing the xy 
propagation of the (p,q)th harmonic, with , 2 /x p xk k p dπ= +  and 
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Accordingly, the horizontal magnetic field at z = 0− can be derived 
leading to the following expression: 
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The horizontal electric and magnetic fields inside the rectangular 
waveguide at z = 0+, 0 ,x y a≤ ≤ are 
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The fields have been expressed as a sum over the (m,n)th TEz 
(subscript ‘h’) and TMz (subscript ‘e’) modes travelling inside the 
hole along the vertical z direction [22]: 
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where the orthonormal scalar functions are 
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and ( ) ( ), ,y x
mn nmx y y xϕ ϕ= . The coefficients /e h

mnC  are the 
amplitudes of the above-mentioned hole modes. The reflection 
coefficients are 21 mniq h

mnr e− = − , 21 mniq h
mnr e+ = + , and the (m,n)th 

wavenumber is ( )2 2 2 2 2
0 /mn rq k m n aε π= − +  inside the hole. 

By enforcing the continuity of the electric field on the whole unit 
cell in [0,d]×[0,d] at z = 0, and projecting this condition on each 

spatial harmonic ( )xp yqi k x k ye +  we obtain the harmonic coefficients 
x
pqA , y

pqA  as a function of the hole modal amplitudes Ci. Once 
placed into the magnetic field expression (2), 0 t 0z

η −=
H  is function 

of only the amplitudes Ci. The continuity of the magnetic field 
across the hole aperture can now be enforced and projected on the 
set of modes ( ),x

m n x yϕ ′ ′  and ( ),y
m n x yϕ ′ ′ . As a final result, a 

homogeneous linear system is obtained, 
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The entries of the matrix M are of the form (8), where 
( )/ / xp yqi k x k yx y x y

m n m n eϕ ϕ +
′ ′ ′ ′= , and ( )/ /xp yqi k x k yh e h e

mn mne +=Φ Φ . The first 

(second) line in (8) is used for the lines of M coming from 
projections of the Ht continuity on the x (y) components of each 
mode. Entries with ‘e’ (‘h’) superscript multiply modes with the 
same polarization in (7). The plus (minus) sign in the second line of 
(8) is used for h (e) modes. f and g are functions of the frequency 
and parameters of the groves only. Their expressions are not given 
here for the sake of brevity. 
The wavenumbers kx of the eigenstate of the system are 
determined by searching for the zeros of the determinant of M, at 
each angular frequency ω. The function kx(ω) is thus used to study 
the frequency dispersion of the spoof plasmon supported by the 
holey PPW. The eigenstates C can equally be found as a function of 
the frequency, and the amplitudes of each mode can be evaluated. 
In the following results, the normalization * 1⋅ =C C  is assumed.  
We use the semi-analytical formulation described previously to 
obtain and discuss the dispersion characteristics of the holey PPW 
in Fig. 1, for different distances between the plates. The zeroes of 
the determinant of M are found by using the Padé-approximant-
based root-finding procedure approach reported in [23]. The 
modal expansion is compared with a periodic finite-element 
method (FEM) commercial solver; CST Microwave Studio. The 
analyses are done for simplicity for ky = 0 (Floquet-mode 
propagating along the x direction), but the formulation is valid for a
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skew propagation axis. The horizontal axis shows { }xkβ = ℜ  of 
the surface plasmon wave. The harmonic series in the matrix 
entries (8) are truncated by retaining the terms 0, 1, , fp N= ± ± ,  

0, 1, , fq N= ± ± , thus keeping a total number of ( )2
2 1fN +  

terms. 
First, we will focus on the interaction of the holes through higher-
order spatial harmonics. In Fig. 2(a) (a “thick” PPW, t = 2 mm), 
result when only the (0,0) harmonic is retained, as  suggested in 6, 
are compared with those obtained with the Nf  = 1 (dotted green 
line), which perfectly agree with FEM results (blue squares). In this 
case, a single TE01 mode has been retained in the formulation, 
leading to accurate results. In Fig. 2(b) (a “thin” PPW, t = 0.1 mm), 
results with Nf  = 1 and one mode (dotted green line) are rather far 
from the accurate FEM results, while the curve with Nf  = 3 (dashed 
green line) and one mode on the hole is closer to the accurate 
result (blue squares). 
The importance of higher-order harmonics can be explained by 
noticing that electric field can have a non-negligible spatial 
variation along the x and y axes (being different from constant 
along the hole, and zero outside). A spatial Fourier series needs a 
certain number of harmonics to follow these variations, and 
cannot be reduced to the (0,0)th term only.  
Alternatively, the formulation of the previous section can shed 
additional light on the importance of higher-order harmonics. 

When computing the series in (8), the factors 
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of course by the spectral modal functions 
( ) ( )/

, , , ,, ,x p y q
h e m n

x y qmn pk k k kϕ ′ ′Φ  . However, in the first few terms of 

the sums this decay does not occur yet, and various terms need to 
be considered as well as the fundamental one. This is in contrast to 
the simpler 2D corrugated surfaces reported in [6]. 
Another important physical phenomenon is the excitation of 
different modes in the holes as the geometrical parameters of the 
structure changes. In the thick case (t = 2 mm in Fig. 2(a)), one 
single mode on the hole leads to a very good agreement with the 
FEM results. On the other hand, in the more extreme case of Fig. 
2(b) (t = 0.1 mm), the relevance of multiple modes on the hole is 
more evident. The green curves are obtained by retaining one 
mode only, the TE01. Both curves differ appreciably from the finite-
element results shown with blue squares. However, very good 
agreement is obtained for the red curve, where we have retained 
the modes TEmn and TMmn with m = 0, 1 (M=max(m)=1) and n = 
1,3,5 (N=max(n)=5) (since the structure is symmetric along y and 
ky = 0, only odd n contribute to the total field in this specific case). 

This confirms the results reported in [9], where a multimode 
approach was used for an open holey metasurface. Note that the 
number of modes in the waveguide, N and M, is not directly related 
to the number of PPW modes, Nf. In fact, the number of required 
waveguide modes depends on the hole size, while the number of 
PPW modes depends on the length of the period. 
The need for a higher number of waveguide modes is due to the 
presence of the plate, which enforces a vertical electric field in the 
proximity of the hole, corresponding to TM modes inside. 
As a result, we can state that variation in distance between the 
upper plate and the holey surface can enhance or suppress higher-
order modes within the hole. Correspondingly, this modifies the 
dispersive diagram shown in the pictures, namely the values of 
β/k0 . This quantity can be considered as an effective refractive 
index seen by the plasmonic wave travelling along the surface. The 
possibility of modifying the refractive index without changing the 
materials used is very attractive for the design of flat artificial 
graded-index lenses [19]. It is also of great interest to microwave 
component and antenna design for space applications, where 
dielectric materials are avoided. 
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Fig. 2  Dispersion analysis of a holey PEC with a PEC plate on the top at 
distance h. The plasmonic wave propagates in the air on top of the hole 
(in blue in the color picture). Geometric and physical parameters: a/d = 
0.9, n = 3, h = 5 mm, d = 4 mm. (a) t = 2 mm, (b) t = 0.1 mm. 



In order to further explore the presence of different hole modes, 
we compute the eigenstate C from (7) for the two geometries 
analyzed in Fig. 2. The set of modes m = 0, 1 and n = 1,3,5 (for a 
total of 9 modes) has been used, since previous results prove it to 
give an accurate description of the frequency dispersion. In both 
cases, the coefficients of C with the largest magnitude correspond 
to the TE01 and TM11 modes. The others are smaller than 0.2 over 
the entire frequency range. The magnitudes of these two largest 
components are shown in Fig. 3. Retaining only the fundamental 
mode TE01 does not accurately describe the field at frequencies 
where TM11 is dominant. In the insets, the total fields are shown for 
three frequencies (2, 8 and 12 GHz) as the sum of the 9 modes 
retained in the modal expansion. Different field distribution on the 
hole aperture are evident as the frequency and the distance 
between plates changes. 
A simple change in the geometrical parameters can be used to 
modify the effective refractive index of the plasmon to realize low-
cost and low-profile graded-index flat lenses. In Fig. 4, the 
equivalent refractive index is calculated for different hole depths h: 
a parameter that is simple to modify in fabrication. A method for 
synthesizing non-dispersive refractive indexes has been recently 
proposed by facing two holey surfaces, translated one half a period 
with respect to each other (a glide-symmetric structure) [20;21]. 
The modes in this more complex structure can be analyzed with a 
formulation very similar to the one reported here, and will be the 
object of a future study. 
In conclusion, the impact of multiple non-resonant modes has 
been studied on the equivalent refractive index of a 2D-periodic 
holey surface backed by a metallic ground plane, and coupling 
amongst cells through higher-order harmonics. The PPW structure 
can be used to design fully metallic, planar gradient-index lenses 
for space microwave and THz transmitters and receivers [14].  
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Fig. 3   Magnitude of the largest components of C: the TE01 mode (green 
dashed line) and the TM11 mode (red solid line). Parameters: a/d = 0.9, 
n=3, h = 5 mm, d = 4 mm. (a) t = 2 mm, (b) t = 0.1 mm.  

 
Fig. 4   Equivalent refractive index as a function of frequency of the 
structure in Fig. 1 with t = 0.1 mm, p = 4 mm, a/d = 0.9, n=3. 
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