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A mathematical model was developed for the impedance response associated with coupled homogeneous chemical and heterogeneous
electrochemical reactions. The model includes a homogeneous reaction in the electrolyte in which species AB reacts reversibly to
form A− and B+ and B+ reacts electrochemically on a rotating disk electrode to produce B. The resulting diffusion impedance has
two asymmetric capacitive loops, one associated with convective diffusion and the other with the homogeneous reaction. For an
infinitely fast homogeneous reaction, the system is shown to behave as though AB is the electroactive species. A modified Gerischer
impedance was found to provide a good fit to the simulated data.
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The coupling of homogeneous chemical reactions and heteroge-
neous electrochemical reactions has drawn substantial interest over the
past 80 years. Koutecky and Levich1–3 developed a steady-state model
for a homogeneous reaction coupled with an electrochemical reaction
on a rotating disk electrode. The homogenous reaction was assumed
to follow linear kinetics, all diffusion coefficients were assumed to
be equal, and the Schmidt number was assumed infinite. Koutecky
and Levich defined a characteristic dimension for the homogeneous
reaction, termed the thickness of the kinetic layer and represented
by

δr =
√

D

α
[1]

where α = kf +kb, kf and kb are respectively the forward and backward
rate constants of the homogeneous reaction, and D is the diffusion
coefficient.

Bossche et al.4 describe finite-difference calculations under as-
sumption of a steady state for an electrochemical system controlled
by diffusion, migration, convection, and nonlinear homogeneous re-
action kinetics. Their convection term used a three-term expansion
appropriate for positions close to the electrode surface.5 Deslouis
et al.6 used a submerged impinging jet cell to measure interfacial pH
during the reduction of dissolved oxygen in the presence of carbonate.
Their analysis considered the homogeneous reaction involving water
and hydroxide, bicarbonate, and carbonate ions. Remita et al.7 have
shown that, for a deaerated aqueous electrolyte containing dissolved
carbon dioxide, hydrogen evolution is enhanced by the homogeneous
dissociation of CO2. Tran et al.8 demonstrated that homogeneous dis-
sociation of acetic acid enhances cathodic reduction of hydronium
ions.

Smith9,10 used AC Polarography to study different linear first-
order homogeneous reaction mechanisms, including preceding, fol-
lowing, and catalytic chemical reactions coupled with electrochemi-
cal reactions. Jurczakowski and Polczynski11 developed an AC model
with coupled homogenous and heterogeneous reactions accounting
for cases where diffusion coefficients are not considered to be equal.
The above mechanisms assumed simplified homogeneous reactions,
with a maximum of two species considered.

Using chronopotentiometry, Delahay and Berzins12 showed that
cadmium cyanide complexes undergo a dissociation before electrore-
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duction on a mercury electrode. Savéant and Vianello13 devised the
theoretical approach of the EC mechanism in the case of cyclic
voltametry and proposed a kinetic zone diagram representing the var-
ious regimes of competition. From the theoretical development of po-
larography at a stationary electrode, Nicholson and Shain14 developed
diagnostic criteria for following, preceding, and catalytic chemical re-
actions coupled with charge transfer.

In 1951, Gerischer15 published the first formal treatment of cou-
pled chemical and electrochemical reactions under steady-state and
oscillating steady-state (impedance) conditions. He considered a lin-
ear homogeneous reaction, equal diffusion coefficients, and a Nernst
stagnant diffusion layer. A summary of Gerischer’s derivation is pre-
sented by Lasia.16 Recently, Pototskayaa and Gichan17 extended the
Gerischer impedance to account for a roughened electrode and non-
identical diffusion coefficients. Following Gerischer, Pototskayaa and
Gichan invoked linear homogeneous kinetics and a Nernst stagnant
diffusion layer. Chapman and Antãno18 discussed the use of orthog-
onal collocation as a means to explore the influence of nonlinear
homogeneous reactions on the impedance response within a Nernst
stagnant diffusion layer.

Levart and Schuhmann19 developed a model for the convective
diffusion impedance of a disk electrode under assumption of a finite
Schmidt number in the presence of a homogeneous chemical reaction.
The diffusion coefficients of the substances involved in the reaction
were assumed equal, and a linear expression for the homogeneous
reaction was assumed. Tribollet and Newman20 described a model for
concentrated solutions, based on the Stefan-Maxwell equations, with
provision for an arbitrary number of simultaneous homogeneous and
heterogeneous reactions. Their model was employed by Hauser and
Newman21,22 to describe the influence of homogenous consumption of
cuprous ion on the impedance response associated with dissolution of
a rotating copper disk electrode under assumption of linear homoge-
neous kinetics and an infinite Schmidt number. Vazquez-Arenas and
Pritzker23,24 developed a model for the deposition of cobalt ions on a
rotating cobalt disk under the assumption that homogeneous reactions
were equilibrated.

A Gerischer-type impedance has been used to fit many electrode
processes, including solid oxide fuel cell systems,25–27 oxide electrode
systems,28 mixed conducting solid electrolyte systems,29 systems with
boundary conditions on a disordered boundary30 and electrocatalytic
systems influenced by the hydrogen evolution reaction.31 Coupled
electrochemical and enzymatic homogeneous reactions are also in-
volved in sensors used to monitor glucose concentrations for manage-
ment of diabetes.32–34

The object of the present work was to relax the assumptions im-
plicit in previously published papers by developing a model for the
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Figure 1. Schematic representation of an electrochemical reaction coupled by
the influence of a homogeneous chemical reaction.

convective-diffusion impedance response of a rotating disk electrode
for a finite Schmidt number, un-equal diffusion coefficients, and using
nonlinear expressions for the kinetics of homogeneous reactions. The
resulting impedance responses were compared to a hybrid Gerischer
impedance that accounts for linear homogeneous reaction kinetics,
equal diffusion coefficients, and a finite Schmidt number for the con-
vective diffusion part of the expression.

Mathematical Development

A mathematical model is presented for the impedance response as-
sociated with the coupling of homogeneous and heterogeneous elec-
trochemical reactions.

Governing equations.—The flux density of species i in a dilute
electrolyte and in absence of migration was expressed as

Ni = −Di∇ci + civ [2]

where Di is the diffusion coefficient, ci is the concentration of species
i, and v is the mass-averaged velocity.35 For an axisymmetric rotating-
disk electrode, the convective-diffusion equation with homogeneous
reaction was expressed in cylindrical coordinates as

∂ci

∂t
+ vy

∂ci

∂y
= Di

∂2ci

∂y2
+ Ri [3]

where Ri is the rate of production of species i by homogeneous reac-
tions, y is the coordinate normal to the electrode surface, and vy is the
velocity in the axial direction.

Homogeneous reaction.—A schematic representation of an elec-
trochemical reaction coupled with a chemical reaction is shown in
Figure 1

where the reactions may be expressed as

AB
kf

�
kb

A− + B+ [4]

where kf and kb are rate constants for the homogeneous reaction.
The species B+ was assumed to be electroactive and consumed at the
electrode following the irreversible reaction

B+ + e− → B [5]

The corresponding current density from the electrochemical reaction,
which is dependent on concentration and potential, was expressed as

iB+ = −KB+ cB+ (0) exp (−bB+ V ) [6]

where KB+ is the rate constant, bB+ is the transfer coefficient, cB+ (0) is
the concentration of B+ at the electrode surface and V is the applied
potential referenced to an electrode located just outside the double
layer. As the electroactive species is consumed, a concentration gra-
dient of B+ must exist near the electrode surface.

The reaction sequence given as Equations 4 and 5 is general and
may be applied to neutral species as well as to charged species. This
sequence could apply, for example, to dissociation of acetic acid to

produce H+ ions, which participate in a cathodic electrochemical
reaction.

Far from the electrode surface, the species AB, A−, and B+ are
assumed to be equilibrated; thus,

Keq = kf

kb
= cA− (∞)cB+ (∞)

cAB(∞)
[7]

The reaction term was expressed as

RA− = RB+ = −RAB = kfcAB(y) − kbcA− (y) cB+ (y) [8]

where kf has units of inverse time and kb has units of inverse concen-
tration per time, i.e., cm3/mol s. Combination of Equations 7 and 8
yields

RA− = RB+ = −RAB = kb(KeqcAB(y) − cA− (y) cB+ (y)) [9]

In Equation 9, kb was independently explored and Keq was assumed
to be constant and calculated from bulk concentrations. The form of
Equation 9 makes the steady-state problem nonlinear.

Velocity.—The steady flow created by an infinite disk rotating at a
constant angular velocity in a fluid with uniform physical properties
was first studied by von Kármán.5 The axial velocity is represented
by

vy =
√

ν�H (ζ) [10]

where ν is the kinematic viscosity, � is the rotation speed, and H (ζ)
is a dimensionless function of dimensionless position, ζ = y

√
�/ν.

The Navier–Stokes equations can be solved numerically when
equations for the dimensionless radial, angular and axial velocities
are inserted. As shown by Cochran,36 H (ζ) can be written as two sets
of series expansions, one close to the electrode, H0, and one far from
the electrode, H∞. For small values of ζ the expansion is

H0 = −aζ2 + 1

3
ζ3 − b

6
ζ4 + ... [11]

where a = 0.5102326189 and b = −0.6159220144.19 Numerical
simulation of the convective-diffusion equation for systems involving
homogeneous reaction requires a bounded velocity at ζ → ∞, a
condition that is not satisfied by Equation 11. Far from the electrode,
when ζ is large, the expansion equation for H becomes

H∞ = −α + 2A

α
exp(−αζ) − A2 + B2

2α3
exp(−2αζ) [12]

− A(A2 + B2)

6α5
exp(−3αζ) + ...

where α = 0.88447441, A = 0.93486353, and B = 1.2021175.37

To solve the conservation equations in the presence of homoge-
neous reactions, a velocity profile is required to describe the fluid
flow for a larger domain than is described by Equations 10 and 11.
An interpolation formula was used to provide an analytic expression
for velocity in terms of velocity expansions near the electrode and far
from the electrode, i.e., 38

H = (1 − f )H0 + f H∞ [13]

where H0 and H∞ are given by Equations 11 and 12, respectively. The
interpolation function was defined as

f = 1

1 + e−α(ζ−ζ0)
[14]

where ζ0 was assigned a value of unity and α = 25 influences the
sharpness of the transition from vy,0 to vy,∞. Equation 14 is similar to
the Fermi-Dirac function applied in quantum mechanics to describe
the distribution of fermions.

The axial components of the dimensionless velocity as a function of
dimensionless distance from the electrode surface are shown in Figure
2. Equation 13 satisfies the velocities for small and large values of ζ.
The slight discontinuity in the velocity expression occurs in a region
outside the Nernst diffusion layer thickness of 13.8 μm (shown in
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Figure 2. Dimensionless axial velocity expansions H0, given as Equation 11,
and H∞, given as Equation 12, and the interpolation function with α = 25 and
ζ0 = 1, defined in Equation 14. The Nernst diffusion-layer thickness of 13.8
μm for a rotating disk electrode (Sc = 526 and � = 2000 rpm) is illustrated
as a vertical dashed line.

Figure 2 by a dashed line for Sc = 526 and � = 2000 rpm) and,
therefore, did not affect the simulation.

Impedance with homogeneous chemical reactions.—The conser-
vation equation for each species was written as

∂cAB

∂t
+ vy

∂cAB

∂y
= DAB

∂2cAB

∂y2
− kb(KeqcAB(y) − cA− (y)cB+ (y))

[15]
for AB,

∂cA−

∂t
+ vy

∂cA−

∂y
= DA−

∂2cA−

∂y2
+ kb(KeqcAB(y) − cA− (y)cB+ (y))

[16]
for A−, and

∂cB+

∂t
+ vy

∂cB+

∂y
= DB+

∂2cB+

∂y2
+ kb(KeqcAB(y) − cA− (y)cB+ (y))

[17]
for B+. The boundary conditions far from the electrode were

ci → ci(∞) for y → ∞ [18]

and the boundary conditions at the electrode surface were

∂ci

∂y

∣∣∣∣∣
y=0

= 0 for y = 0 [19]

for the non-reacting species, and

FDB+
∂cB+

∂y

∣∣∣∣∣
y=0

= iB+ for y = 0 [20]

for the reacting species B+. The concentrations of each species were
represented in terms of steady-state and oscillating terms as39,40

ci = ci + Re {̃ci exp (jωt)} [21]

The resulting equations governing the steady-state were

vy
∂cAB

∂y
= DAB

∂2cAB

∂y2
− RAB [22]

vy
∂cA−

∂y
= DA−

∂2cA−

∂y2
+ RA− [23]

and

vy
∂cB+

∂y
= DB+

∂2cB+

∂y2
+ RB+ [24]

where

RA− = RB+ = −RAB = kb(KeqcAB(y) − cA− (y)cB+ (y)) [25]

The equations governing the frequency domain were

jω̃cAB + vy
∂ c̃AB

∂y
= DAB

∂ 2̃cAB

∂y2
− R̃AB [26]

jω̃cA− + vy
∂ c̃A−

∂y
= DA−

∂ 2̃cA−

∂y2
+ R̃A− [27]

and

jω̃cB+ + vy
∂ c̃B+

∂y
= DB+

∂ 2̃cB+

∂y2
+ R̃B+ [28]

where

R̃A− = R̃B+ = −R̃AB [29]

= kb

[
Keq̃cAB(y) − cA− (y )̃cB+ (y) − c̃A− (y)cB+ (y)

]
Following the usual hypothesis for impedance, the system response
to a small perturbation amplitude behaves linearly, and thus the terms
O(c̃2) and greater have been neglected. Equations 26–29 are complex,
coupled, and linear and are dependent on the steady-state solution. The
boundary conditions for the oscillating concentrations were

c̃i = 0 for y → ∞ [30]

for each species

∂ c̃i

∂y

∣∣∣∣∣
y=0

= 0 for y = 0 [31]

for the AB and A−, and

c̃B+ (0) = 1 for y = 0 [32]

for the reacting species B+. The value of c̃B+ (0) was chosen arbitrarily
because the governing equations for the impedance response are lin-
ear, even when the steady-state problem is nonlinear. Application of
the nonlinear homogeneous reaction kinetics to impedance response
represents an extension to the literature.

Diffusion impedance.—The oscillating current density associated
with B+ was expressed as a Taylor series expansion about the steady-
state current, shown in Equation 6, as39,40

ĩB+ =
(

∂iB+

∂V

)
cB+ (0)

Ṽ +
(

∂iB+

∂cB+ (0)

)
V

c̃B+ (0) [33]

where Ṽ and c̃B+ (0) are assumed to have a small magnitude such that
the higher order terms can be neglected. The flux expression for B+ in
the absence of migration yields a second equation for the oscillating
current density as

ĩB+ = FDB+
d̃cB+

dy

∣∣∣∣
y=0

[34]

Equation 33 was divided by Equation 34, yielding

1 =
(

∂iB+

∂V

)
cB+ (0)

Ṽ

ĩB+
+

(
∂iB+

∂cB+ (0)

)
V

c̃B+ (0)

FDB+
d̃cB+

dy

∣∣∣∣
y=0

[35]

The faradaic contribution to the impedance is defined by

ZF,B+ (ω) = Ṽ

ĩB+
[36]
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Re

Cdl

ZF,B+

Figure 3. Electrical circuit representation of the electrode impedance associ-
ated with the faradaic impedance given as Equation 37.

where ω is the angular frequency. Thus, by rearranging Equation 35,
the faradaic contribution to the impedance was expressed as

ZF,B+ (ω) = Rt,B+ + ZD,B+ (ω) [37]

where, from the respective derivatives of Equation 6, the charge trans-
fer resistance was given as

Rt,B+ = 1

KB+ bB+ cB+ (0) exp
(−bB+ V

) [38]

and the diffusion impedance was given as

ZD,B+ (ω) = Rt,B+ KB+ exp
(−bB+ V

)
FDB+

⎛⎜⎜⎜⎝− c̃B+ (0)
d̃cB+

dy

∣∣∣∣
y=0

⎞⎟⎟⎟⎠ [39]

The concentration distributions required to assess the diffusion
impedance, Equation 39, were obtained for each frequency from the
numerical solution of Equations 26–29.

The dimensionless diffusion impedance is given by

− 1

θ′
B+

(K ) = 1

δN,B+

⎛⎜⎜⎜⎝− c̃B+ (0)
d̃cB+

dy

∣∣∣∣
y=0

⎞⎟⎟⎟⎠ [40]

where δN,B+ is the diffusion-layer thickness using the Nernst hypoth-
esis, shown as

δN,B+ = �(4/3)

(
3

a

)1/3
1

Sc1/3
B+

√
ν

�
[41]

� is the gamma function, and the Schmidt number is defined as ScB+ =
ν/DB+ . Equation 40 is a function of a dimensionless frequency

K = ωδB+

DB+
[42]

where

δB+ =
(

3

a

)1/3
1

Sc1/3
B+

√
ν

�
[43]

The variables K and δB+ are used to place the convective-diffusion
equation in dimensionless form for an infinite Schmidt number.39,40

Overall impedance.—The overall impedance can be represented
by the circuit shown in Figure 3. An ohmic resistance is in series with
the parallel contribution of the faradaic impedance, Equation 37, and
double-layer capacitance, yielding a mathematical expression for the
overall impedance as

Z (ω) = Re + ZF,B+

1 + jωZF,B+Cdl
[44]

where ZF,B+ was obtained from Equation 37.

Table I. Species and associated parameter values for the system.

Species ci(∞), mol/cm3 zi Di, cm2/s

AB 0.01 0 1.684 × 10−5

A− 0.0001 −1 1.957 × 10−5

B+ 0.0001 1 1.902 × 10−5

Table II. System and kinetic parameter values for the system.

Parameter Value Units

Disk rotation rate, � 2,000 rpm
Kinematic viscosity, ν 0.01 cm2/s
Homogeneous equilibrium constant, Keq 10−6 mol/cm3

Homogeneous rate constant, kb, 107 cm3/mol s
Heterogeneous rate constant, KB+ 2 × 10−12 A/cm2

Heterogeneous constant, bB+ 19.9 V−1

Numerical methods.—The steady-state concentrations of AB, A−,
and B+ and the value of the homogeneous reaction rate were obtained
for input values shown in Tables I and II. These steady-state values
were used to obtain the frequency-domain concentration of the re-
acting species B+. All the equations were linearized, formulated in
finite-difference form and solved numerically using Newman’s BAND
method coupled with Newton–Raphson iteration.35 The boundary cor-
responding to y → ∞ was chosen to be located at a position 20δN,B+ .
Equation 40 was used to obtain a dimensionless diffusion impedance,
and Equation 39 was used to obtain a diffusion impedance.

To minimize round-off and finite difference errors, a small mesh
size (5 nm) was employed near the electrode, in an inner region, and
a large mesh size (60 nm) was used in the outer region dominated
by convection. The transition between regions allowed solutions with
accuracy on the order of the square of the mesh size. The steady-state
concentrations so determined had greater than 8 significant digits and
the real and imaginary parts of the impedance were computed with 6
significant digits.

Results

The polarization curve corresponding to the parameters given in
Tables I and II is presented in Figure 4. The heterogeneous reaction
rate increases as the potential becomes more negative, reaching a
mass-transfer-limited plateau for potentials smaller than −2.2 V. The
large magnitude of the mass-transfer-limited current density may be
attributed to the production of B+ by the homogeneous reaction.
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Figure 4. Polarization curve calculated for system parameters presented in
Tables I and II. Labeled potential values at fractions of the limiting current
correspond to steady-state concentration profiles presented in Figure 5.
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Figure 5. Calculated steady-state concentration distributions and homogeneous reaction rate corresponding to system parameters presented in Tables I and II at
different fractions of the limiting current; a) B+ b) A− c) AB d) RB+ .

Labeled fractions of the mass-transfer-limited current density val-
ues in Figure 4 correspond to steady-state concentration profiles and
the reaction profile presented in Figure 5. Concentrations were scaled
by the mass balance of the species involved in the homogeneous reac-
tion, co = cA− +cB+ +cAB, to emphasize the relative changes in values
as well as the overall concentration in the electrolyte. The concentra-
tion of AB, shown in Figure 5a, decreases to a value that is 94 percent
of co at a potential corresponding to a value in the mass-transfer-
limited current range. In contrast, the concentration of A− shown in
Figure 5b reaches a value that is almost 5 times its bulk value at the

mass-transfer-limited current density. The normalized concentration
distribution of B+ is presented in Figure 5c. The concentration of
B+ at the electrode surface approaches a value of zero as the mass-
transfer-limited current density is approached. The sharp profile that
appears close to the electrode surface in Figure 5c is consistent with
a large current density. To emphasize the profile near the electrode,
the rate of the homogeneous reaction is presented in Figure 5d as a
function of position on a logarithmic scale.

The influence of the homogeneous reaction rate constant on cur-
rent density can be seen in Figure 6a, where a homogeneous rate
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Figure 6. Calculations corresponding to system parameters presented in Tables I and II with homogeneous rate constant kb as a parameter: a) polarization curve
b) concentration distribution for B+ at half the mass-transfer-limiting current.
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Figure 7. Dimensionless convective-diffusion impedance, defined by
Equation 40, for the system presented in Figure 5 taken at fractions of the
limiting current density.

constant of kb = 109 cm3/mol s yields a mass-transfer-limited current
density that is almost 20 times larger than that in the absence of ho-
mogeneous reactions. The concentrations of B+ corresponding to half
the mass-transfer-limited current for different homogeneous reaction
rate constants are presented in Figure 6b as functions of position. In

the absence of homogeneous reaction, the concentration profile is that
expected for a rotating disk electrode.35 The slope at the electrode–
electrolyte interface becomes larger as the homogeneous rate constant
increases.

The dimensionless convective-diffusion impedance corresponding
to the steady-state results presented in Figure 5 are presented in Fig-
ure 7. For all potentials, two asymmetric capacitive loops are seen in
Figure 7 as compared to a single loop in traditional convective-
diffusion impedance. The low-frequency loop, for all cases, has a
characteristic frequency, K = 2.5, which is in agreement with the
characteristic frequency associated with diffusion in the absence of
homogeneous reactions. The low-frequency loop decreased in size as
the potential corresponding to the mass-transfer-limited current den-
sity was approached. The high-frequency loop, present for all fractions
of the mass-transfer-limited current density, corresponds to the homo-
geneous reaction and decreased slightly and became better defined at
more cathodic potentials.

The individual impedance diagrams from Figure 7 are presented
separately in Figure 8. Each dimensionless diffusion impedance cor-
responds to a point on the polarization curve, which is illustrated in
Figure 8 by a line. The dimensionless-diffusion impedances are pre-
sented in a clockwise fashion, going from the most anodic potential to
the most cathodic potential. The high-frequency loop is less defined
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Figure 9. The absolute value of the imaginary part of the dimensionless
convective-diffusion impedance, defined by Equation 40, for the system pre-
sented in Figure 5 as a function of potentials taken at fractions of the limiting
current as a parameter. The characteristic frequency for convective-diffusion,
at K = 2.5, and the approximate characteristic frequency associated with the
homogeneous reaction, at K = 1000, are illustrated with dashed vertical lines.

for more anodic potentials, as shown in Figures 8a and 8b. At more
negative potentials, the high-frequency loop resembles a Gerischer
impedance element, as shown in Figures 8c, 8e and 8f. The char-
acteristic frequency for the high-frequency loop is on the order of
K = 1000, suggesting that the characteristic dimension for the reac-
tion is much smaller than the Nernst diffusion-layer thickness.

The two characteristic frequencies are better illustrated in Figure 9,
where the absolute value of the dimensionless imaginary impedance
is plotted as a function of dimensionless frequency. The characteristic
frequency for convective-diffusion, at K = 2.5, and the approximate
characteristic frequency associated with the homogeneous reaction,
at K = 1000, are illustrated with dashed vertical lines in Figure 9.

The cell impedance was calculated following Equation 3 and
Figure 3, under the assumptions that Re = 10 � cm2, Cdl =
20 μF/cm2, and the faradaic impedance was given by Equation 44. The
results are presented in Figure 10. Each impedance diagram is con-
nected to the corresponding current density on the polarization curve
by a line. The impedance diagrams are also presented in a clockwise
fashion, from the most anodic potential to the most cathodic poten-
tial. The high-frequency loops presented in Figures 10b, 10d, and 10e
decreased in size with increasing fraction of the limiting current den-
sity, indicating that the high frequency loop can be attributed to the
charge-transfer resistance. The low-frequency loops have a charac-
teristic frequency, K = 2.5, that corresponds to convective-diffusion
impedance. The loop at intermediate frequencies can be attributed to
the homogenous reaction.

At potentials of −0.5 V and −3.0 V, the impedance response ap-
pears almost capacitive as might be expected when the current is
almost insensitive to applied potential, as shown in Figure 4. The ex-
panded frequency range shown in Figure 11 indicated that the response
in Nyquist format has some curvature, but this curvature is evident
only at very low frequencies, generally considered to be unaccessible
experimentally. At a potential of −0.5 V, the charge-transfer resis-
tance is very large, as would be expected for an irreversible reaction.
The potential of −3.0 V represents the mass-transfer limit, where, as
discussed in Tran et al.,41 the charge-transfer resistance approaches a
finite value, and the diffusion impedance becomes very large.

Discussion

Simulations of the steady-state concentrations and reaction dis-
tribution and convective-diffusion impedance for a rotating disk
electrode influenced by homogenous reaction give insight to the
impedance response of an electrochemical system influenced by ho-

mogenous reaction. The diffusion impedances have two capacitive
loops. The present section provides a development of kinetic and
mass-transfer expressions for fast homogeneous reactions and the ap-
plication of Gerischer impedance as a means to interpret experimental
data conforming to the assumptions associated with the present math-
ematical model.

Fast homogeneous reaction.—In the limit of an infinitely fast
homogeneous reaction, Reactions 4 and 5 can be expressed as

AB + e− → A− + B+ [45]

where AB is considered to be the electroactive species. The dimen-
sionless diffusion impedance based on the oscillating concentration
c̃AB is given by

− 1

θ′
AB

= 1

δN,AB

⎛⎜⎜⎜⎝− c̃AB(0)
d̃cAB

dy

∣∣∣∣
y=0

⎞⎟⎟⎟⎠ [46]

The convective-diffusion impedance given as Equation 46 is pre-
sented in Figure 12 with homogeneous rate constant as a parame-
ter. For kb = 108 cm3/mol s, the dimensionless diffusion impedance
is very large and has the appearance of a distorted semi-circle. For
kb = 1040 cm3/mol s, the dimensionless diffusion impedance takes the
appearance of a usual dimensionless convective-diffusion impedance,
with a characteristic frequency, based on the diffusion coefficient of
species AB, of K = 2.5, a low-frequency limit of 1.0392, and an
angle with respect to the real axis of 45 degrees at the high-frequency
limit. These results confirm that, for kb = 1040 cm3/mol s, Reactions
4 and 5 can be expressed as Reaction 45.

Modified Gerischer impedance.—The convective-diffusion
impedances presented in Figure 8 resembles a Gerischer impedance.
The mathematical development for the Gerischer impedance is sum-
marized in the following section. A modified Gerischer Impedance
was regressed to simulation results to explore the manner in which
simulatiuons may be employed to extract meaningful parameters, even
if the assumptions implicit in the Gerischer model are not satisfied.

Mathematical description.—Under the assumptions that the diffu-
sion coefficients for AB and B+ are equal, that convection may be
ignored, and that the concentration of A− is sufficiently large to be
considered constant, Gerischer developed an analytic expression for
the diffusion impedance associated with a heterogeneous reaction in-
fluenced by a homogeneous reaction in a Nernst stagnant diffusion
layer. The rate of production of species AB and B+ by Reaction 4 was
expressed as

RB+ = −RAB = kfcAB(y) − kbcB+ (y) [47]

The conservation equations for species AB and B+ may be expressed
as

∂cAB

∂t
= D

∂2cAB

∂ y2
− kfcAB + kbcB+ [48]

and

∂cB+

∂t
= D

∂2cB+

∂ y2
+ kfcAB − kbcB+ [49]

respectively, where

D = DAB = DB+ [50]

The sum of Equations 48 and 49 yields

∂

∂t
(cAB + cB+ ) = D

∂2

∂ y2
(cAB + cB+ ) [51]
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Figure 10. The overall impedance corresponding to Figure 8 with an ohmic resistance of 10 � cm2 and a double-layer capacitance of 20 μF/cm2 for different
values of i/ ilim: a) 0; b) 1/4; d) 1/2; e) 3/4; and f) 1. A line indicates the point on the polarization curve (c) corresponding to each Nyquist diagram. Characteristic
frequencies are labeled.

After algebraic manipulation, the difference between Equations 48
and 49 may be expressed as

∂

∂t

(
cAB − cB+

Keq

)
= D

∂2

∂ y2

(
cAB − cB+

Keq

)
− k

(
cAB − cB+

Keq

)
[52]

where k = kf +kb and Keq = kf/kb. As Equations 51 and 52 are linear,
the solution for the convective-diffusion impedance does not require
a solution for the steady-state. Equations 51 and 52 in the frequency
domain were solved for the boundary conditions

c̃AB(δ) = c̃B+ (δ) = 0 [53]
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Figure 11. The overall impedance presented corresponding to Figures 10a
and 10f with an expanded frequency range.

c̃B+ (0) = 1 [54]

and

d̃cAB

dy

∣∣∣∣
y=0

= 0 [55]

The dimensionless diffusion impedance may be expressed as

− 1

θ′
B+

= −1

δ

c̃B+ (0)
d̃cB+

dy

∣∣∣∣
y=0

[56]
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Figure 12. Dimensionless convective-diffusion impedance, defined by
Equation 40, where the oscillating concentration of AB were taken into account
in Equation 46 and large values of the homogeneous reaction rate constant were
used.

= 1

Keq + 1

tanh

√
(jω + k)

δ2

D√
(jω + k)

δ2

D

+ Keq

Keq + 1

tanh

√
jω

δ2

D√
jω

δ2

D

[57]

or

− 1

θ′
B+

= 1

Keq + 1

tanh
√

jK + kdim√
jK + kdim

+ Keq

Keq + 1

tanh
√

jK√
jK

[58]

where K = ωδ2
N/D and kdim = kδ2

N/D.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2
K = 2.5

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107

0

10

20

30

40

50

|
| (

di
m

en
si

on
le

ss
)

K
10-2 10-1 100 101 102 103 104

0

-18

-36

-54

-72

ϕ
(d

im
en

si
on

le
ss

)

K

(a)

(b) (c)

Figure 13. Comparison of simulated dimensionless convective-diffusion impedance, defined by Equation 40 and taken from Figure 7 for kb = 107 at different
fractions of the limiting current, to results obtained by fitting Equation 59 shown in a) Nyquist form, b) Bode Magnitude plot and c) Bode Phase plot.
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Table III. Fitting parameters found from regression using Equation 59 and Figure 13.

Potential, V i/ ilim kb, cm3/mol s kdim Keq Sc δr, μm

−0.5 0 107 197 ± 5.5 0.990 ± 0.0057 521 ± 85 0.98 ± 0.014
−1.65 0.05 107 200 ± 4.6 0.789 ± 0.0042 528 ± 87 0.98 ± 0.011

−1.7549 0.25 107 230 ± 3.1 0.340 ± 0.0016 528 ± 101 0.910 ± 0.0062
−1.8262 0.50 107 301 ± 3.0 0.1309 ± 0.00075 502 ± 134 0.795 ± 0.0039
−1.85 0.59 107 333 ± 3.2 0.0952 ± 0.00062 494 ± 151 0.756 ± 0.0035

−1.8938 0.75 107 392 ± 3.2 0.0570 ± 0.00047 447 ± 168 0.697 ± 0.0028
−2.0 0.95 107 474 ± 3.5 0.0300 ± 0.00034 386 ± 78 0.634 ± 0.0023
−3.0 1.0 107 493 ± 3.6 0.0260 ± 0.00032 368 ± 189 0.621 ± 0.0023

−1.7674 0.50 106 21.4 ± 0.4 0.353 ± 0.0058 249 ± 78 2.98 ± 0.027
−1.8951 0.50 108 5240 ± 39 0.0355 ± 0.00015 652 ± 178 0.1906 ± 0.001
−1.9646 0.50 109 98900 ± 670 0.0090 ± 0.00037 554 ± 143 0.0439 ± 0.00015

Regression of Equation 58 to simulated diffusion impedances
yielded unsatisfactory results. Thus, a modified Gerischer impedance
was introduced in which the second term was replaced by an expres-
sion for the convective-diffusion impedance of a disk electrode under
assumption of a finite Schmidt number, i.e.,

− 1

θ′
B+

= 1

Keq + 1

tanh
√

jK + kdim√
jK + kdim

+ Keq

Keq + 1

−1

θ′
CD

[59]

where −1/θ′
CD can be obtained using K = ωδ2

B+/DB+ and a look up ta-
ble generated from the solution of the convective-diffusion impedance
without homogeneous reaction.39,40,42

Modified Gerischer impedance.—A Levenberg–Marquardt regres-
sion was used in Origin 2017 to regress Equation 59 to the data shown
in Figure 7. The extracted parameters were kdim, Keq, and the Schmidt
number. A comparison between the fit and the simulation results are
shown in Figure 13 as Nyquist and Bode plots. Fitting parameters are
listed in Table III.

The parameter Keq was found to vary with potential and rate con-
stant kb, even though the equilibrium constant used for the simula-
tions and reported in Table II was unchanged. This result is consistent
with the observation that the assumptions employed for the Gerischer
impedance are much more restrictive than those used for the numer-
ical simulations. The regressed value of Keq serves to weight the
homogeneous reaction and convective-diffusion loops as shown in
Equation 59.

The Schmidt number obtained from regression had a large con-
fidence interval which generally encompassed the input value of
Sc = 526. The exception is seen for kb = 106 cm3/mol s, where
the reaction layer thickness is on the order of 3 μm (22 percent of
the Nernst diffusion-layer thickness), extending into the region where
the assumption of a Nernst stagnant diffusion layer is no longer ap-

propriate for the homogeneous reaction zone. The tightest confidence
intervals were found for situations for which the loop associated with
the convective-diffusion impedance was much larger than that for the
homogeneous reaction layer.

Following the definition of kdim = kδ2/D and Equation 1, a re-
lationship between the reaction thickness δr and the Nernst diffusion
layer thickness was found to be

δr = δN,B+

√
1

kdim
[60]

The reaction thicknesses obtained from Equation 60 are shown in
Figure 14. The reaction distribution was scaled by the correspond-
ing values at y → 0 to emphasize the relative changes in values.
As the heterogeneous reaction becomes bigger the reaction thick-
ness decreases. Error bars are shown and were calculated using a
linear propagation of errors from regressed values of kdim. This work
demonstrates that a modified Gerischer impedance may be used to
provide meaningful parameters for the general case for a rotating disk
in which diffusion coefficients are not equal and the homogeneous
reaction is not linear.

Conclusions

A mathematical model was developed for the impedance response
associated with the coupled homogeneous chemical and heteroge-
neous electrochemical reactions. The general reaction of species AB
reacting reversibly to form A− and B+ and B+ reacting electrochem-
ically on a rotating disk electrode to produce B was studied. The
resulting convective-diffusion impedance had two asymmetric capac-
itive loops, one associated with convective-diffusion impedance the
other with the homogeneous reaction. The overall impedance can have

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

0.6

0.7

0.8

0.9

1.0

Potential / V

-0.6

-0.4

-0.2

0.0

C
ur

re
nt

 D
en

si
ty

 / 
A

 c
m

2

106 107 108 109

10-1

100

(a) (b)

Figure 14. Reaction-layer thickness obtained from Equation 60 with regression parameters obtained by regressing Equation 59 to the simulated convective-
diffusion impedance: a) reaction-layer thickness and current density as a function of potential and b) reaction-layer thickness as a function of homogeneous
reaction rate.
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three time constants, associated with capacitance, homogeneous reac-
tion and mass transport. For an infinitely fast homogeneous reaction,
the system was shown to behave as though AB is the electroactive
species and a convective-diffusion impedance was obtained. A mod-
ified Gerischer impedance was found to provide a good fit to the
simulated data. The regression parameter kdim was used to extract a
reaction layer thickness. The modified Gerischer impedance provides
an analytic approximation to the convective-diffusion impedance for
a rotating disk in the presence of a chemical/electrochemical (CE)
mechanism.
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