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SUMMARY

In this work, we analyse the effect of mechanical stresses on graphene devices for application in flexible
electronics. The possible Schottky contacts in the transistor are modeled through suitable transmission
coefficients describing the tunnelling through the electrostatic potential along the graphene channel. The
surface potential is determined by imposing an equality between the charges computed with a micro- and a
macro-model. All these computation tools are explicitly dependent on the choice of geometrical parameters,
thus allowing the description of uniform geometrical deformations due to strains along a given direction.
Numerical results are computed and discussed. Copyright c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The design of novel electronic devices for diverse applications, such as biomedical, security or
leisure, must face several challenges, notably in terms of flexibility, biocompatibility, and low power
consumption. In this framework, graphene-based transistors are currently regarded as an attractive
solution of these issues.

Graphene is a two dimensional material consisting of hexagonal carbon atoms arranged in
honeycomb lattice [1]-[2]. Its distinctive and special electronic properties, namely its high electronic
mobility, have attracted much research interest in the last years. Furthermore, its mechanical
properties, namely its elasticity and robustness, make it an ideal candidate for integration in flexible
circuits.

Unfortunately, graphene sheet exhibit no band gap, and for this reason cannot be directly used in
electronic devices such as field-effect transistors (FET). Different methods to tune the band gap of
graphene have been proposed for practical application. The most appealing approach, compatible
with the realization of fully planar nanotransistors, is the cutting of graphene sheets into long and
thin nanoribbons, exhibiting a band gap directly related to their width, and then to the number
of atoms along their shorter dimension. Recently, FET devices using a graphene nanoribbon of
dimensions 7× 3µm2 on a SiO2 were reported in [3]. Electric contacts were fabricated by means of
a transmission electron microscopy grid as a shadow mask, to avoid the exposure of the graphene
to chemical solvents.

Of course, a tool for the reliable modelling of graphene-based devices, relating macroscopic
voltages and currents, is necessary for their design. Specifically, such a simulation tool would
allow the evaluation of the effects of variations due to fabrication inaccuracies or physical external
constraints.
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Figure 1. (a) Schematic illustration of graphene cell. (b) Effect of strain on graphene cells. (c) Reciprocal
lattice of graphene: b1 and b2 are reciprocal lattice vectors and the first Brillouin zone is shaded.

While works have been performed on first-principle and experimental study of deformations on
graphene sheets [4]-[6], the same efforts have not been devoted so far to the study of deformed
configurations of graphene nanoribbons. In [7], a spatially periodically distributed strains is shown
through first-principle calculations to be able to modify the energy gap of nanoribbons in order to
overcome technological limitations currently encountered in the fabrication of large-gap devices.
Other works have been focused on the effect of strains on nanoribbons through first-principle
formulation [8]-[11], a very powerful method indeed, but not quite flexible and efficient to perform
parametric studies of an entire transistor or to optimize a group of them.

To this aim, an efficient semi-analytical model has been proposed in [12] to model graphene-
based FETs, including Schottky-barrier (SB) contacts and far-from-equilibrium carrier transport.
An electrostatic analysis must be coupled to a quantum-mechanics description, yielding the charge
distribution along the channel. However, the effect of non-idealities has not yet been addressed
with this semi-analytic formalism. For instance, if the device is realized on flexible or stretchable
substrates, mechanical stresses will inevitably provoke non-negligible geometrical deformations on
the device.

In this paper, the outlined semi-analytic method is applied to characterize electronic
characteristics of graphene-based FET with longitudinal (i.e., along the source-drain direction)
deformations. The channel of these devices is an armchair graphene nanoribbon (aGNR).
Specifically, in Section 2, the energy wavevector dispersion curve of aGNR with different
deformation is described. Analytical characteristics such as effective mass and density of states
for the strained aGNR are presented as well. In Section 3, the modified description of the FET
is described, to be able to handle the strained device. In Section 4, performances of single ballistic
transistors with both ohmic and Schottky-barrier (SB) contacts are compared under different strains.

2. DISPERSION RELATIONS UNDER DEFORMATION

In this section we investigate energy bands properties [13]-[16] of strained graphene and modify
a simple tight-binding model for graphene nanoribbons to include the effect of strains along their
longitudinal direction. We define accordingly modified effective masses and density of states to be
used in the description of graphene FET in the next section.

2.1. Energy Bands of a Graphene Sheet

Graphene has honeycomb lattice structure and primitive cell of graphene is shown in Fig. 1. Recently
there are many cases using graphene nanoribbon in field-effect transistors (FETs) (see Fig. 2).
However, the electronic performance of FETs could change if a deformation of the graphene channel
is present.
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Figure 2. (a) Armchair graphene nanoribbon, (b) deformed graphene nanoribbon, (c) sectional view of a
double-gate aGNR FET with deformed aGNR.

In the absence of any deformation, graphene energy bands can be computed with a tight-binding
model. In the nearest-neighbor tight-binding (NNTB) model, the wave function of each electron in
any unit cell only overlaps with the wave functions of its nearest neighbors [2]. Therefore, under
this assumption, graphene energy bands can be computed with NNTB by using a single hopping
integral, describing this first neighbor interaction. Of course, its value generally depends on the
distance |R1| between atoms, and is experimentally evaluated for non-deformed graphene sheets.
The resulting energy is

E2 (k) = V 2
(
e−jk·R1 + e−jk·R2 + e−jk·R3

) (
ejk·R1 + ejk·R2 + ejk·R3

)
(1)

where k = kxx̂ + kyŷ is the reciprocal vector, and the tight-binding hopping energy is V = 2.7 eV.
The hexagonal symmetry of the lattice makes it simple to express the vectors R1, R2, and R3 as
a function of the distance a = 2.46 Å (see Fig. 1). A simple replacement in (1) lead to the final
expression [2]:

E (k) = ±V

√
1 + 4 cos

(√
3a

2
kx

)
cos
(a

2
ky

)
+ 4 cos2

(a
2
ky

)
(2)

The so-obtained energy bands demonstrate the absence of energy gaps at each K point of the
Brillouin zones, corresponding to a degeneracy of Fermi surfaces to single points. This is one of the
key features to understand the physical properties of graphene [17], [2]. At the same time, the lack of
an energy-gap demands the modification of graphene sheets for applications where semiconducting
properties are required (i.e., nanotransistors).

2.2. Energy Bands of a Deformed Graphene Nanoribbon

An aGNR is obtained by cutting a graphene sheet along a given direction (see Fig. 2). Since the
resulting strip lacks the translational symmetry along one direction, no simple closed form can
be obtained for its energy bands as in the infinite-graphene case. However, if an ideal Dirichlet
condition is enforced on the wavefunction Ψ at the opposite boundaries of the ribbon of width
w = (N − 1) a/2, where N is the number of tightly bound atoms in the direction of the ribbon
width (y in Fig. 2),

Ψ
(
y = −a

2

)
= Ψ

(
y = w +

a

2

)
= 0 (3)

simple conditions can be derived on the ky wavenumber for aGNR:

(w + a) ky,α = απ ⇒ ky,α =
απ

w + a
=

απ
N−1
2 a+ a

=
2απ

(N + 1) a
(4)

where α = 1, . . . , N .
Once the discretized values of ky,α are replaced in the energy (2), the sub-band structure of the

nanoribbon is obtained:
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Eα (kx) = ±V

√
1 + 4 cos

(√
3a

2
kx

)
Aα + 4A2

α (5)

where Aα = cos [πα/ (N + 1)]. Eq (5) gives the energy bands of an aGNR in the absence of any
geometrical deformation.

In the presence of a relative deformation d, The values of R1, R2, and R3 will change accordingly
into R′1, R′2, and R′3 (as Fig. 1 shows). Their value can be easily computed, thus leading to a modified
equation for Eα, the energy under deformation. The kx dependence is then replaced in (5) into
(1 + d) kx. On the one hand, regarding the ky dependence, the width w in (3)-(4) is deformed into
w′ = w (1− νd), and the discretized values for ky are scaled accordingly as k′y,α = ky,α/ (1− νd).
The argument of the cosinus in the Aα term is then unchanged due to the multiplication between
k′y,α and the modified transverse dimension a (1− νd) /2. The final energy bands of the nanoribbon
deformed along the x dimension is then

E′α (kx) = ±V

√
1 + 4 cos

[
(1 + d)

√
3a

2
kx

]
Aα + 4A2

α. (6)

An important limitation of (6) should be stressed: no energy-gap variation could be detected with
this approach, as can be done with first-principle formulations. This depends on the fact that the
hopping integrals describing the interaction between close atoms has been kept constant even in the
presence of a deformation. In order to obtain more accurate results, the variation of hopping integrals
under deformation should be taken into account, due to the presence of different distances among
nearest-neighbor atoms [18]. This effect, creating a variation of energy gap with deformation, will
be described in future works. For this reason, care should be recommended to use this formulas
for deformation values where the energy gap can significantly decrease, thus compromising the
functioning of the FET. On the other hand, the method presented here can be adapted to include
results of ab-initio simulations in the equations described in next section. This will be the object of
future investigations.

In the following, the band model (6) will be used together with a first-order correction δE′α based
on a perturbative approach [19] taking into account a different interaction among the atoms at the
edges, being at a different chemical potential with respect to the central ones, by slightly varying
their mutual hopping integrals:

δE′α (kx) = ±0.12V

N + 1
sin2

( απ

N + 1

)
cos

[
a (1 + d) kx√

3

]
. (7)

where the minus sign is chosen if N = 3p for an integer p.
The discussion presented in this section is summarized in the results of the energy bands (6), with

and without edge correction (7), shown in Fig. 3 for different values of the relative deformation d.
As can be observed, for small deformation values the deviation from the non-deformed bands is not
significant. Of course, large values of deformations (which can be purposely realized) can lead to
larger energy variations.

In Fig. 4, the lowest sub-bands with different aGNR deformation are selected and compared
among them. This choice is motivated by the fact that the lowest bands are the most important for
the conduction phenomena in FET studied in the next section.

2.3. Approximated Expressions: Effective Mass and Density of States

The energy-dispersion relation in the presence of deformation can be simplified by approximating
the factor cos

[
(1 + d)

√
3a
2 kx

]
in it through the well-known formula:

cos

[
(1 + d)

√
3a

2
kx

]
≈ 1− (1 + d)

2 3a2

8
k2x (8)
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Figure 3. Comparison of the subbands of an aGNR with 12 lines between tight-binding calculation with
and without edge corrections. (a) No deformation, (b) relative deformation d = 0.1, (c) relative deformation

d = −0.1.

Figure 4. Comparison of the lowest subbands of an aGNR with 12 dimer lines with different deformations
as explained in the legend.

Replacing (8) in (6), we obtain a simplified expression for the energy:

E′α(kx) ≈ E′(2)α (kx) =

√
E′2α (0) +

~2E′α(0)k2x
M ′α

(9)

where E′α(0) is the energy for kx = 0, and we have identified an effective mass (EM) M ′α in the
presence of a deformation as

M ′α = −2

3

~2E′α(0)

a2V 2 (1 + d)
2
Aα

. (10)

If a further approximation is performed on the square root in (9)
√

1 + x ≈ 1 + x/2, a simple
parabolic expression for the energy is found, corresponding to a semi-classical model for the motion
of carriers:

E′α(kx) ≈ E′(1)α (kx) = E′α(0) +
~2k2x
2M ′α

. (11)

The importance of the definition (10) is related to the possibility to achieve a closed-form calculation
for the transmittivity T (E) of a charge through a Schottky contact at the source-graphene and drain-
graphene interfaces. The final formulas are not reported here for brevity, but they are used in the
following for the relevant computation of charges and currents [12].
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(b) (c) (a) 
Figure 5. Energy dispersion curves and corresponding density of states of the lowest conduction subband
of an aGNR with N = 12. The analytical tight-binding result from (6) is compared with the approximate

dispersions E′(1)α from (11) and E′(2)α from (9). (a) No deformation, (b) d = 0.1, (c) d = −0.1.

The definition of M ′α also allows different definitions of the density of states D′α [2] in the
presence of deformation, according to the approximation chosen for the energy. Starting from the
first-order approximation (11) we obtain

D′(1)α =
2

π~

√√√√ M ′α

2
[
E
′(1)
α (kx)− E′α(0)

] (12)

Starting from the second-order approximation (9), we obtain

D′(2)α =
2

π~

√
M ′α
E′α(0)

E
′(2)
α (kx)√[

E
′(2)
α (kx)

]2
− E′2α (0)

(13)

The definition of the density of states is useful in order to compute electron density carrier by using
Fermi-Dirac distributions functions. This will be accomplished in next section, where current and
charge quantities will be discussed.

The relations discussed in this subsection are summarized in Fig. 5. In Fig. 5(a), the tight-binding
energy dispersion together with its approximations E′(1) and E′(2) and the corresponding density of
states are shown in the absence of any deformation. The same results are shown in Figs. 5(b) and (c)
for a deformation d = 0.1 and d = −0.1, respectively. All the numerical results are computed for an
aGNR with N = 12.

3. SCHOTTKY FIELD-EFFECT TRANSISTORS

Once the electronic properties of graphene nanoribbons under a deformation are determined, the
behavior of the FET shown in Fig. 2 can be derived. The drain-source current Ids = Ieds − Ihds is
expressed through the well-known Landauer–Büttiker formalism [20]:

I ids =
q

π~
∑
α

∫ Eα,max

E′
α(0)

TsTd
Ts + Td + TsTd

[
f
(
ηiα,s
)
− f

(
ηiα,d

)]
dE (14)

where Ts and Td are transmittivities coefficients through the relevant Schottky barriers (equal to one
if a barrier is not present), the f functions are Fermi-Dirac distributions and electron density carrier
can be determined by Fermi-Dirac distributions and Density of states, the coefficients ηiα,s(d) are
expressed as functions of the energy E and the surface potential φc:

ηeα,s(d) =
E − qφc − µs(d)

kbT
, ηhα,s(d) =

µs(d) − E + qφc

kbT
(15)
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where µs and µd are the Fermi levels of source and drain, respectively. All the quantities in (14) and
(15) are computed in the presence of the same relative deformation d.

In order to compute Ids through (14), the surface potential φc must be determined. If we limit
ourselves to the case of ballistic FET, a constant potential can be assumed along the channel. The
case of partially-ballistic FET can be solved in a modified way, not carrying out complications
connected to the presence of a deformation, and for the sake of brevity it will not be explicitly
treated here.

The surface potential φc can then be determined by imposing a consistency relation between
the mobile charges in the channel computed on a quantum-mechanical level Qmicro (φc), and
the Qmacro (φc) through a macroscopic electrostatic model: Qmicro (φc) = Qmacro (φc). The
microelectronic model can be expressed as:

Qi
micro = q

∑
α

∫ Eα,max

E′
α(0)

Ts (2− Td) f
(
ηiα,s
)

+ Td (2− Ts) f
(
ηiα,d

)
Ts + Td + TsTd

D′α (E) dE (16)

with i = e,h, and Qmicro = Qh
micro −Qe

micro. The quantum-mechanical approach can be followed
by computing all the quantities (effective mass, density of states, transmission coefficients) derived
in this paper in the presence of a deformation. Its formulation takes into account Schottky barriers
through the coefficients Ts and Td. It assumes a fully ballistic regime: the charges do not suffer from
scattering by atoms in the channel, due to the reduced length of the channel. Longer channels in
partially ballistic regime can be studied with a modified formulation; since the effects on geometrical
deformation are modeled in the same way as described in the fully ballistic regime, we are limiting
the presentation to the simpler case for the sake of brevity.

The macroscopic electrostatic model requires the knowledge of the capacitances Cg, Cs, Cc

among the transistor contacts:

Qmacro (φc) =
∑

i=g,s,d

Ci (Vi − VFB,i − φc) (17)

where Vi are the voltage of gate, source and drain, respectively, and VFB,i are the relevant flatband
voltages. Any deformation along the source-drain direction will cause a deformation along the
vertical direction too, expressed through the Poisson coefficient νSiO2

of the SiO2 dielectric,
and a deformation along the nanoribbon width, expressed through the Poisson coefficient of the
graphene ν [21]. Such modifications of the oxide thickness t′SiO2

and of the nanoribbon width
w′ will change the capacitance Cg

(
t′SiO2

, w′
)

= Cg [tSiO2 (1− νSiO2d) , w (1− νd)], computed as
suggested in [22] in closed-form through a semi-empirical formula, taking into account the fringing
fields between gate and nanoribbon, dominant at this short scale.

The equality between the charges (16) and (17) leads to a nonlinear equation, which must be
solved by means of the fixed-point method.

4. NUMERICAL RESULTS

The computation of the integrals in (14) finally allows a quantification of the effects of mechanical
stresses on the performance of the complete transistor with an aGNR ballistic channel. In this
section we show these effects in both the case of Schottky and Ohmic contacts at the interfaces
drain-graphene and graphene-drain. Different ranges of relative deformation d are studied in order
to discuss their practical effects on the computed current. Small values of d (d < 0.1) are associated
with applications of this class of devices to flexible electronics. As it will be confirmed in next
results, current variations due to this range of deformation is not expected to prevent the functioning
of the device for practical applications in electronic circuits.

In Figs. 6 we plot the variation of the channel potential φc in different contact configurations and
voltage excitation. The potential is numerically computed by enforcing the equation between (16)
and (17). In Fig. 6(a) and (b) Ohmic contacts are considered, and φc is computed when the gate
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Figure 6. Channel potential φc. (a) φc vs.Vg, at Vds = 0.5 V with ohmic contacts. (b) φc vs.Vds, at Vg = 0.75
V with ohmic contacts. (c) φc vs.Vg, at Vds = 0.5 V with SB contacts. (d) φc vs.Vds, at Vg = 0.75 V with

SB contacts.

potential Vg and the drain-source potential Vds is varied, respectively. The same results are shown in
Figs. 6(c) and (d) in the presence of Schottky contacts. Different values of the relative deformation
d are shown in order to study the effect of d on the potential values. The variation is very small for
the Shottky contacts, while it is more evident in the case of Ohmic contacts.

The results for the potential lead to the computation of the charge stored inside the channel,
computed by means of (17). In Fig. 7(a) and (b) we plot Q in the absence of Schottky contacts, and
in Fig. 7(c) and (d) the presence of Schottky contacts is considered. Consistently with the previous
results, a smaller variation with d is obtained for the Shottky with respect to the Ohmic contacts. The
small but visible charge variation in the Shottky case is mainly due to the variation of the effective
capacity Cg due to the geometric deformation, since the potential φc is more stable as shown in
Figs. 6(c) and (d).

In Fig. 8(a) and (b) we plot the currents Ids in the absence of Schottky contacts. In Fig. 8(a),
Ids is varied by keeping a constant potential Vds = 0.5 V and changing the gate potential Vg. In
Fig. 8(b), Ids is varied by keeping a constant gate potential Vg = 0.75 V and changing the drain-
source potential Vds. The expected typical behaviors of currents controlled by the gate voltage and
a definite threshold Vg voltage are visible in the figures, and can be evaluated in a simple way with
this approach. In the absence of deformation, the method agrees with results given in [12].

In Fig. 8(c) and (d) we plot the currents Ids in the presence of Schottky contacts. This means that,
for the determination of the surface potential φc, the transmission coefficients have been computed
in the integral (14) with the deformed quantities presented in Section 2. In Fig. 8(c), Ids is varied
by keeping a constant potential Vds = 0.5 V and changing the gate potential Vg. In Fig. 8(d), Ids
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(b) 

(c) 

(a) 

(d) 

Figure 7. Macroscopic ChargeQ. (a)Q vs.Vg, at Vds = 0.5 V with ohmic contacts. (b)Q vs.Vds, at Vg = 0.75
V with ohmic contacts. (c) Q vs.Vg, at Vds = 0.5 V with SB contacts. (d) Q vs.Vds, at Vg = 0.75 V with SB

contacts.

is varied by keeping a constant gate potential Vg = 0.75 V and changing the drain-source potential
Vds.

As expected, a lower level of currents is observed in these last two cases with respect to the
previous ones, due to the presence of potential barriers limiting the probability of the charges to
overcome the contact. Again, for small deformations current variations of about 10% is observed,
while different results could be found for larger deformations. If compared with the values of φc and
Q computed in Figs. 6 and 7, the variation of the currents appear more pronounced. This means that
this variation with the deformation d is mainly due to the variation of the transmittivity through the
contacts (described by the coefficients Td and Ts), rather than a variation of the channel potential
and charge.

An important remark concerns the computational cost of the method. The computation of Ids
requires the numerical solution of the equality Qmicro (φc) = Qmacro (φc) to determine φc and the
computation of the integrals in (14). These tasks for a single value of Ids in Fig. 8 requires about
0.7 seconds (on an Intel i7-4790 @ 3.60 GHz). Furthermore, no difficulties have been encountered
in the solution of this equation when a deformation is introduced with respect to the standard case.
The method is then proved to be a very effective approach to model geometrical deformations with
both ballistic and nonballistic transport in the possible presence of Schottky barriers. An interesting
feature of this approach is in fact that the geometrical parameters of the transistors appear explicitly
in the formulation and can be tuned accordingly.
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(b) 

(c) 

(a) 

(d) 

Figure 8. Source-drain current Ids. (a) Ids vs.Vg, at Vds = 0.5 V with ohmic contacts. (b) Ids vs.Vds, at
Vg = 0.75 V with ohmic contacts. (c) Ids vs.Vg, at Vds = 0.5 V with SB contacts. (d) Ids vs.Vds, at Vg = 0.75

V with SB contacts.

5. CONCLUSION

The effect of mechanical deformations on graphene-based FETs has been investigated and
quantified through a semi-analytical model of the energy bands of the deformed graphene
nanoribbon. This kind of phenomena occurs in flexible electronics, where components can be
submitted to different strains.

According to the result of the present study, the electronic characteristic of transistor is robust with
respect to reasonable deformation cases in flexible electronics. For different applications, the drain-
source currents could be modulated if required with a suitable tuning of higher deformation values
(d > 0.1). However, in this last case mechanical stability of electrical connections could become an
issue and it should be independently verified.

Future work will focus on the coupling of the present semi-analytic method with a more elaborate
model replacing the tight-binding model used here, to take into account strain-related variations of
energy gaps. Care will be given to propose an efficient method capable to handle parametric analyses
of an entire FET, rather than severely computationally demanding method. Finally, practical
realizations will be fabricated leading to an independent validations of the discussed results.
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