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Accuracy of predictive ability measures
for survival models
Philippe Flandre,a*† Reena Deutschb and John O’Quigleyc

One aspect of an analysis of survival data based on the proportional hazards model that has been receiving
increasing attention is that of the predictive ability or explained variation of the model. A number of contending
measures have been suggested, including one measure, R2(𝛽), which has been proposed given its several desirable
properties, including its capacity to accommodate time-dependent covariates, a major feature of the model and
one that gives rise to great generality. A thorough study of the properties of available measures, including the
aforementioned measure, has been carried out recently. In that work, the authors used bootstrap techniques,
particularly complex in the setting of censored data, in order to obtain estimates of precision. The motivation of
this work is to provide analytical expressions of precision, in particular confidence interval estimates for R2(𝛽). We
use Taylor series approximations with and without local linearizing transforms. We also consider a very simple
expression based on the Fisher’s transformation. This latter approach has two great advantages. It is very easy
and quick to calculate, and secondly, it can be obtained for any of the methods given in the recent review. A large
simulation study is carried out to investigate the properties of the different methods. Finally, three well-known
datasets in breast cancer, lymphoma and lung cancer research are given as illustrations. Copyright © 2017 John
Wiley & Sons, Ltd.
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1. Introduction

Whereas the use of the Cox regression model in the analysis of censored survival data has become routine,
the corresponding use of R2-type measures of explained variation is still not that common. Unlike the
case of the linear model where there is essentially only a single contender, for survival models, there is
more than one possibility. In an extensive review, Choodari-Oskooei et al [1, 2] examine the properties
of a number of possible measures of R2 for survival data. Our purpose here is to add a piece to that
development; this piece being the provision of a variance estimate for all of the measures discussed by
[1]. One of our suggestions is rough and ready in that it is very easily calculated – coming under the
heading of those techniques deemed desirable by student, techniques that ‘can be calculated on the back
of a railway ticket while waiting for the train’ – but, as the simulations show, it may be too rough when the
purpose is to obtain a reasonably accurate test. Nonetheless, agreement with the bootstrap calculations
of [1] is generally good, and our suggestion is that it be used to obtain a rough interval estimate of the
values compatible with an estimated R2. The general motivation for this variance estimate comes from the
known approximately pivotal property of the Fisher’s transformation. Apart from this pivotal property,
there is no other obvious reason why this coefficient should work so well, unless we take a linear model
as a first approximation to the nonlinear Cox model, and it is a somewhat surprising result.

Aside from the Fisher transformation, we investigate analytical approximations for the variance of the
R2 coefficients for survival data based on the proposals of [3]. There are two possible approaches here; the
first makes use of the monotonicity relationship between the conditional expectation of an explained vari-
ation measure and the regression coefficient, 𝛽, and the second appeals to large sample approximations.
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Different transformations, aimed at local linearization, are considered. Local linearization corresponds
to taking the first two terms of a Taylor expansion of R2 around the maximum likelihood estimate, R2(𝛽).
Because such an expansion is available to us for any monotonic transformation of R2, we investigate
some specific cases because some may linearize more successfully (more rapidly with sample size) than
others. It is interesting to note good agreement between the different approaches and, also, good agree-
ment with the results of [1] based on their use of the bootstrap. Somewhat like R2 itself, the goal is to
give more an impression of overall strength of effect rather than something on which we might wish to
base accurate error controlled decision-making.

Values of R2 close to zero may still correspond to effects of interest, but we know that from the stand-
point of individual prediction, there is much more noise than signal. Conversely, larger values may be
such that the endeavour of building prognostic models that can be used effectively in practice becomes a
plausible one. Thus, it would be helpful to provide interval estimates of R2 or to at least be able to provide
a reasonable range within which we might feel the actual value of predictive effect can be found. Note
that such an interpretation would be close in spirit to a Bayesian one, rather than a more classical con-
fidence interval interpretation, but, again, the goal is not to be so refined. It is more to have some rough
and ready tools of service to us in our quest to build useful predictive models.

In the following section, we recall the basic structure of the main measure of our focus in this paper.
The approximations, based on Taylor series, rely upon this structure and can therefore be seen as being
specific to this measure. The Fisher transform on the other hand is very general and would apply to any
measure, although we only study its performance in relation to the measure given in this section. Section 3
has two parts: the first part is devoted to Taylor series approximations for R2, as defined in Section 2,
and some simple monotonic transformations of R2. The second part of Section 3 provides motivation and
a simple expression for the variance of an invertible function of R2. The expression depends only upon
R2, for which we use a plug-in estimate and the number of observed failure times. Section 4 presents
a simulation to investigate coverage properties and how they might be influence by the size of the true
population equivalent of R2, the rate of censoring, the distribution of the covariates and the correlation
of the covariates in some relatively simple cases. Some real examples are considered in Section 5, and
some further points of discussion are raised in Section 6.

2. R2 measures for proportional hazards models

Let T denote the failure time, C the censoring time and Z(t) is p × 1 vector of explanatory variables.
Assume that T and C are independent conditional on Z(t). Suppose the data consist of n independent
replicates of (X,Δ, Z(t)), where X = min(T ,C), Δ = I(T ≤ C), where I(⋅) is the indicator function. Let
Yi(t) denote whether the subject i is at risk (Yi(t) = 1) or not (Yi(t) = 0) at time t. We will also use the
counting process notation: let Ni(t) = I{Ti ≤ t,Ti ≤ Ci} and N̄(t) =

∑n
i=1 Ni(t). The proportional hazards

model [4] specifies that the hazard function for the failure time T associated with Z(t) takes the form

𝜆(t;Z(t)) = 𝜆0(t) exp(𝛽′Z(t)), (2.1)

where 𝜆0(.) is an unspecified hazard function and 𝛽 is a p × 1 vector of unknown regression parameters.
The usual estimate, 𝛽, of 𝛽 is found by solving U(𝛽) = 0, where U(𝛽) is the score statistic of derivatives
of the logarithm partial likelihood U(𝛽) =

∑n
i=1 Δiri(𝛽) where ri(𝛽) are the partial Schoenfeld’s residuals

at each observed failure of the time Ti, ri(𝛽) = Zi(t) − E𝛽[Z|t] with

E𝛽[Z|t] = n∑
j=1

Zj(t)𝜋j(𝛽, t) , 𝜋j(𝛽, t) =
Yj(t) exp{𝛽′Zj(t)}∑n
l=1 Yl(t) exp{𝛽′Zl(t)}

, (2.2)

the quantity 𝜋j(𝛽, t) being interpretable as the conditional probability that at time t, it is precisely individ-
ual i who is chosen to fail, given all the individuals at risk and given that one failure occurs [3, 5]. When
𝛽 = 0, 𝜋i(0, t) is simply the empirical distribution of the covariate given t, assigning equal weight to each
sample subject in the risk set. In other words, given t and given the subjects in the risk set at t, we have a
sampling model defined on this set by which every individual has the same probability of being selected.

Shoenfeld residuals of the proportional hazards model [6] measure the discrepancy between the
observed value of the covariate Zi(t), from the individual i who fails at time t, and its expected value under
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the model and that a single selection is being made from those subjects at risk. In the multivariate model
(2.1), the dependence of the survival time variable on the covariates is via the prognostic index [5, 7]

𝜂(t) = 𝛽′Z(t).

Two individuals with different Z’s but the same 𝜂 should have the same survival probability. Let us define
the quantity I(b) for b = 0, 𝛽 by

I(b) =
n∑

i=1
∫

∞

0
{𝜂i(t) − 𝛽′Eb(Z|t)}2dNi(t). (2.3)

The measure of predictive ability of a proportional hazards model was therefore defined by [5]

R2(𝛽) = 1 − I−1(0)I(𝛽), (2.4)

where in practice, 𝛽 is replaced by 𝛽. R2(𝛽) is a sample-based quantity which, under the usual asymptotic
framework [7], converges to a population counterpart denoted Ω2(𝛽) (details are outlined in O’Quigley
and Xu where the properties of the coefficient were investigated). The ratio I(𝛽)∕I(0) will approach 1
when there is almost no predictive effect and decrease towards the value 0 with increasing effect. We
can generalize Schoenfeld’s residuals in the multivariate settings where for each observed failure time Ti,
residuals are defined by wi(𝛽) = {𝜂i(t) − 𝛽′Eb(Z|t)} Then, in the case of a single covariate in the model,
residuals are a function of the Schoenfeld residuals with wi(𝛽) = 𝛽 ri(𝛽) and the predictive index in (2.4)
reduced to the measure introduced by [3]

R2(𝛽) = 1 −
∑n

i=1 Δir
2
i (𝛽)∑n

i=1 Δir
2
i (0)

, (2.5)

where Δi = I(Ti ≤ Ci). Therefore, predictability or explained variability, in the context of proportional
hazards regression, refers to predictability or variability of the value of the covariate, conditional upon
the failure time and subjects at risk at that time. This approach has the great advantage of allowing
us to consider the potential inclusion of time-dependent variables, which is one of the model’s most
attractive features. The use of time-dependent variables not only is a key property of the model but also
corresponds to many applied problems in chronic illnesses such as cancer and HIV. Although, in the
context of survival data, it does seem more natural to want predictability to refer to time, because of the
features of the model, in particular the importance of the residuals based on the value of the covariate,
our approach is intuitively logical and has desirable properties [3,5]. The exponentially tilted distribution
given by equation (2.2) puts increasing weight on the higher values as the coefficient 𝛽 increases. When 𝛽

assumes increasingly large negative values, then the same occurs on the smaller values. For a single binary
explanatory variable, as 𝛽 increases without bound, then all of the weight is put on the covariate value
one. If we have perfect discrimination and the ones are systematically selected until they are exhausted,
then as 𝛽 → ∞, R2(𝛽) → 1. If the zeros are selected until they are exhausted then, again, as 𝛽 → ∞,
R2(𝛽) → 1. For a covariate taking on several values, or continuous, then, if at each observed failure time,
the value of the covariate of the individual i who fail at Ti is the smallest (greatest) value among the
sample values in the risk set, then the prediction is once more perfect and R2(𝛽) = 1. Given the covariate,
R2(𝛽) increases monotonically in |𝛽| so that increasing strength of effect translates and increasing values
of R2(𝛽).

3. Confidence interval estimates of R2(𝛽)

3.1. Approximations based on linearization

For convenience, we denote R2(𝛽) by R2. R2 is a function of random variables Z1(t),… ,Zk(t), where k
is the number of failures. We use Taylor series methods by expanding R2 through a series expansion to
the first order so that we can obtain an estimate of Var(R2). For R2 = f (𝛽′Z1(t),… , 𝛽′Zk(t)) and letting
wi𝛽 = wi(𝛽), wi0 = wi(0), and 𝜂i = 𝜂i(t), i = 1,… , k,

Var(R2) ≈
k∑

i=1

{
𝜕R2

𝜕𝜂i

}2

Var(𝜂i) =
k∑

i=1

{
𝜕R2

𝜕Zij
∕
𝜕𝜂i

𝜕Zij

}2

Var(𝜂i), (3.6)
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where j = 1,… , p, where p is the dimension of the parameter space. These calculations are straightfor-
ward and, after gathering terms, we have that

Var(R2) =
k∑

i=1

⎡⎢⎢⎢⎣
2Δiwi𝛽

∑
Δjw

2
j0 − 2Δiwi0

∑
Δjw

2
j𝛽(∑

Δjw
2
j0

)2

⎤⎥⎥⎥⎦
2

Var(𝜂i)

= 4(∑
Δjw

2
j0

)4

k∑
i=1

Δ2
i

[
wi𝛽

∑
Δjw

2
j0 − wi0

∑
Δjw

2
j𝛽

]2
Var(𝜂i), (3.7)

where Var(𝜂i) is approximated by
∑p

j=1 𝛽
2
j Var(Zij(t)) + 2

∑
j<𝓁 𝛽j𝛽𝓁 Cov(Zij(t),Zi𝓁(t)), Var(Zij(t)) =

E𝛽[Z2
j |t]−E2

𝛽
[Zj|t], j = 1,… , p and Cov(Zij(t),Zi𝓁(t)) = E𝛽[ZjZ𝓁|t]−E𝛽[Zj|t]E𝛽[Z𝓁|t], j < 𝓁. Furthermore

letting S = log(1 − R2),

Var S ≈
k∑

i=1

{
𝜕 log(1 − R2)

𝜕𝜂i

}2

Var(𝜂i) =
k∑

i=1

{
𝜕 log(1 − R2)

𝜕Zij
∕
𝜕𝜂i

𝜕Zij

}2

Var(𝜂i),

where j = 1,… , p. Again, gathering terms, we have that

Var[log(1 − R2)] =
k∑

i=1

[
2Δi

(
wi𝛽∑
Δjw

2
j𝛽

−
wi0∑
Δjw

2
j0

)]2

Var(𝜂i)

= 4(∑
Δjw

2
j0

∑
Δjw

2
j𝛽

)2

k∑
i=1

Δ2
i

[
wi𝛽

∑
Δjw

2
j0 − wi0

∑
Δjw

2
j𝛽

]2
Var(𝜂i),

In the same way, letting S∗ = log(R2∕(1−R2)), and regrouping terms, the variance of S∗ is approximated
as

Var(S∗) ≈
k∑

i=1

[
2Δi

(
(wi0 − wi𝛽)∑

Δjw
2
j0 −

∑
Δjw

2
j𝛽

−
wi𝛽∑
Δjw

2
j𝛽

)]2

Var(𝜂i)

= 4((∑
Δjw

2
j0 −

∑
Δjw

2
j𝛽

)∑
Δjw

2
j𝛽

)2

×
k∑

i=1

Δ2
i

[
(wi0 − wi𝛽)

∑
Δjw

2
j𝛽 − wi𝛽

(∑
Δjw

2
j0 −

∑
Δjw

2
j𝛽

)]2
Var(𝜂i).

We first obtain a 95% confidence interval [SL, SU] and [S∗
L, S

∗
U] for S and S∗, respectively. Then, the

endpoints of these intervals were inserted into the transformed confidence interval for R2 , [1−eSU , 1−eSL]
and [eS∗L∕(1 + eS∗L), eS∗U∕(1 + eS∗U )], by virtue of the monotonicity of S and S∗, respectively, as a function
of R2.

3.2. Fisher’s transformation

Suppose we were to make a bivariate Edgeworth approximation to the joint distribution of T and Z.
Obviously, we would need to make many more assumptions, in particular some parametric joint model
for T and Z, but in fact, we will only need suppose that such a distribution exists. We will not carry out
the calculation of the terms needed in the Edgeworth expansion, but we will suppose that they could
be obtained if we had the joint model. The purpose of this is purely motivational, and in practice, the
approximation we use is particularly simple and does not need any further calculation [8].

We take

�̂� = tanh−1 R = 1
2

log
(1 + R

1 − R

)
,

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017
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and, in the population, 𝜃 = tanh−1 Ω. Following the development of [9], it is possible to develop R as an
infinite polynomial series in �̂� − 𝜃. We find, for a = �̂� − 𝜃,

f (a) = nE(Δ) − 2√
2𝜋(nE(Δ) − 1)

[
1 + a𝜃

2
+
(

2 + 𝜃

8(nE(Δ) − 1)
+ 4 − 𝜃2

8
a2 + nE(Δ) − 1

12
a4

)
+
(

4 − 𝜃2

16(nE(Δ) − 1)
+ 4 + 3𝜃2

48
a2 + n − 1

24
a4

)
a𝜃

+
(

4 + 12𝜃2 + 9𝜃4

128(nE(Δ) − 1)2
+ 8 − 2𝜃2 + 3𝜃4

64(nE(Δ) − 1)
a2 + 8 + 4𝜃2 − 5𝜃4

128
a4

+(nE(Δ) − 1)28 − 15𝜃2

1440
a6

)]
exp−(nE(Δ) − 1)a2∕2.

Furthermore, neglecting powers of n higher than the third, for the first two moments, and higher than
the forth for the next two, we have

E(a) = Ω
2(nE(Δ) − 1)

[
1 + 5 + Ω2

4(nE(Δ) − 1)
+ 11 + 2Ω2 + 3Ω4

8(nE(Δ) − 1)2

]
(3.8)

Var (a) = 1
nE(Δ) − 1

[
1 + 4 − Ω2

2(nE(Δ) − 1)
+ 22 − 6Ω2 − 3Ω4

6(nE(Δ) − 1)2

]
. (3.9)

Given this result, we can calculate the first four moments, leading to

Var (𝜃 − tanh−1 Ω) = 1
nE(Δ) − 1

+ 4 − 𝜃2

2(nE(Δ) − 1)2
, (3.10)

which, in turn, can be approximated by (nE(Δ) − 1)−1 + 2(nE(Δ) − 1)−2 = 1∕(nE(Δ) − 3). In practice,
we do not know the value of E(Δ). We can though, under an independent censoring assumption, replace
it by Δ̂, defined as the proportion of failures in the sample scaled to the interval (0,1). This is once more
a working assumption. In total then, for this rough and ready approximation, there have been a string
of working assumptions. It is not easy to theoretically gauge the impact of these approximations on the
usefulness of the final result and, so, rather than do that we simply investigated the performance of this
approximation via a range of simulations. Also, of course, we were able to compare the results of the
rough and ready approximation to those obtained via Taylor series expansion and the level of agreement
was very satisfactory. Once we have the above intervals, we transform them back to the original scale for
R2.

Asymptotically, E(𝜃) = tanh−1 𝜌 and, approximately, var(𝜃) = 1∕(k − 3), where k is the number of
deaths. We first obtain, a 95% confidence interval [𝜃L, 𝜃U] and then a 95% confidence interval for r, with

r =
√

R2(𝛽), [(e2𝜃L − 1)∕e2𝜃L + 1), (e2𝜃U − 1)∕e2𝜃U + 1)]. These intervals will not be symmetric, but they
are guaranteed to lie within the interval (0,1).

4. Simulations

A simulation study was conducted to evaluate the performance of the confidence intervals obtained using
both Taylor series and Fisher’s transformation. For each simulation, a sample size of n = 100 or n =
400 was generated from an exponential distribution with parameter 𝜆 = exp(𝛽0 + 𝛽z). The covariate z
was a binary covariate either normally distributed or uniformly distributed with in all cases E[z] = 0.5
and Var[z] = 0.25. For example, for a binary covariate, z = 0 with probability 0.5 and z = 1 with
probability 0.5 was generated. We investigated absence of censoring, and presence of 25%, 50% and 75%
of censoring. The 95% confidence intervals of R2(𝛽) were calculated using all the methods presented
previously, and the true value Ω2(𝛽) was estimated as described in [3]. Five thousand replications of such
samples were generated, and the coverage probability of each 95% confidence interval was calculated. A
further simulation considered the case of bivariate normal covariables. The means and variances were the
same as for the case of a single variable, and the correlation parameter took the values: 0.0, 0.3, 0.6 and

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017
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Table I. Simulation confidence intervals for R2 with a binary covariate based on Taylor series methods
and Fisher’s transformation.

N = 100 N = 400
Percentage of censoring Percentage of censoring

Method 0% 25% 50% 75% 0% 25% 50% 75%

𝛽 = 1 E[R2(𝛽)] = 0.19
Taylor series methods
Based on R2 94.7% 93.7% 92.0% 86.5% 97.3% 95.9% 95.4% 93.3%
Based on log[1 − R2] 94.5% 93.8% 92.2% 87.5% 97.2% 95.8% 95.2% 93.5%
Based on log[R2∕(1 − R2)] 97.8% 97.0% 96.4% 94.8% 97.5% 97.0% 96.7% 97.1%
Fisher’s transformation 95.8% 95.5% 94.9% 94.7% 96.9% 95.9% 95.3% 94.9%

𝛽 = 2 E[R2(𝛽)] = 0.49
Taylor series methods
Based on R2 94.4% 93.6% 91.5% 88.1% 95.3% 94.8% 94.4% 92.8%
Based on log[1 − R2] 95.2% 94.7% 93.4% 91.1% 95.5% 95.1% 94.6% 93.5%
Based on log[R2∕(1 − R2)] 95.8% 95.9% 95.6% 95.3% 95.6% 95.4% 95.3% 94.7%
Fisher’s transformation 90.3% 89.3% 88.6% 86.6% 90.9% 90.8% 89.7% 89.1%

𝛽 = 3 E[R2(𝛽)] = 0.73
Taylor series methods
Based on R2 88.4% 87.8% 85.8% 83.6% 91.3% 90.3% 90.2% 88.3%
Based on log[1 − R2] 89.9% 90.3% 90.0% 92.6% 91.5% 90.7% 91.0% 90.8%
Based on log[R2∕(1 − R2)] 90.5% 91.4% 91.0% 87.3% 91.7% 91.1% 91.7% 91.4%
Fisher’s transformation 75.7% 74.8% 74.2% 74.0% 79.1% 77.0% 76.7% 76.3%

Table II. Simulation confidence intervals for R2 with a covariate normally distributed based on Taylor
series methods and Fisher’s transformation.

N = 100 N = 400
Percentage of censoring Percentage of censoring

Method 0% 25% 50% 75% 0% 25% 50% 75%

𝛽 = 1 E[R2(𝛽)] = 0.19
Taylor series methods
Based on R2 94.2% 92.4% 90.2% 85.4% 95.4% 95.8% 94.7% 92.8%
Based on log[1 − R2] 94.2% 92.2% 90.5% 86.0% 95.5% 95.9% 94.4% 93.4%
Based on log[R2∕(1 − R2)] 97.0% 96.7% 96.2% 94.4% 96.3% 96.9% 96.6% 96.4%
Fisher’s transformation 95.5% 95.0% 94.5% 94.6% 95.5% 96.2% 95.3% 94.8%

𝛽 = 2 E[R2(𝛽)] = 0.44
Taylor series methods
Based on R2 94.0% 93.5% 93.1% 89.6% 95.8% 95.3% 94.7% 93.7%
Based on log[1 − R2] 94.8% 94.5% 93.8% 91.6% 95.8% 95.5% 94.9% 94.3%
Based on log[R2∕(1 − R2)] 95.5% 95.6% 96.0% 95.3% 96.2% 95.7% 95.6% 95.4%
Fisher’s transformation 93.1% 92.7% 93.2% 91.9% 94.1% 93.9% 93.5% 93.1%

𝛽 = 3 E[R2(𝛽)] = 0.62
Taylor series methods
Based on R2 93.0% 92.8% 91.2% 88.0% 94.4% 93.7% 93.2% 92.5%
Based on log[1 − R2] 93.8% 93.9% 92.6% 92.1% 94.8% 94.1% 93.9% 93.5%
Based on log[R2∕(1 − R2)] 94.3% 94.5% 94.0% 94.2% 94.6% 94.2% 94.0% 94.0%
Fisher’s transformation 91.4% 91.4% 90.4% 90.0% 92.4% 91.9% 91.4% 90.8%

0.9. Sample sizes and censoring were as in the case of a single covariate. The impact of varying degrees
of correlation is shown in the tables.

The results show that the confidence intervals based on Taylor series approximations for log[R2∕(1 −
R2)] provide overall the most accurate coverage probabilities. This is true for all of the studied covari-
ate distributions with a single variable (Tables I–III ). The results are satisfactory even for censoring as
high as 75%. The simple Fisher’s transformation works well as a quick first approximation. Distribution
of R2 values for all simulations are provided in the Supporting Information. The limited study of corre-
lation between the covariates is encouraging (Tables IV and V). The level of correlation appears to be
well accounted for in the derived expressions. The Fisher transformation makes no use of the estimated
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Table III. Simulation confidence intervals for R2 with a covariate uniformly distributed based on
Taylor series methods and Fisher’s transformation.

N = 100 N = 400
Percentage of censoring Percentage of censoring

Method 0% 25% 50% 75% 0% 25% 50% 75%

𝛽 = 1 E[R2(𝛽)] = 0.19
Taylor series methods
Based on R2 92.0% 90.5% 90.3% 86.4% 94.9% 94.3% 93.7% 93.1%
Based on log[1 − R2] 92.0% 90.6% 90.3% 87.1% 94.7% 94.3% 93.7% 92.9%
Based on log[R2∕(1 − R2)] 96.5% 96.7% 96.6% 95.1% 96.2% 95.6% 95.9% 97.1%
Fisher’s transformation 93.8% 93.9% 94.2% 94.2% 95.2% 94.7% 94.4% 95.0%

𝛽 = 2 E[R2(𝛽)] = 0.45
Taylor series methods
Based on R2 93.6% 93.6% 92.3% 90.1% 95.2% 95.2% 95.2% 94.7%
Based on log[1 − R2] 93.8% 94.3% 92.7% 91.9% 95.3% 95.5% 95.3% 95.1%
Based on log[R2∕(1 − R2)] 95.0% 95.5% 95.6% 96.1% 95.7% 95.8% 96.0% 96.1%
Fisher’s transformation 93.0% 93.4% 92.7% 93.3% 94.2% 94.1% 94.3% 94.7%

𝛽 = 3 E[R2(𝛽)] = 0.64
Taylor series methods
Based on R2 92.6% 93.0% 91.2% 90.0% 94.2% 94.7% 95.0% 93.6%
Based on log[1 − R2] 93.6% 94.1% 92.8% 93.2% 94.4% 95.1% 95.2% 94.7%
Based on log[R2∕(1 − R2)] 94.0% 94.9% 93.8% 95.1% 94.4% 95.2% 95.4% 95.1%
Fisher’s transformation 91.2% 91.8% 90.8% 92.4% 92.1% 92.6% 93.1% 92.4%

Table IV. Simulation confidence intervals for R2 with two covariates normally distributed based on
Taylor series methods and Fisher’s transformation.

N = 100
𝜌 = 0 𝜌 = 0.3 𝜌 = 0.6 𝜌 = 0.9

Percentage of censoring
Method 0% 50% 0% 50% 0% 50% 0% 50%

𝛽1 = 𝛽2 = 0.5
E[R2(𝛽)] = 0.13 E[R2(𝛽)] = 0.16 E[R2(𝛽)] = 0.18 E[R2(𝛽)] = 0.20

Taylor series methods
Based on R2 90.9% 89.5% 92.3% 90.1% 92.9% 90.4% 92.3% 91.4%
Based on log[1 − R2] 90.7% 89.6% 92.1% 90.0% 92.7% 90.5% 92.3% 91.2%
Based on log[R2∕(1 − R2)] 96.2% 96.3% 96.8% 96.6% 96.7% 96.4% 96.6% 96.7%
Fisher’s transformation 94.2% 95.5% 94.9% 95.3% 94.9% 95.1% 94.1% 95.0%

𝛽1 = 𝛽2 = 1.0
E[R2(𝛽)] = 0.32 E[R2(𝛽)] = 0.36 E[R2(𝛽)] = 0.41 E[R2(𝛽)] = 0.44

Taylor series methods
Based on R2 93.7% 92.7% 94.1% 93.1% 94.0% 92.8% 93.8% 91.9%
Based on log[1 − R2] 93.9% 93.1% 94.6% 93.4% 94.4% 93.8% 94.1% 93.4%
Based on log[R2∕(1 − R2)] 96.2% 96.7% 95.5% 96.7% 95.7% 96.1% 95.3% 95.7%
Fisher’s transformation 94.1% 94.1% 94.0% 94.3% 94.9% 94.0% 93.4% 92.8%

𝛽1 = 𝛽2 = 1.5
E[R2(𝛽)] = 0.48 E[R2(𝛽)] = 0.54 E[R2(𝛽)] = 0.58 E[R2(𝛽)] = 0.62

Taylor series methods
Based on R2 93.6% 92.9% 93.5% 93.1% 93.3% 92.1% 93.2% 91.5%
Based on log[1 − R2] 94.0% 94.2% 94.0% 94.1% 94.5% 93.3% 94.2% 93.1%
Based on log[R2∕(1 − R2)] 95.0% 95.7% 95.0% 95.7% 94.9% 94.5% 94.5% 94.1%
Fisher’s transformation 92.4% 93.5% 92.2% 93.4% 92.2% 92.0% 91.8% 91.2%

correlations and, although it is less impressive than the Taylor series approximations, it still provides a
good working guide for practical use. Here, these cases have been limited to bivariate normal, and it may
be worth extending this study to deal with binary outcomes. It is less clear cut however how to carry out
such studies because many different copula-type models could be suggested.
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Table V. Simulation confidence intervals for R2 with two covariates normally distributed based on
Taylor series methods and Fisher’s transformation.

N = 400
𝜌 = 0 𝜌 = 0.3 𝜌 = 0.6 𝜌 = 0.9

Percentage of censoring
Method 0% 50% 0% 50% 0% 50% 0% 50%

𝛽1 = 𝛽2 = 0.5
E[R2(𝛽)] = 0.11 E[R2(𝛽)] = 0.14 E[R2(𝛽)] = 0.16 E[R2(𝛽)] = 0.18

Taylor series methods
Based on R2 93.6% 94.0% 95.1% 93.4% 95.0% 94.2% 94.4% 94.9%
Based on log[1 − R2] 93.6% 93.8% 95.0% 93.4% 94.9% 94.1% 94.4% 94.6%
Based on log[R2∕(1 − R2)] 96.2% 96.7% 96.5% 96.4% 96.2% 97.2% 95.8% 96.7%
Fisher’s transformation 94.5% 95.8% 95.6% 94.9% 95.2% 95.8% 94.8% 95.7%

𝛽1 = 𝛽2 = 1.0
E[R2(𝛽)] = 0.29 E[R2(𝛽)] = 0.34 E[R2(𝛽)] = 0.38 E[R2(𝛽)] = 0.42

Taylor series methods
Based on R2 95.1% 95.0% 94.8% 95.4% 94.9% 95.3% 94.5% 95.4%
Based on log[1 − R2] 95.0% 95.2% 95.1% 95.4% 94.8% 95.3% 94.8% 95.7%
Based on log[R2∕(1 − R2)] 95.7% 96.5% 95.3% 96.1% 95.3% 96.0% 94.8% 96.0%
Fisher’s transformation 94.5% 95.2% 94.1% 94.8% 93.8% 94.6% 93.3% 94.8%

𝛽1 = 𝛽2 = 1.5
E[R2(𝛽)] = 0.46 E[R2(𝛽)] = 0.524 E[R2(𝛽)] = 0.568 E[R2(𝛽)] = 0.60

Taylor series methods
Based on R2 95.4% 95.5% 95.6% 95.1% 95.1% 94.9% 94.8% 94.7%
Based on log[1 − R2] 95.4% 95.5% 95.7% 95.4% 95.5% 95.0% 95.0% 95.3%
Based on log[R2∕(1 − R2)] 95.6% 96.0% 95.9% 95.7% 95.4% 95.5% 95.2% 95.4%
Fisher’s transformation 94.0% 94.3% 93.9% 94.0% 93.2% 92.8% 92.5% 93.1%

5. Examples

Our first application is taken from [1] as we can easily calculate confidence intervals based on the Fisher’s
transformation approach knowing the number of observed events and the measure estimate. Our results
are in good agreement with those obtained using bootstrap method except for values larger than 0.9 (R2

PM ,
R2

OF and R2
XO for the Leg ulcer study) where the Fisher’s transformation provided narrower confidence

intervals and for values smaller than 0.25 where it provided larger confidence intervals (Table VI).
The Breast Cancer data involved 686 individuals with complete information of which 299 experienced

the event of interest [10]. The final model suggested by [11] included age, tumour grade, number of
positive lymph nodes, progesterone receptor and hormonal therapy [1]. Data were downloaded from
http://www.homepages.ucl.ac.uk/ucakjpr/. The lymphoma data come from a study on diffuse large B cell
lymphoma. The authors in [12] evaluated the extent to which the continuous Rosenwald gene score adds
to the International Prognostic Index (IPI) in the prediction of survival in the 73 patients of the validation
set for which the IPI values were available. Data were downloaded from http://llmpp.nih.gov/DLBCL/.
For both studies, confidence intervals obtained using the Taylor approximations are in good agreement
with those obtained via the Fisher’s transformation or those obtained by bootstrap methods (Table VII).

Our last example is taken from [13] and is a set of 40 survival times for lung cancer patients, with
seven covariates for each patient. The main purpose of the study was to compare the effects of two
chemotherapy treatments in prolonging survival time, while assessing the effects of other factors such
as age and months under treatment. Various analyses by [13] indicate that performance status is highly
significant, and cell type is marginally significant; in particular, cell-type adeno is associated with an
increased risk of failure. We then restrict attention to these two covariates having significant effects.
Results are shown in Table VIII.

6. Discussion

Interest in predictive measures for survival models has grown in recent years. One reason for this comes
from the need to quantify the impact on outcome of several, possibly a large number, of biomarkers or
genetic information. The impact of markers can be subtle so that finding relevant effects leads us to careful
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Table VI. Estimates of explained variation measures and 95% confidence intervals based on Fisher’s transfor-
mation method and bootstraping.

Leg ulcer study Breast cancer study Lymphoma study
N events 97 299 48
N subjects 200 686 73

Measures Fisher Bootstrap Fisher Bootstrap Fisher Bootstrap
R2

PM 0.94 (0.91–0.96) (0.80–0.98) 0.27 (0.19–0.36) (0.21–0.35) 0.23 (0.05–0.45) (0.11–0.42)

R2
OF 0.92 (0.88–0.95) (0.80–0.98) 0.37 (0.29–0.46) (0.30–0.46) 0.32 (0.11–0.54) (0.14–0.59)

R2
XO 0.93 (0.90–0.95) (0.81–0.98) 0.38 (0.29–0.47) (0.30–0.48) 0.27 (0.08–0.49) (0.08–0.54)

R2
D 0.52 (0.37–0.65) (0.44–0.65) 0.28 (0.20–0.37) (0.21–0.35) 0.23 (0.05–0.45) (0.11–0.40)

R2
R 0.58 (0.44–0.70) (0.46–0.71) 0.29 (0.20–0.38) (0.23–0.38) 0.21 (0.04–0.43) (0.10–0.42)

Measures and bootstrap confidence intervals estimates obtained from [1]. The R2
OF of Choodari-Oskooei et al (2012a)

corresponds to our R2(𝛽).

Table VII. Estimates of R2(𝛽) and 95% confidence intervals based
on Taylor series methods and Fisher’s transformation method for
breast cancer and lymphoma data.

Breast cancer study Lymphoma study

R2(𝛽) 0.37 0.32
Taylor series methods 95% CI of R2(𝛽) 95% CI of R2(𝛽)
Based on R2 (0.28–0.47) (0.12–0.53)
Based on log[1 − R2] (0.27–0.46) (0.09–0.50)
Based on log[R2∕(1 − R2)] (0.29–0.47) (0.16–0.55)
Fisher’s transformation (0.28–0.46) (0.12–0.54)

Table VIII. Estimates of R2(𝛽) and 95% confidence intervals (CI) based on Taylor series
methods and Fisher’s transformation method for lung cancer data.

Lung cancer study
Variable 𝛽i R2(𝛽1, 𝛽2) CI method 95% CI of R2(𝛽1, 𝛽2)

Performance status −0.058 0.58 Based on R2 (0.35–0.81)
Adeno 1.070 Based on log(1 − R2) (0.27–0.76)

Based on log(R2∕(1 − R2)) (0.35–0.78)
Fisher’s transformation (0.34–0.76)

consideration of both the fit and the predictive power of the models we use. Before dealing with the more
subtle effects of biomarkers, it is important to correctly account for the prognostic role played by the
more usual, often well-known, risk factors such as stage or grade of disease, age and other clinical factors
that have been well studied. The effect of biomarkers can easily be masked or lost to uncertainty when
we include the main clinical or demographic factors in any model, and so it is important to have some
idea as to the precision of our predictive measures, given the main variables, before looking for more
subtle effects. A very accurate assessment of this precision is not really necessary, but ballpark figures
can indicate whether or not we have a good chance of picking up weaker effects. Goodness of fit plays
a part here too. We have not considered that aspect in this work. Our results show quite good agreement
with those obtained by Choodari-Oskooei [1]. An interval based on the Fisher transformation will be
helpful in general situations. A simple application of the inverse hyperbolic tangent function, along with
the added amount of predictive effect that we would like to be able to detect, leads to a direct assessment
of the number of failures that we will need to observe. That can be of use in a sample size calculation
or, otherwise, as an indicator of what we can reasonably hope to accomplish given the constraints of a
particular study.

We find broad agreement with intervals obtained via bootstrap resampling. It might be argued that the
effectiveness of the bootstrap obviates the need for more involved calculations. While there is something
to be said for that viewpoint, we still think it is useful to have analytical expressions. The one based on
the Fisher transform appears to perform remarkably well given its simplicity and it is simple enough to be
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quickly evaluated by hand, or even mentally, in the context where computer-based resampling may not be
readily available. Some reassurance can be obtained from the fact that there is broad agreement between
all of the approaches. Nominal coverage of the confidence intervals cannot be described as highly accurate
but is nonetheless good and exhibits only a very weak dependence, if any, on the strength of association
itself, the degree of censoring and the amount of correlation between the variables, at least in the limited
cases studied. Improvements are very likely possible but because our purpose is one of obtaining a rough
ballpark guide rather than one of high accuracy, the extra investment in calculation may not be justified.
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