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Abstract. Mineral dust is the major continental contributor
to the global atmospheric aerosol burden with important ef-
fects on the climate system. Regionally, a large fraction of
the emitted dust is produced in northern Africa; however, the
total emission flux from there is still highly uncertain. In or-
der to reduce these uncertainties, emission estimates through
top-down approaches (i.e. usually models constrained by
observations) have been successfully developed and imple-
mented. Such studies usually rely on a single observational
dataset and propagate the possible observational errors of this
dataset onto the emission estimates. In this study, aerosol op-
tical depth (AOD) products from five different satellites are
assimilated one by one in a source inversion system to esti-
mate dust emission fluxes over northern Africa and the Ara-
bian Peninsula. We estimate mineral dust emissions for the
year 2006 and discuss the impact of the assimilated dataset
on the analysis. We find a relatively large dispersion in flux
estimates among the five experiments, which can likely be at-
tributed to differences in the assimilated observation datasets
and their associated error statistics.

1 Introduction

Aerosol optical depth (AOD) retrieved from satellites is
probably the most used indirect measurement of aerosol in
atmospheric and climate modelling studies. The large tem-
poral and spatial coverage of satellite AOD makes these re-
trievals a unique and useful product; however, they cannot
provide a complete four-dimensional description of the at-

mospheric aerosol. Data assimilation techniques have been
developed to combine model and observational information
in the best possible way. Their application results in new
aerosol analysis and reanalysis products (e.g. Benedetti et al.,
2009; Lynch et al., 2016). In recent years, satellite-derived
AOD has also been used to estimate aerosol surface emis-
sions in the so-called top-down approach (e.g. Dubovik et al.,
2008; Schutgens et al., 2012; Huneeus et al., 2012). This ap-
proach is often embedded in a data assimilation framework,
where observations and model are systematically combined
in order to estimate emissions. With these methodologies,
estimates of aerosol emissions depend on the model perfor-
mance, on the detail of the data assimilation system and on
the quality and coverage of the observations.

Mineral dust is an important continental contributor
to the global atmospheric aerosol burden (Knippertz and
Todd, 2012). Airborne dust interacts with clouds, solar and
terrestrial radiation and atmospheric chemistry (Atkinson
et al., 2013; Mahowald et al., 2014). Deposition over the
cryosphere has effects on surface albedo (Bond et al., 2013),
which modulates the impact of black carbon deposition on
snow and ice surfaces. Dust is a source of iron (Fe; Jick-
ells et al., 2005) and phosphorus (P; Yu et al., 2015) nutri-
ents. Therefore the deposition of dust on some continental
ecosystems has impacts on the vegetation and the carbon cy-
cle (Jickells et al., 2014). Deposition on the ocean surface
can also fertilize the phytoplankton in so-called high-nutrient
low-chlorophyll regions, with impacts on marine biogeo-
chemical cycles (Wang et al., 2015). Atmospheric dust is also
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known to affect human health and air quality (Morman and
Plumlee, 2013).

Among other uncertainties, emission fluxes of mineral
dust are still highly uncertain. For instance dust emissions
from the Sahara, a key dust region worldwide, have been es-
timated to range between 400 Tgyr−1 (e.g. Huneeus et al.,
2011) and 4500 Tg yr−1 (e.g. Evan et al., 2014). While some
of the uncertainty may be related to the choice of the cut-off
size for dust emissions, with a larger cut-off size resulting in a
larger dust emission flux and a shorter atmospheric residence
time, it is nevertheless desirable to decrease the uncertainty
in the dust emission flux.

Satellite observations can help reduce these emission un-
certainties. The combined use of satellite observations and
models may potentially lead to superior estimates of aerosol
emissions (e.g. Dubovik et al., 2008; Huneeus et al., 2012).
In this study we focus on the role of observations and we
quantify the plausible range of emission uncertainties as a
function of the chosen observational dataset. To this end, we
assimilate AOD from five different datasets in the data assim-
ilation system presented in Escribano et al. (2016, hereafter
EBCH16) with a fixed configuration for both the model and
the assimilation system.

Moderate Resolution Imaging Spectroradiometer
(MODIS) aerosol products have been largely used for
aerosol data assimilation (e.g. Dubovik et al., 2008;
Benedetti et al., 2009; Lynch et al., 2016, EBCH16). This
is not surprising because the MODIS aerosol retrieval
algorithms have received a lot of attention for over a decade
(e.g. Remer et al., 2005, 2008; Levy et al., 2010) and, as
a result, the MODIS aerosol products are of a relatively
high quality (Levy et al., 2013). Over ocean and dark land
surfaces, the MODIS Dark Target (MODIS-DT) algorithm
is capable of retrieving AOD at visible wavelengths, while
over bright surfaces AOD is retrieved through the MODIS
Deep Blue (MODIS-DB) algorithm (Sayer et al., 2013).
Furthermore the MODIS instrument is on-board both the
Aqua and Terra satellites, with morning and afternoon
overpasses, respectively, allowing for a large temporal and
spatial coverage. However, MODIS products are not free of
problems. Sayer et al. (2013) evaluated the latest collection
of the MODIS-DB aerosol product and found a low bias in
AOD over the Sahara. On the contrary, it is possible that
MODIS-DT is biased high over the ocean, at least in dust
outflow regions (Levy et al., 2003).

Aerosol products from other satellite sensors are also suit-
able for use in aerosol data assimilation. In the visible spec-
trum, these include aerosol products from several instru-
ments on-board low-Earth-orbiting satellites like the Multi-
angle Imaging Spectroradiometer (MISR; Kahn et al., 2010),
Polarization and Anisotropy of Reflectances for Atmospheric
Sciences Coupled with Observations from a Lidar (PARA-
SOL; Tanré et al., 2011), Advanced Along-Track Scanning
Radiometer (AATSR; e.g. Sogacheva et al., 2015) and Vis-
ible Infrared Imaging Radiometer Suite (VIIRS; Jackson

et al., 2013). From geostationary satellites, AOD is avail-
able from the Spinning Enhanced Visible and Infrared Im-
ager (SEVIRI; Carrer et al., 2010, 2014) instrument on-board
Meteosat Second Generation (MSG) and the Advanced Hi-
mawari Imager (AHI) on-board the Japanese geostationary
meteorological satellite Himawari-8. In the infrared, aerosol
products are available from the Advanced Infrared Radia-
tion Sounder (AIRS; Peyridieu et al., 2010) and the Infrared
Atmospheric Sounder Interferometer (IASI; Peyridieu et al.,
2013) instruments, particularly for dust aerosols that have a
strong signature in the longer wavelengths. Finally it is also
possible to assimilate the vertical profile of the extinction co-
efficient from the Cloud-Aerosol Lidar with Orthogonal Po-
larization (CALIOP) sensor on-board the Cloud-Aerosol Li-
dar and Infrared Pathfinder Satellite Observation (CALIPSO)
mission (Winker et al., 2009), but this is also fraught with dif-
ficulties as such inversion is fairly sensitive to assumptions
made on the aerosol model.

An evaluation of some of these products is done in
de Leeuw et al. (2015). The authors found that most of
the compared satellite products have a good performance of
AOD retrievals with respect to ground-based AOD measure-
ments. In theory it should be possible to take advantage of
their complementarity either in terms of aerosol information
content or in terms of temporal and spatial coverage. In prac-
tice, assimilating several aerosol products simultaneously is
fraught with difficulties because the satellite products may be
inconsistent with each other, or inconsistent with the aerosol
properties of the model used for data assimilation. To our
knowledge there are only a few (e.g. Saide et al., 2014; Zhang
et al., 2014) data assimilation studies that seek to combine
different aerosol products.

In EBCH16 we described an inversion system and pre-
sented a dust source inversion for northern Africa assimilat-
ing 550 nm AOD from the MODIS Aqua instrument. We now
broaden the analysis and consider several retrieval products.
Rather than combining different aerosol products, we seek to
understand how different aerosol products perform on their
own in the data assimilation system, in order to assess the
strengths and weaknesses of each aerosol dataset in the con-
text of Saharan dust and possible inconsistencies between the
products. We thus compare the assimilation of five satellite
AOD retrievals with the aim of narrowing uncertainties in
dust emission estimates for northern Africa and the Arabian
Peninsula.

The next section presents the data assimilation system, the
assimilated observations and the observations used in the val-
idation. The main results and mineral dust flux estimates are
shown in Sect. 3. We finish this work with our conclusions in
Sect. 4.
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2 Inversion system

Mineral dust emissions are estimated using the source inver-
sion system described in this section. Formally, the combi-
nation of the a priori information, the AOD observations and
the modelling system is done through the minimization of the
following cost function:

J (x)=
1
2
(x− xb)T B−1(x− xb)+

1
2
(y−H(x))T R−1(y−H(x)), (1)

where the variable x is called the control vector and is related
to the aerosol emissions (Sect. 2.2), xb is the prior (or back-
ground) control vector, y are the assimilated observations
(Sect. 2.3), H is the observation operator (Sect. 2.1), B is the
covariance matrix of the background errors (Sect. 2.4), and R
is the covariance matrix of the observation errors (Sect. 2.4).

The solution of the minimization problem is called the
analysis (denoted by xa). In this work the analysis AOD is
the observation operator evaluated for the analysis, that is,
H(xa). The components of the inversion system (the ele-
ments of Eq. 1) and the configuration of the data assimilation
system are now described.

2.1 Observation operator

The observation operator is described in EBCH16 and refer-
ences therein. As a brief summary, the observation operator
consists of the AOD estimation given by the coupling of the
LMDZ meteorological model (Hourdin et al., 2013) with a
simplified aerosol model (Huneeus et al., 2009, hereafter re-
ferred to as SPLA). The dust emissions are calculated as in
EBCH16, which itself follows the Alfaro and Gomes (2001)
and Marticorena and Bergametti (1995) emission scheme.
The SPLA model is an Eulerian aerosol model of interme-
diate complexity (Huneeus et al., 2009) with four aerosol
species (fine mode aerosols, coarse sea salt, coarse min-
eral dust and super-coarse mineral dust) and one tracer for
gaseous aerosol precursors. In this model we parameterized
the processes of boundary layer mixing, dry and wet deposi-
tion, and sedimentation (for coarser particles). In the model,
mineral dust aerosol is emitted in three bins. Fine mode dust
has diameters less than 1 µm, coarse dust has diameters be-
tween 1 and 6 µm and super-coarse dust is between 6 µm and
30 µm in diameter. Once in the atmosphere, coarse and super-
coarse dust are both independent model species, while fine
dust is treated in the fine mode aerosol tracer. A detailed de-
scription of the aerosol model is provided in Huneeus et al.
(2009) and updated in EBCH16.

In this work, the model has been configured with 39 verti-
cal levels, and with a horizontal zoom centred over northern
Africa. The horizontal resolution over northern Africa is ap-
proximately 1◦ by 1◦, and the average horizontal resolution
in the zoom region (between 70◦W and 70◦ E and between
0 and 40◦ N) is approximately 1◦ in latitude and 1.4◦ in lon-
gitude. The 1-year spin-up and the model simulations for the
year 2006 were performed with a wind nudging based on the

ERA-Interim reanalysis (Dee et al., 2011), as explained in
EBCH16.

2.2 Control vector

The control vector is composed of multiplicative correction
factors of the model emissions as in EBCH16. These correc-
tion factors are assumed homogeneous for each element of
a partition of the emission flux in space (sub-regions), time
(sub-periods) and aerosol type (categories). Five categories
of emissions are defined (as in EBCH16), namely (i) sea salt,
(ii) biomass burning emissions, (iii) fine dust and coarse dust,
(iv) super-coarse dust, and (v) fossil fuel and anthropogenic
SO2 emissions. In this work, correction factors of fine dust
and coarse dust are lumped together, while super-coarse dust
has separate correction factors. Preliminary tests have shown
low sensitivity of the analysis to the grouping of the three
dust correction factors in only two, either fine and coarse dust
together and super-coarse independent (as in this work) or
coarse and super-coarse dust lumped together and fine dust
independent (as in EBCH16). Additionally, our tests show
that if the three dust-correction factors are independent el-
ements in the control vector, the assimilation results do not
improve and the computational burden increases.

The same sub-regions as in EBCH16 are used; their defi-
nition depends on the emission category. For fossil fuel and
anthropogenic SO2 emissions and for sea salt emissions, only
one global sub-region is considered. For biomass burning
emissions, two sub-regions have been defined, according to a
grass-like and forest-like land-cover classification. For both
categories of mineral dust, 19 sub-regions have been defined:
15 over northern Africa, 3 over the Arabian Peninsula and the
Middle East and 1 sub-region for the rest of the globe. We re-
fer to Fig. 1 of EBCH16 for a map of the dust sub-regions.

The correction factors are assumed to be constant within
each sub-period. Like EBCH16, sea salt has a sub-period of
1 year, biomass burning and fossil fuel and anthropogenic
SO2 emissions have a sub-period of 1 month. A substan-
tial difference with EBCH16 is the length of the sub-period
for dust emissions. It was set to 1 month in EBCH16 but is
reduced in this work to 3 days only. With this shorter sub-
period (corresponding to the sub-synoptic to synoptic scale),
we expect to better capture the dust emission variability in
the analysis. This results in a control vector of 4674 compo-
nents (that is about 10 times larger than in EBCH16), with a
B matrix of 4674× 4674 elements (see Sect. 2.4). We have
improved the data assimilation system presented in EBCH16
in order to deal with the larger control vector. To this effect
we have carefully recoded some matrix multiplication and
inversion routines, paying special attention to the computa-
tional memory management and minimizing numerical er-
rors as much as possible. We have also applied the algorithm
of Qi and Sun (2006) to ensure the semi-positiveness of some
of the matrices involved in the inversion.
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2.3 Observations

In addition to the MODIS Aqua total 550 nm AOD retrievals
that we used in EBCH16, in this study we consider a range
of other aerosol products from passive instruments measur-
ing solar reflectances. We do not consider aerosol products
from passive instruments operating in the infrared or from
active instruments, as they would require different observa-
tional operators, which would introduce further complica-
tions in the interpretation of the results.

We compute the analysis with the data assimilation system
described in this section for five satellite retrieval datasets
(MODIS Aqua, MODIS Terra, MISR, PARASOL and SE-
VIRI) for the year 2006. The assimilated observations are to-
tal AOD and fine AOD where available, i.e. total AOD over
ocean for all the retrievals; total AOD over land for MODIS,
MISR and SEVIRI; fine AOD over ocean for MODIS, MISR
and PARASOL; and fine AOD over land for MISR and
PARASOL. For satellites in the “A-Train” (MODIS Aqua
and PARASOL) the sampling is done at 13:30 LT. For instru-
ments on-board the Terra satellite (MISR, MODIS Terra) the
sampling is done at 10:30 LT. For SEVIRI, the daytime av-
erage is considered. Only observations between 70◦W and
65◦ E in longitude and between 0 and 40◦ N in latitude are
assimilated.

It is necessary to note that the fine AOD derived from the
satellite observations is comparable to the model fine mode
AOD but there are small differences across instruments. For
MODIS and PARASOL products, the fine AOD is the con-
tribution of preselected fine mode aerosol models to the to-
tal AOD in their respective retrieval algorithms, and they are
comparable (but not necessarily equivalent) to the LMDZ–
SPLA fine mode AOD. For fine AOD from MISR, our post-
processing of the MISR products (which is explained later)
ensures the equivalence between the model and the assimi-
lated fine mode AOD.

MODIS Terra is a MODIS instrument on-board the
low-Earth-orbiting satellite Terra (with equatorial overpass
around 10:30 LT). The AOD retrievals from MODIS Terra
are calculated with the same algorithms as for MODIS Aqua
(Levy et al., 2013; Sayer et al., 2013, 2014), providing a
total of 550 nm AOD over land (Deep Blue and Dark Tar-
get algorithms) and fine mode and total 550 nm AOD over
ocean (Dark Target algorithm only). We use the level 3 AOD
merged product from Collection 6 for MODIS Terra and
MODIS Aqua.

The Polarization and Directionality of the Earth’s Re-
flectances instrument (POLDER, Tanré et al., 2011) on-board
the PARASOL satellite measures radiances in nine narrow
channels in the visible to near-infrared spectrum with up to
16 viewing geometries and information on polarization in
three of the channels. Through an advanced algorithm, it re-
ports 670 and 865 nm total AOD over ocean and 865 nm fine
mode AOD over land with their corresponding Ångström co-
efficient. Using this coefficient, we derive the 550 nm AOD

from these retrievals, for total and fine mode over ocean and
fine mode over land. That is, we interpolate the AOD using
the following relation:

τ550 = τ865

(
550
865

)−α
, (2)

where τ550 is the AOD at 550 nm, τ865 is the AOD at 865 nm
and α is the Ångström coefficient between 670 and 865 nm.
During year 2006, this instrument was orbiting in the “A-
Train” along with the Aqua satellite. As the swath of the
POLDER instrument on-board PARASOL (1600 km) is rel-
atively close to that of MODIS (2330 km), PARASOL and
MODIS Aqua have fairly similar spatial and temporal cover-
age, although the two algorithms differ in the clear-sky mask
they use, and hence in the spatial coverage of the AOD prod-
ucts.

The MISR instrument on-board the Terra satellite reports
555 nm AOD over land and ocean (Kahn et al., 2009). The
MISR algorithm uses multi-angular and multi-spectral infor-
mation to retrieve the AOD. The swath of this instrument is
smaller than the swath of MODIS which results in less cover-
age. Specifically, the standard level 2 (individual soundings)
and level 3 (daily mean maps) MISR products report 555 nm
AOD for fine (diameter of less than 0.7 µm), medium (diam-
eter of between 0.7 and 1.4 µm) and large (diameter of more
than 1.4 µm) aerosols. Regrettably, the size cut-off between
the MISR products and the SPLA model are not compatible,
so we need to post-process the MISR products before assim-
ilation. We do it in the following way. The MISR retrieval
algorithm calculates the AOD of 74 aerosol mixture mod-
els in order to fit the measured radiances for each observed
pixel, and the quality of the fit is estimated using a χ2 criteria
(Kahn et al., 2005). Each aerosol mixture model is modelled
as the weighted sum of (at most) three basic aerosol models.
The optical properties, the two parameters of the log-normal
size distribution and the relative contributions of each basic
aerosol model to the mixture aerosol models are reported in
the level 2 of the MISR products along with the fitting param-
eters computed in the AOD retrieval. With this information
and with the reported level 2 AOD, we have calculated an
estimate of the MISR 555 nm AOD with the same diameter
cut-off as the SPLA model, i.e. for fine (diameter of less than
1 µm), coarse (diameter of between 1 and 6 µm) and super-
coarse (diameter of larger than 6 µm) aerosols. Briefly, the
post-processing of the MISR AOD consists of the following
steps: (i) we calculated the contribution of each basic aerosol
model to the total AOD for each observed pixel; (ii) assuming
both that the reported refractive index for each model is inde-
pendent of the size distribution and that the aerosol particles
are spherical, we estimated the contribution of each bin (as
per the SPLA definitions) to the total AOD. In this work we
only used the recomputed fine mode and total 555 nm MISR
AOD.

The AERUS-GEO product (Aerosol and Surface Albedo
Retrieval Using a Directional Splitting Method-Application
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Figure 1. Averages for the year 2006 of the satellite-derived AOD products used in this study. The AOD products are all regridded to a
regular latitude–longitude grid of 0.5◦ resolution for MISR and SEVIRI and 1◦ for MODIS and PARASOL. The total AOD is shown in the
left column, the fine mode AOD (when available) is shown in the middle column, and the ratio between the average fine mode AOD and the
average total AOD is shown in the right column. Please note the 2 : 1 ratio of the colour scales between the left (total AOD) and middle (fine
model AOD) columns and the (somewhat) different wavelengths of the reported AODs.

to Geostationary data, Carrer et al., 2010, 2014) is a full-
disk daily 630 nm AOD retrieval calculated from the mea-
sured radiances of the SEVIRI instrument. These retrievals
cover Europe and Africa. Unlike the above-mentioned prod-
ucts, AERUS-GEO uses only one spectral band to calculate
the daily AOD product, based on measurements done in a rel-
atively high spatial and temporal resolution in different (i.e.
time-varying) conditions of solar angles. The native spatial
resolution of this product is 3× 3 km2 close to the Equa-
tor. We use the 630 nm total AOD from this product. We
have screened all the pixels where the “ZAge” flag of the
product is greater than zero (D. Carrer, personal communi-
cation, 2016). This filter removes suspicious large and per-
sistent AOD values in the equatorial Atlantic Ocean which
are related to a time persistency assumption in the algorithm.
After this screening, 80 and 56 % of the full-disk valid data
is kept over land and ocean, respectively.

In the present work the regridding of all AOD satel-
lite products onto the model grid was performed with a
weighted-area procedure. Furthermore only the model grid-

boxes covered with 30 % or more of valid satellite data are
considered; they are otherwise set to a missing value. This
arbitrary value of 30 % approximately propagates the same
coverage area of the satellite products into the model grid.
This regridding method successfully handles the missing val-
ues and large differences in grid resolutions. Moreover, if
the input field has no missing values and both are latitude–
longitude grids, this method gives the same interpolated field
as the one resulting from a bilinear interpolation.

Figure 1 shows the average AOD for the year 2006 for
each instrument described above. It is important to note the
difference in the sampling time of each product. The SE-
VIRI product is retrieved using a combination of all the avail-
able observations per day, thus achieving a mean coverage of
75 % per day in our assimilation region for the year 2006.
The low-Earth-orbiting satellites typically sample our region
of interest only once per day. However, MISR has a more
narrow swath than MODIS and POLDER (on PARASOL),
and so it has less coverage. The differences in the amount
of successful retrievals for the instruments on-board sun-

www.atmos-chem-phys.net/17/7111/2017/ Atmos. Chem. Phys., 17, 7111–7126, 2017
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synchronous orbit satellites arise from the swath of the in-
struments, the amount of land retrievals and the size of the
pixel associated with the details of the cloud masking algo-
rithm that may reject more or less satellite pixels during the
retrieval.

The number of observations (after reprojection onto the
model grid) assimilated here is considerably larger than those
processed in EBCH16 due to the inclusion of fine mode
AOD. Specifically, the number of assimilated observations
is 1 469 252 for MODIS Aqua, 1 486 774 for MODIS Terra,
906 949 for PARASOL, 385 235 for MISR, and 1 299 764 for
SEVIRI.

2.4 Error covariance matrices and assimilation
configuration

The covariance matrix of the background errors (B) and the
covariance matrix of the observational errors (R) have to be
prescribed in the data assimilation system. The B matrix is
defined similarly to EBCH16; the diagonal terms of the B
matrix are defined using the error estimates presented in the
work of Huneeus et al. (2013). These are mostly based on
the range of emission estimates found in the literature, ex-
cept for anthropogenic and fossil fuel emissions, which are
based on the uncertainty estimates found in the literature. The
standard deviation of the control vector errors (i.e. the square
root of the diagonal terms of B) is 1.3 for biomass burning
emissions, 3.0 for mineral dust emissions, 2.0 for sea salt
emissions and 0.18 for anthropogenic and fossil fuel emis-
sions. We have included correlations between control vector
errors. For the same sub-region and category of dust emission
(fine and coarse dust, super-coarse dust), we have defined a
Gaussian correlation between sub-periods with a time-length
scale of 3 days. In comparison with EBCH16, this shortened
timescale gives more freedom to the inversion system. Along
with the 3-day sub-periods, this timescale allows the system
to have more control over the emissions, with the aim of im-
proving the representation of individual dust events in the
analysis. Furthermore, the shorter sub-period of the dust con-
trol vector of this work compared to EBCH16 (3 days versus
1 month) raises the size of the control vector from 494 to
4674 elements. For the same sub-region and sub-period, the
correlation of errors between the fine and coarse dust emis-
sion correction factors and the super-coarse correction factor
is set to 0.7.

A substantial difference to EBCH16 is the construction
of the covariance matrix of the observational errors (R). In
EBCH16 the standard deviation of the observational errors
was set to a fixed value of 0.2 and 0.1 for MODIS AOD
products over land and ocean, respectively. In this work we
keep a diagonal R matrix but the error statistics are defined
according to the observational errors reported in the litera-
ture. A summary of these definitions is shown in Table 1.
For the sake of simplicity, the errors were calculated using
the satellite AOD as the reference AOD, despite the fact that

most of the derivations of these error formulae were done us-
ing an independent AOD dataset as a reference. For MODIS
and MISR, the errors are characterized by an expected error
(EE), which defines the boundaries of a region that contains
67 % of the matchups between the satellite AOD and the ref-
erence AOD. For the MODIS-merged product over land there
is no equivalent error quantification. In this work, the major-
ity of the assimilated observations over land are over northern
Africa and the Arabian Peninsula, where most of the AOD
is retrieved by the MODIS-DB algorithm. Hence, we adopt
the MODIS-DB error quantification as the standard devia-
tion for MODIS land AOD. Over ocean, the MODIS-merged
AOD is the same as the Dark Target product, but the DT EE
is not centred on zero. We adopt the approximation shown in
Table 1 for MODIS over ocean, shifting the EE to be sym-
metrical around zero at their minima. For PARASOL AOD,
we assume that both terms shown in Table 1 are independent
and Gaussian distributed in order to calculate the error es-
timate for the data assimilation system. Due to the lack of
separate error estimates of fine mode AOD, we assume the
error estimates of Table 1 for fine mode AOD of MODIS,
MISR and PARASOL. SEVIRI reports pixel-wise variance
of the errors, which are themselves the diagonal elements of
the covariance matrix of the analysis errors in the AERUS-
GEO retrieval algorithm. As we do not have any information
about the correlation of the errors of nearby pixels, we com-
pute the regridded SEVIRI AOD error, assuming that all the
SEVIRI pixels in the native grid are fully correlated within
each model grid box. In our case this assumption conserves
the spatial structure of the AOD errors. This is done only for
SEVIRI AOD, as they report pixel-wise AOD error variance
in their daily product.

Unlike EBCH16, we do not inflate the covariance matri-
ces in order to fulfill the Desroziers et al. (2005) diagnos-
tics. These diagnostics help detect and correct possible im-
balances between the error covariance matrices in a data as-
similation framework in the observational space. They as-
sume that both the observations and the prior control vector
do not have any bias. This assumption does not necessarily
hold for all experiments in this work. Additionally, a com-
mon configuration for all the inversions ensures a consistent
methodological approach to compare the five data assimila-
tion experiments.

As a consequence of the structure of the control vector,
where fine and coarse dust correction factors are lumped to-
gether, the assimilated fine mode AOD partially constrains
the coarse dust correction factor. In contrast, the super-coarse
dust correction factors are solely directly constrained by the
total dust AOD. Finally, the non-zero covariances between
errors of both dust correction factors propagate the assimila-
tion of the fine mode AOD to the super-coarse dust correction
factor.
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Table 1. Definitions of diagonal terms in the observational error covariance matrix. The main references for the errors are shown in the table.
The original error formulae were adapted for the assimilation purposes. The error shown for MODIS-DT over land is not used in this work.
Errors for the SEVIRI dataset (Ck) are reported along with the AERUS-GEO AOD product and they are described in Carrer et al. (2010,
2014).

Dataset Error estimate Error adapted Reference
(from reference) to this work

MODIS-DB ±(0.03+ 0.2τ) 0.03+ 0.2τ Sayer et al. (2013)
MODIS-DT ocean [−(0.02+ 0.1τ), 0.03+ 0.1τ Levy et al. (2013)

+(0.04+ 0.1τ)]
MODIS-DT land ±(0.05+ 0.15τ) 0.05+ 0.15τ Levy et al. (2013)
MISR ±max(0.05,0.2τ) max(0.05,0.2τ) Kahn et al. (2005)

PARASOL ±0.05± 0.05τ
√

0.052+ (0.05τ)2 Tanré et al. (2011)
SEVIRI

√
Ck

√
Ck Carrer et al. (2010, 2014)

3 Results

3.1 Differences and similarities in observations

Figure 1 shows the annual average for the year 2006 of the
observations described in Sect. 2.3. Several characteristics
that will impact the assimilation analysis can be identified in
the yearly averages of the AOD. All panels clearly show the
transatlantic dust plume and the local maximum of AOD in
the southern Red Sea. However, maximum values of AOD
over and downwind the Bodélé depression are hardly evi-
dent in the SEVIRI and PARASOL observations. For the to-
tal AOD, the SEVIRI plume over the Atlantic Ocean is more
extended than in the other products. Maximum values of total
AOD over the Atlantic Ocean are found close to the African
coast except for SEVIRI. MODIS retrievals share similar
yearly means for fine mode AOD and total AOD. In compar-
ison, MISR AOD shows a local maximum of AOD close to
18◦ N, 5◦W that is not observed in the other products, while
an AOD local maximum at 12◦ N, 9◦ E is only observed in
the MODIS products.

For fine mode AOD, there are notorious differences be-
tween PARASOL and MISR products, especially over the
Sahara. PARASOL AODs are significantly smaller than
MISR fine mode AOD over land and ocean.

To be able to roughly discriminate between the effect of
the satellite coverage against the effect of the sampling time
of the assimilated products, we have computed an equivalent
of Fig. 1 but only for pairs of simultaneous AOD retrievals
that correspond to (approximately) the same overpass time.
These yearly averages are shown in Fig. 2. In this figure, the
observations of two instruments on-board the Terra satellite
(MISR and MODIS Terra) were screened in order to compute
the yearly average with pixels where both MISR and MODIS
Terra report valid data. A similar procedure was applied to
the instruments on-board satellites of the A-train constella-
tion, MODIS Aqua and PARASOL. This screening allows a
fair comparison between two pairs of retrievals.

For the collocated averages over the ocean, MODIS Aqua
and PARASOL show a similar spatial pattern for the total
AOD, with collocated maxima of AOD over the Atlantic
Ocean in the 5 to 15◦ N latitude band; both share a relatively
large AOD over the Gulf of Guinea and the AOD gradient
in the Red Sea (with larger values in the south). However,
total AOD from MODIS Aqua in Fig. 2 is slightly smaller
than its PARASOL counterpart in the eastern transatlantic
dust plume, while for the fine mode AOD, PARASOL shows
smaller values.

For MODIS Terra and MISR the differences mentioned
in the description of Fig. 1 still hold when the observations
are collocated (Fig. 2). Over the Arabian Peninsula, a spatial
mismatch between MODIS products and MISR AOD can be
identified in both Figs. 1 and 2.

3.2 Assimilation results: departures

The assimilation performance will be explained only in terms
of observation departures. Figure 3 shows histograms (in
200 bins) of the departures of the prior AOD (i.e. the dif-
ference between assimilated observations and the simulated
prior AOD) and the departures of the analysis (i.e. the differ-
ence between the assimilated observations and the analysis
AOD). This is shown for all five experiments. A common
and expected feature of Fig. 3 is the smaller dispersion of the
analysis departures with respect to the prior ones. The mode
value of the histogram of the departures for the analysis is
also closer to zero than for the prior in all panels (for the
total AOD).

All prior histograms – except PARASOL – are slightly
shifted to the right instead of being centred on zero, which
means that the observations are generally larger than the
prior, or in other words that the model has a low bias. This
is repeated to a lesser extent in the analysis histograms for
MODIS Terra, MODIS Aqua and MISR. For these three in-
struments, the land and ocean departures of the total AOD
share similar characteristics, that is, ocean departures have
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Figure 2. Averages for the year 2006 of the satellite-derived AOD products, similar to Fig. 1 but for collocated MISR and MODIS Terra
observations (bottom two rows), and collocated PARASOL and MODIS Aqua observations (top two rows). The total AOD is shown in the
left column, the fine mode AOD (when available) in the middle column, and the ratio between the average fine mode AOD and the average
total AOD is shown in the right column. Please note the 2 : 1 ratio of the colour scales between the left (total AOD) and middle (fine model
AOD) columns.

less spread than land departures, and the right tails of land
departures are heavier than their ocean counterparts.

The only instrument that does not have total AOD avail-
able over land is PARASOL. Departures of total AOD over
ocean are larger for PARASOL than for the rest of the in-
struments, with a notable shift to the right, meaning that the
observations are, in most of the cases, larger than the prior
and analysis simulations. These large departures in the prior
are mostly related to the large AOD values of the dust transat-
lantic plume over the eastern Atlantic Ocean.

We recall that the prior simulation is the same for all pan-
els, and the difference in prior lies in the local time and
grid boxes for which the model values are sampled. We have
shown in Sect. 3.1 that, even for collocated retrievals, the ge-
ographical distribution of the AOD varies between the satel-
lite products. We think that these differences contribute more
to the differences between the histograms of Fig. 3 than the
sampling differences. For example, the MODIS Terra AOD
of Fig. 1 is qualitatively similar to the MODIS Terra AOD
of Fig. 2, where only a subset of observations (which are co-
incident with MISR retrievals) is taken into account. On the
contrary, it is easier to qualitatively observe the differences
between the MISR and the MODIS Terra panels of Fig. 2
(where both panels have the same sampling).

A common feature is observed in all the analyses of Fig. 3,
which is the preferential decrease of the left tail of the de-
parture distributions after the assimilation. In other words,
the data assimilation system is more efficient (in terms of
minimizing the cost function) in decreasing larger values of
model AOD than in increasing small values of model AOD.
The reason for this preference is linked to the constraints im-
posed by the dust production model and also to the defini-
tion of the control vector. The dust production module emits
dust only if some conditions are met, for example, only when
there is no vegetation, the wind speed is above a threshold
value (depending on the soil texture), etc. These conditions
are parameterised in the model, so they depend on the model
performance, but it is important to note that these conditions
are based on the physical mechanisms of the natural emis-
sions of dust. The control vector is, in practice, a multiplica-
tive factor for the aerosol emissions. If the dust production
model has no positive emission flux, the analysis cannot in-
crease these emissions. On the contrary, if the dust emission
flux is too large, the analysis can decrease the emissions. In
consequence, we think that the preferential decrease of the
left tail of the departure distributions is due to deficiencies of
the prior in simulating some dust emission events.

Validation against Aerosol Robotic Network (AERONET;
Holben et al., 1998) is qualitatively similar to the one shown
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Figure 3. Frequency plot of departures. Observational departures
with respect to the prior simulation are shown on the left column
and departures with respect to the analysis are shown on the right
column. Histograms are plotted between−1 and 1 in 200 bins each.
Pixels over land are in green, over ocean in blue, and both of them
together are shown in black. Fine mode AOD is denoted by dotted
lines and total AOD is denoted by dashed lines.

in EBCH16 for all the experiments. A table summarizing
the main statistics for each experiment is included in Ap-
pendix A. We would like to stress that, even though the mode
of the departures is closer to zero in the analyses, the aver-
age of the departures is not necessarily closer to zero. For
MODIS Aqua, MODIS Terra and MISR, the average of the
departures for the “All” curve of Fig. 3 is larger in the anal-
yses than in the prior. This means that for these experiments
(as the average of the prior departures positive), the average
AOD in the analyses is smaller than the prior AOD. This is
exemplified in the comparison with AERONET, in the Ap-
pendix A, and will be related with the overall decrease of
analysed emissions in Sect. 3.4.

3.3 Analysis AOD

Figure 4 shows the simulated 550 nm AOD for the prior and
the five analyses. Larger AOD values are simulated in boreal
summer (June–July–August or JJA) for all analyses and the
prior. Compared to the prior, the MODIS, MISR and SEVIRI
analyses decrease AOD in the northern Sahara. This is not the
case for the PARASOL analysis in JJA and in boreal spring
(March–April–May or MAM). There is not a large differ-
ence in AOD when the two MODIS analyses are compared
between them, which is consistent with the discussion of the
observations in Sect. 3.1. AOD from the MISR assimilation
is larger in MAM than in the MODIS analysis.

In the PARASOL analysis the assimilation system in-
creases the coarser dust emissions in order to improve the
fit over the ocean. As PARASOL does not report total AOD
over land, dust emissions of the coarser dust bins (and thus
also with the shorter atmospheric residence times) are not
fully constrained by near-source observations. This results in
a large and possibly unrealistic increase in coarser mode dust
emissions. For this reason we exclude this dataset from our
emission flux analysis.

The SEVIRI analysis shows a larger transatlantic dust
plume in MAM and JJA along with larger values of AOD
over land. Observational uncertainties for SEVIRI are gen-
erally larger over land than over ocean. This allows the as-
similation system to favour a better fit of the AOD over the
ocean than over land. Over the transatlantic dust plume, the
assimilated AOD is larger than the prior AOD. The analysis
decreases this AOD difference by increasing the dust emis-
sions in western Africa, and therefore the SEVIRI analysis
shows larger AOD values over land.

3.4 Mineral dust flux

Mineral dust emissions were estimated with the data assim-
ilation system using the five satellite products one by one.
Total estimated flux over the Sahara and the Arabian Penin-
sula are shown in Table 2. Excluding the PARASOL analy-
sis, the total mineral dust fluxes for the year 2006 ranges be-
tween 2547 and 4210 Tg. We recall that these estimates are
for emitted dust particles in a diameter range between 0.06
and 30 µm. The emission estimate is highly dependent on the
size cut-off of the emitted particles. For airborne dust with
a diameter smaller than 6 µm, the total flux is estimated be-
tween 630 and 845 Tg for the year 2006. The range is there-
fore much smaller when we exclude the largest dust mode.
Table 2 shows detailed estimates for these categories and for
three geographical regions: western northern Africa, eastern
northern Africa and the Arabian Peninsula.

Similarly to the emissions presented in Laurent et al.
(2008), the western Sahara has larger emissions than the east-
ern Sahara. This is indeed the case in all the analyses. For
both fine and coarse dust emissions, the contribution of the
Arabian Peninsula is significant, indicating that is an impor-
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Figure 4. Simulated AOD at 550 nm for the prior and for the five analyses. The panels show the averaged AOD for each experiment (rows)
over the months indicated in the head of the columns. MAM stands for March, April and May; JJA for June, July and August, SON for
September, October and November, and DJF for December, January and February. In the latter we include the first 2 months and the last
month of the year 2006.

Table 2. Total emission flux (Tgyear−1) by region and by observational dataset for the year 2006. AP stands for Arabian Peninsula. Western
Africa refers to the longitude band between the Atlantic coast and approximately 16◦ E corresponding to regions 01 to 09 in EBCH16.
Eastern Africa refers to regions 10 to 16 in EBCH16, that is, to a longitude band between approximately 16◦ E and the Red Sea.

Prior MODIS Terra MODIS Aqua MISR PARASOL SEVIRI

Total AP+Africa 6657 3267 2697 4210 15 748 2547
Total Africa 4085 2788 2361 3011 9447 2404
Total AP 2571 478 337 1198 6301 143
Total Western Africa 3161 1808 1484 1948 6672 1544
Total Eastern Africa 924 980 877 1063 2775 860
Fine and Coarse AP+Africa 1087 644 630 845 874 670
Fine and Coarse Africa 709 452 431 568 527 567
Fine and Coarse AP 378 192 199 277 347 103
Fine and Coarse Western Africa 526 294 290 362 357 379
Fine and Coarse Eastern Africa 183 158 141 206 170 188
Super-coarse AP+Africa 5570 2623 2067 3365 14 873 1877
Super-coarse Africa 3376 2336 1930 2443 8920 1837
Super-coarse AP 2193 287 138 921 5954 39
Super-coarse Western Africa 2635 1514 1194 1586 6314 1165
Super-coarse Eastern Africa 741 822 736 875 2605 672

tant dust source even though it does not receive much atten-
tion in the literature. However, super-coarse dust emissions
of the Arabian Peninsula are, in general, 1 order of magni-
tude smaller than northern African emissions.

Figure 5 shows emission fluxes split by month for the three
bins of SPLA. It can be seen that most of the dust emis-
sion flux is achieved in the super-coarse size range. For the

reasons explained above, super-coarse dust emissions of the
PARASOL analysis are much larger than expected. However,
this is not the case for the coarse dust flux of the PARASOL
analysis due to the structure of the control vector, where the
fine and coarse dust correction factors are lumped together.
As it was the case in EBCH16, the dust emission fluxes from
the analysis are systematically smaller than for the prior sim-
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Figure 5. Total dust flux per month over the Sahara and the Arabian Peninsula. Fine mode dust is shown in the first panel, coarse mode dust
in the middle panel and super-coarse mode dust in the lower panel. The different bars show the total mineral dust flux over the Sahara and
the Arabian Peninsula by experiment and month. Note that the three plots use different scales.

ulation, for almost all dust bins, regions and months. This is
largely noticeable for the super-coarse dust emission panel.
The decrease of emissions of the analyses with respect to
the prior is consistent with the results discussed in Sect. 3.2,
where the average AOD is smaller in the analysis than in the
prior, for the simulated AOD coincident with the assimilated
observations for the MODIS and MISR experiments.

In general, coarse and fine dust emissions have maximum
values in July, June, March and December while the super-
coarse dust emission peaks in September. Throughout the
year, coarse and fine dust fluxes share the same emission cy-
cle, indicating consistent seasonality across the various as-
similated observational datasets. However, we cannot com-
pletely rule out that a model bias (on the seasonal scale) gen-
erates this feature.

Sensitivity to the observation sampling time and coverage
is not explored in this work explicitly, but the impact of the
sampling time can be inferred to some extent from a com-
parison between the two MODIS analyses. Both MODIS re-
trievals are expected to have similar performance when com-
pared against reference datasets (Levy et al., 2015; Sayer
et al., 2015). Our results indicate that, despite the relatively
large spread (hundreds of teragrams per year) in the overall
analysed dust flux from the two instruments, their seasonal
cycles are similar. If both instruments are unbiased (or at
least if they have the same bias), the sampling time of the
products would be the most important difference in the data
assimilation system. In this case, the mismatch on the over-
all emission flux, which is controlled by emissions from the

super-coarse dust, can be likely attributed to the representa-
tion of the diurnal cycle of model emissions and boundary
layer processes.

4 Conclusions

We have assimilated AOD from five satellite retrievals into
a common data assimilation system. The control vector ele-
ments consist of correction factors for the prior aerosol emis-
sion flux over sub-regions of the Sahara and the Arabian
Peninsula. Observational error statistics were adapted from
the literature. For four of the five AOD datasets, fine mode
AOD was assimilated when it was available. As expected, the
analysis departures are, in general, smaller than the prior de-
partures. The a posteriori estimated mineral dust flux shares a
common seasonal variation between the various data assim-
ilation configurations, but there is a relative large spread in
the yearly total amount. This work estimates a total amount
of emitted mineral dust over northern Africa and the Ara-
bian Peninsula ranging between 2550 and 4210 Tgyr−1, for
mineral dust particles with a diameter smaller than 30 µm in
the year 2006. For mineral dust with a diameter smaller than
6 µm, the estimated flux is between 630 and 845 Tgyr−1.

We isolated the role of the assimilated observation dataset
(by freezing the rest of the inversion configuration) and
showed that the large spread of these fluxes is likely as-
sociated with differences between these datasets (including
their associated error statistics) rather than with model biases

www.atmos-chem-phys.net/17/7111/2017/ Atmos. Chem. Phys., 17, 7111–7126, 2017



7122 J. Escribano et al.: Impact of the choice of the AOD product in a dust emission inversion

or deficiencies in the data assimilation system. This is de-
spite the satellite AOD observations being of similarly good
quality (or at least perceived as such). The dust emission
fluxes are nevertheless sensitive to model biases or missing
or under-represented processes in the model. In fact, the large
emission of super-coarse dust in the PARASOL experiment
could indicate that the model is not able to reproduce air-
borne dust transport and removal processes well. For this
product, a coarse mode AOD retrieval over land would be
beneficial in the assimilation.

Despite the fact that MISR has a smaller swath compared
to the other assimilated products, the capability to report to-
tal and fine mode AOD over land is beneficial to the assim-
ilation. This can be seen when the analysis was compared
against AERONET AOD (Appendix A); the MISR analysis
skills are similar to the rest of the analyses although the num-
ber of assimilated observations is smaller.

It is important to maintain the variety of current AOD
retrieval approaches, explored by different groups with dif-
ferent algorithms, while improving the quality and achiev-
ing some convergence (through error reduction of the indi-
vidual products). There are, however, two limitations in our
treatment of observational errors due to the lack of infor-
mation about the assimilated products. First, the assimilated
fine mode AOD error variance was assumed to be similar
to the total AOD error variance. Indeed, the characteristics
of fine mode AOD errors are unknown, but this information
would be useful and could, in principle, improve the analy-
sis. Secondly, we assumed uncorrelated errors between fine
and total assimilated AOD. As both AODs are computed si-
multaneously in the retrievals using similar hypotheses and
radiance measurements, this assumption does not necessar-
ily hold. Ideally, these statistics should be provided by the
retrieval algorithm and reported along with the observations.
Likewise it would be useful to consider error covariances in
space (and possibly in time). A new generation of aerosol re-
trieval algorithms based on statistically optimized fitting of
observations, such as that of GRASP (Dubovik et al., 2014),
can in principle provide such information. It would be in-
teresting to test the impact of including such improved error
statistics in the source inversion.

The year-to-year variability of dust emission fluxes was
not considered in this study. It could increase or decrease
the spread in dust emission flux estimates. Although different
satellite aerosol instruments are available for different peri-
ods, there are sufficient overlaps between instruments to gain
understanding from multi-year retrievals.

Finally, reducing modelled and observational biases is an-
other key to improving top-down emission flux estimates.
Pope et al. (2016) evaluated the analysis increments in a
data assimilation framework and found that large increments
were associated with meteorological conditions for which the
model lacks performance. Another approach which we leave
for future work would be to estimate the net aerosol fluxes,
that is, including variables related to the aerosol removal pro-
cesses in the control vector. It would be interesting to explore
this approach, since bias in the aerosol removal processes
could introduce bias in the emissions if only the emissions
are optimised; but the implementation of this data assimila-
tion could be difficult to accomplish, due to the increase in
the degrees of freedom in an ill-posed data assimilation prob-
lem.

Data availability. The POLDER–PARASOL and AERUS-GEO
data were downloaded from the ICARE analysis and data centre
(http://www.icare.univ-lille1.fr/). MODIS AOD products are avail-
able at http://modis-atmos.gsfc.nasa.gov, MISR AOD were down-
loaded from the Atmospheric Science Data Center at NASA (https:
//eosweb.larc.nasa.gov/), and AERONET AOD is available at http:
//aeronet.gsfc.nasa.gov. Input soil data used in this study is available
at http://www.lisa.univ-paris12.fr/mod/data/index.php.
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Appendix A: Comparison with AERONET

For validation, we select AERONET stations in the same
way as in EBCH16. We only consider stations with at least
182 valid daily 500 nm AOD retrievals of level 2 product
(version 2). The following stations meet this criteria for the
year 2006 in the region of interest: Bahrain, Blida, Dhabi,
Dhadnah, Forth Crete, Granada, Hamim, Ilorin, La Parguera,
Nes Ziona, Santa Cruz Tenerife, Sede Boker and Solar Vil-
lage. The model AOD is recomputed at 500 nm for compar-
ison with the AERONET AOD. The summary of statistics is
shown in Table A1.

Table A1. Statistics of the analyses against AERONET 500 nm AOD for selected sites. The acronym m a.s.l. stands for metres above sea
level, RMSE stands for root mean square error and ρ is the Pearson correlation coefficient.

Station Bahrain Blida Dhabi Dhadnah Forth Granada Hamim Ilorin La Nes Santa Cruz Sede Solar
Crete Parguera Ziona Tenerife Boker Village

Latitude (◦ N) 26.21 36.51 24.48 25.51 35.33 37.16 22.97 8.32 17.97 31.92 28.47 30.86 24.91
Longitude (◦ E) 50.61 2.88 54.38 56.32 25.28 −3.6 54.3 4.34 −67.05 34.79 −16.25 34.78 46.4
Elevation (m a.s.l.) 25 230 15 81 20 680 209 350 12 40 52 480 764
N obs. 201 195 243 324 283 276 263 270 251 185 233 335 335

Mean Obs. 0.433 0.258 0.434 0.404 0.196 0.177 0.314 0.705 0.148 0.226 0.171 0.2 0.372
Prior 0.472 0.313 0.411 0.454 0.273 0.209 0.346 0.434 0.145 0.245 0.178 0.263 0.37
MODIS Aqua 0.304 0.179 0.236 0.242 0.176 0.127 0.196 0.319 0.113 0.14 0.119 0.168 0.276
MODIS Terra 0.309 0.187 0.238 0.241 0.184 0.133 0.196 0.329 0.116 0.151 0.126 0.187 0.289
MISR 0.423 0.21 0.316 0.322 0.212 0.154 0.255 0.374 0.129 0.187 0.142 0.264 0.376
PARASOL 0.452 0.197 0.349 0.372 0.166 0.129 0.286 0.379 0.109 0.141 0.138 0.204 0.449
SEVIRI 0.267 0.22 0.208 0.203 0.222 0.173 0.188 0.487 0.194 0.192 0.166 0.219 0.267

Bias Prior 0.04 0.056 −0.023 0.05 0.076 0.032 0.032 −0.271 −0.003 0.019 0.007 0.063 −0.002
MODIS Aqua −0.128 −0.079 −0.198 −0.162 −0.02 −0.05 −0.118 −0.386 −0.035 −0.085 −0.052 −0.031 -0.097
MODIS Terra −0.123 −0.071 −0.196 −0.163 −0.012 −0.044 −0.118 −0.376 −0.032 −0.075 −0.045 −0.013 -0.083
MISR −0.01 −0.048 −0.118 −0.082 0.016 −0.023 −0.059 −0.331 −0.019 −0.039 −0.029 0.064 0.003
PARASOL 0.019 −0.061 −0.085 −0.032 −0.031 −0.048 −0.028 −0.326 −0.039 −0.085 −0.033 0.004 0.077
SEVIRI −0.165 −0.038 −0.226 −0.201 0.026 −0.004 −0.126 −0.218 0.046 −0.034 −0.005 0.019 −0.105

RMSE Prior 0.365 0.349 0.397 0.465 0.266 0.229 0.257 0.598 0.146 0.144 0.176 0.235 0.272
MODIS Aqua 0.264 0.172 0.306 0.28 0.143 0.109 0.191 0.607 0.087 0.142 0.112 0.129 0.264
MODIS Terra 0.258 0.167 0.307 0.28 0.145 0.108 0.193 0.604 0.086 0.14 0.109 0.155 0.258
MISR 0.374 0.189 0.287 0.282 0.174 0.128 0.182 0.58 0.087 0.139 0.107 0.558 0.273
PARASOL 0.381 0.21 0.295 0.286 0.158 0.144 0.226 0.566 0.094 0.152 0.112 0.294 0.478
SEVIRI 0.273 0.156 0.329 0.288 0.155 0.113 0.205 0.518 0.11 0.132 0.1 0.188 0.261

ρ Prior 0.256 0.572 0.232 0.147 0.367 0.658 0.454 0.086 0.284 0.464 0.396 0.546 0.393
MODIS Aqua 0.465 0.67 0.384 0.307 0.379 0.716 0.589 0.439 0.465 0.463 0.665 0.532 0.452
MODIS Terra 0.468 0.685 0.357 0.28 0.393 0.718 0.569 0.432 0.458 0.447 0.669 0.496 0.472
MISR 0.339 0.628 0.347 0.275 0.421 0.698 0.53 0.407 0.403 0.425 0.648 0.551 0.416
PARASOL 0.274 0.635 0.374 0.308 0.403 0.676 0.537 0.434 0.406 0.431 0.647 0.382 0.205
SEVIRI 0.486 0.676 0.286 0.348 0.415 0.681 0.495 0.406 0.461 0.43 0.683 0.274 0.484
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