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Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by

a large range of enamel disorders causing important social and health problems. These

defects can result from mutations in enamel matrix proteins or protease encoding genes.

A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene

(MMP20) produce enamel defects of varying severity. To address how various alterations

produce a range of AI phenotypes, we performed a targeted analysis to find MMP20

mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was

isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We

identified several homozygous or heterozygous mutations, putatively involved in the

AI phenotypes. To validate missense mutations and predict sensitive positions in the

MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public

databases using the Datamonkey webserver. These sequences were representative of

mammalian lineages, covering more than 150 million years of evolution. This analysis

allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint

functionally important domains, and build an evolutionary chart of important conserved

MMP20 regions. This is an efficient tool to identify new- and previously-identified

mutations. We thus identified six functional MMP20 mutations in unrelated families,

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00398
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00398&domain=pdf&date_stamp=2017-06-14
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jean-yves.sire@upmc.fr
https://doi.org/10.3389/fphys.2017.00398
http://journal.frontiersin.org/article/10.3389/fphys.2017.00398/abstract
http://loop.frontiersin.org/people/35965/overview
http://loop.frontiersin.org/people/431019/overview
http://loop.frontiersin.org/people/422712/overview
http://loop.frontiersin.org/people/435243/overview
http://loop.frontiersin.org/people/307787/overview
http://loop.frontiersin.org/people/27018/overview
http://loop.frontiersin.org/people/408574/overview


Gasse et al. Validation of New MMP20 Mutations

finding two novel mutated sites. The genotypes and phenotypes of these six mutations

are described and compared. To date, 13 MMP20 mutations causing AI have been

reported, making these genotypes and associated hypomature enamel phenotypes the

most frequent in AI.

Keywords: MMP20, mutations, amelogenesis imperfecta, evolution, phenotype

INTRODUCTION

Amelogenesis imperfecta (AI) describes a group of genetic
diseases producing a large range of alterations in enamel
structure. Defects include hypoplastic, hypomineralized,
or hypomature enamel structure and altered enamel
appearance -including rough, pitted, banded, or discolored teeth.
These alterations produce severe health problems and impair
normal social interactions. Defects can result from mutations
either of enamel matrix protein encoding genes [amelogenin
(AMELX), ameloblastin (AMBN), amelotin (AMTN), and
enamelin (ENAM)], or proteases [matrix metalloproteinase-
20 (MMP20), kallikrein-related peptidase 4 (KLK4))]—often
displaying specific roles in tooth—and hence at the current
stage of our knowledge do not display disorders elsewhere in
the body. Other genes encoding proteins having functions in
cell attachment, ionic transport, and mineralization processes,
when mutated are responsible for AI phenotypes associated
with various abnormalities in syndromes (Crawford et al., 2007;
reviewed in Bloch-Zupan et al., 2012).

The prevalence of AI can vary from 1:700 to 1:14,000
depending on the country. Although many candidate genes were
identified to date, many AI-producing mutations remain to be
identified for approximately 50% of diagnosed patients.

Here, we focused on the matrix metalloproteinase-20 gene
(MMP20), an interesting candidate gene given the numerous
identified AI causingmutations (Kim et al., 2005, 2016a; Ozdemir
et al., 2005; Papagerakis et al., 2008; Lee et al., 2010; Gasse et al.,
2013; Wang et al., 2013; Seymen et al., 2015; Prasad et al., 2016a).

MMPs function in plants, invertebrates, and vertebrates, by
their active center possessing a catalytic zinc domain (Gomis-
Ruth, 2009; Fanjul-Fernandez et al., 2010). In vertebrates,

matrix metalloproteinases (MMPs, also called matrixins) consist

of a large family (24 members identified in humans) of
endopeptidases, which are phylogenetically related (Fanjul-
Fernandez et al., 2010). MMPs were initially thought involved
in the degradation and turnover of the extracellular matrix, but
recent studies indicate important biological roles regulating cell
behavior and signaling pathways (Rodríguez et al., 2010).

MMP20 (also termed enamelysin) is only present in
vertebrates. Its origin dates certainly back to an ancestral
gnathostome, before the divergence of actinopterygians and
sarcopterygians more than 450 million years ago (Kawasaki
and Suzuki, 2011). In amniotes, MMP20 is an enamel specific
protease. This gene is absent in every species lacking either teeth
or enamel (e.g., in turtles, birds, and various mammals -Meredith
et al., 2011, 2013).

In toothed mammals, MMP20 was identified first in porcine

enamel (Bartlett et al., 1996; Moradian-Oldak et al., 1996) then

characterized in humans (Llano et al., 1997). It is expressed
both by ameloblasts and odontoblasts, and acts from the enamel
secretory to the maturation stages through proteolysis of the
enamel organic matrix, required for correct mineralization
(Bègue-Kirn et al., 1998). MMP20 cleaves AMEL (Llano et al.,
1997; Ryu et al., 1999; Nagano et al., 2009), the enamel matrix
protein (EMP) representing more than 90% of the forming
enamel matrix in mammals (Fincham et al., 1989). MMP20 also
cleaves AMBN, and probably also ENAM, two EMPs with critical
functions during enamel mineralization (Iwata et al., 2007; Chun
et al., 2010).

Mutations in the MMP20 gene have been associated with
autosomal recessive type 2 amelogenesis imperfecta (AI2A2,
MIM #612529, ORPHA100033) also called hypomature AI. In
affected patients, enamel displays a normal thickness but is
pigmented and hypomineralized as demonstrated by the lack of
radio-opacity contrast with dentin (Witkop, 1989).

To find mutations on MMP20 in French patients diagnosed
for AI, we sequenced and identified several new homozygous
or heterozygous missense mutations. To validate the potential
role of these mutations, hence to predict sensitive positions in
MMP20, we analyzed a large set of representative mammalian
lineages sequences, covering over 150 million years of evolution.
This type of evolutionary analysis has been shown to be
an efficient method to validate and predict disease-associated
missense mutations (Delgado et al., 2007; Al Hashimi et al., 2009;
Bardet et al., 2010; Silvent et al., 2014). This method is termed
phylomedicine (Kumar et al., 2011), which is complementary to
existing genetic diagnosis.

The aims of the present study were to document MMP20
evolutionary analysis to pinpoint where newly identified
mutations act in this evolutionary chart, hence identifying
sensitive positions. Collectively this is an efficient tool to
functionally validateMMP20mutations identified to date.

MATERIALS AND METHODS

Evolutionary Analysis
Data Set
Mammalian MMP20 sequences were extracted from public
databases, NCBI [http://www.ncbi.nlm.nih.gov] and Ensembl
[http://www.ensembl.org]. A total of 75 sequences representative
of the main mammalian lineages (55 families distributed within
19 orders) were retained for our analyses (Supplementary Table
1). Identical sequences (such as species from the same genus)
were not included in our dataset. MMP20 being enamel specific
the sequences of species lacking either teeth or enamel (i.e.,
Xenarthra, Pholidota, Mysticeta, and Tubulidentata) were not
included in our study because they display various mutations.
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Among the selected MMP20 sequences only five were
published in GenBank. Of the 70 other sequences, 65 were
computer-predicted from sequenced genomes and six were
obtained using Basic Local Alignment Search Tool (BLAST)
of the whole genome shotgun (WGS) repository sequences in
NCBI (Supplementary Table 1). The coding sequences were
traduced into amino acid sequences and unpublished sequences
were validated through alignment to published ones using Se-
Al v.2.0a11 software [http://tree.bio.ed.ac.uk/software/seal]. The
intron-exon boundaries were also carefully checked. The dataset
of the 75MMP20 sequences is available in Supplementary Data 1.

Our final alignment consisted of 483 positions, and no
insertions were needed (Supplementary Figure 1). A few residues
were missing in some, uncompletely sequenced genomic DNA
(i.e., 726 nucleotides, nt, representing <0.7% of the data), and
the corresponding positions were treated as “unknown data”.
In addition, we aligned 21 nucleotides of the intronic region
located on both sides of the exons from 12 MMP20 sequences
representative of the main mammalian lineages, known to be
important for correct intron splicing (Supplementary Table 2).

Analyses
The putative signal peptide sequence and its cleavage site
were predicted using SignalP 3.0 server (http://www.cbs.dtu.dk/
services/SignalP).

Single Likelihood Ancestor Counting (SLAC) analysis was
performed using the Datamonkey webserver (http://www.
datamonkey.org/; Delport et al., 2010) to identify amino acids
subjected either to purifying or to positive selection, as previously
described (Silvent et al., 2014). Biologically significant amino
acids (i.e., site-specific selections) in MMP20 were identified
in our alignment for the 483 positions and displayed on
the human sequence. The analysis was performed according
to the substitution preferences of amino acids, i.e., favoring
property conservation (see Silvent et al., 2014). We defined
three levels of selection throughout mammalian evolution (i.e.,
180 Ma): conserved (i.e., unchanged residues), conservative
(i.e., substituted residues having similar properties) and variable
positions (i.e., substitution with various residues).

Mutation Analyses
Patients
The patients and their families were selected from the pool of
patients participating in the French Ministry of Health National
Program for Clinical Research, PHRC 2008 HUS (Strasbourg
University Hospital) N◦4266, Amelogenesis Imperfecta, AI (for
further details see Gasse et al., 2013) and in the INTERREG
IV Offensive Sciences A27 “Orodental manifestation of rare
diseases” EU funded (ERDF) project.

These patients came to The Reference Centre for Orodental
Manifestations of Rare Diseases (CRMR Strasbourg, France)
or other affiliated Competence Centres (CCMR) for clinical
diagnosis and management. Dentists specializing in rare diseases
diagnosed amelogenesis imperfecta.

The oral phenotypes were documented using the
D[4]/phenodent registry, a Diagnosing Dental Defects Database
[see www.phenodent.org, to access assessment form], which is

approved by CNIL (French National commission for informatics
and liberty, number 908416). This clinical study is registered
at https://clinicaltrials.gov: NCT01746121 and NCT02397824,
and with the MESR (French Ministry of Higher Education
and Research) Bioethics Commission as a biological collection
“Orodental Manifestations of Rare Diseases” DC-2012-1677
within DC-2012-1002 and was acknowledged by the CPP (person
protection committee) Est IV on the 11 Dec 2012.

Affected and unaffected family members gave informed
written consents both for the D4/phenodent registry and for
genetic analyses performed on the salivary samples included in
the biological collection.

In this study, we selected patients from unrelated families
suffering from non-syndromic AI, some of them displaying
clinical diagnoses matching possibleMMP20mutations.

Analyses
Patients spit into an Oragene kit (Oragene DNA R©, DNA
Genotek, Canada) and genomic DNA was then isolated from
saliva according to the manufacturer’s protocol. We used
previously defined primers (see Gasse et al., 2013). Mutational
analysis was performed for the 10 exons of MMP20 including
exon-intron boundaries. PCR products were sent to GATC
Biotech for purification and sequencing in both directions in
order to minimize sequencing artifacts. The sequences were
aligned manually with the reference human MMP20 sequence
NG_012151.1 using Se-Al v2.0a11 software.

When necessary the sequences were analyzed for splicing
site prediction using the NetGene2 server (http://www.cbs.dtu.
dk/services/NetGene2/) and MaxEntScan (http://genes.mit.edu/
burgelab/maxent/Xmaxentscan_scoreseq.html). The NetGene2
server is a service producing neural network predictions of splice
sites in human genes (Hebsgaard et al., 1996) and MaxEntScan
is based on the “Maximum Entropy Principle” and generalizes
most previous probabilistic models of sequence motifs such as
weight matrix models and inhomogeneous Markov models (Yeo
and Burge, 2004).

SNPs known to date in the human MMP20 sequence
were found at http://www.ncbi.nlm.nih.gov/snp and at https://
www.ncbi.nlm.nih.gov/variation/tools/1000 genomes/(the 1000
genomes project).

RESULTS AND DISCUSSION

Evolutionary Analysis of Functional
Constraints in MMP20 Sequence
The alignment of the 75 MMP20 amino acid (aa) sequences
indicated a highly conserved protein structure throughout more
than 180 million years of mammalian evolution, a finding
demonstrating the importance of many regions of this protease
as found for the alkaline phosphatase, ALPL (Silvent et al., 2014).
The 10 exons encoding the protein do not show insertions and
only a limited number of rodent-specific deletions, in which
seven MMP20 lack either one codon in exon 1 (Mus, Rattus,
Cricetulus, Mesocricetus, Microtus, and Chinchilla) or two codons
in exon 2 (Octodon). The MMP20 sequences were therefore
mostly composed of 483 residues, from the methionine M1,
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encoded by exon 1, to the cysteine C483 encoded by exon 10
and preceding the stop codon (Supplementary Figure 1). At the
first glance our alignment indicated that many positions and
large domains were conserved throughout the sequence. This is
particularly obvious in the large regions encoded by the 3’ end
of exon 2, by exons 4 and 5, by the 3′ region of exon 6, by
most of exons 7 and 8, and by many positions of exons 9 and 10
(Supplementary Figure 1). The alignment of the 21 untranslated
nucleotides on both sides of the coding exons indicates that the
acceptor sites are either tag or cag, and the donor sites are mostly

gta (with the exception of gtt for intron 1 and gtg for intron

9 and in a few other sequences; Supplementary Table 2). This
finding is in accordance with the splice site consensus sequences
for introns. The other positions are somewhat variable with the
exception of the 21 nucleotides of the 5′ region of intron 4 that
are unchanged in all species studied (i.e., for 180MA). We do not
know why this region was unchanged during evolution but its
conservation suggests functionally important domains otherwise
some nucleotide substitutions would have occurred at random.
We question whether this intron region could be involved in a
regulatory process or was previously encoding region.

The evolutionary analysis using SLAC selected several
positions, notably in the N-terminal region, and, in contrast
indicated that the MMP20 sequence is globally under strong
purifying selection (Figure 1). The detailed analysis of each
position confirmed the numerous fonctional or structural
constraints acting on many amino acids along the sequence
(Figure 2, Supplementary Figure 2). Out of the 483 amino
acids composing the human MMP20 sequence, more than a
half (324 aa, 67.08%) were identified as sensitive positions, i.e.,
that were either conserved (i.e., unchanged residues) (243 aa,
50.31%) or conservative (i.e., substituted with residues having
similar properties) (81 aa, 16.77%) during 180 million years
of mammalian evolution (Figure 2). In contrast, 159 positions
(32.92%) were identified as variable (i.e., substituted with
various aa). This large number of sensitive positions revealed
by our analysis is similar to the values obtained for ALPL

(Silvent et al., 2014). These unchanged, conservative and variable
positions were reported on the human sequence, resulting in
the chart of sensitive positions of human MMP20 (Figure 2,
Supplementary Figure 2). We predict that any substitution of
one of the 243 unchanged positions, or of one of the 81
conservative positions with a residue having a different property,
would disrupt MMP20 function and would lead to enamel
defects described as amelogenesis imperfecta in patients who
unfortunately possess such a mutation in both DNA alleles
(homozygous mutation) or an additional mutation in the other
allele (counpound heterozygous mutation). Indeed, all missense
mutations validated until now in various proteins were located
always at conserved positions (Delgado et al., 2007; Kumar et al.,
2011).

The boundaries of three, already known, functional domains
are also better defined when considering the number of
conserved amino acids: the matrixin cystein switch extends from
aa98 to aa104, the catalytic domain from aa108 to aa116, and
the zinc-binding domain from aa223 to aa232. Similar, accurate
definition of the boundaries of functional domains was obtain in
various proteins through evolutionary analysis (Al Hashimi et al.,
2009; Silvent et al., 2013, 2014). Aside these crucial regions our
study highlighted many other evolutionary-conserved residues
and domains that have probably a strong functional or structural
importance for MMP20. One of these large domains, encoded by
the 3′ end of exon 3, exon 4, and most of exon 5, is composed
of 109 residues, out of them 102 (93.58%) are either unchanged
or conservative. Several, but shorter domains are also encoded
by the 3′ region of exons 6 and 7, and by most of the sequence
of exons 8–10 (Figure 2, Supplementary Figure 2). The only 70
aa located at the N-terminal region are subjected to low selective
constraints with 15.71% of sensitive positions detected.

It is worth noting that the percentage of purifying selection is

high along the protein sequence, and varies from 7.14% in the

region encoded by exon 1–95.24% in the region encoded by exon

4. More precisely, our evolutionary analysis (i) confirmed and
accurately defined the boundaries of already known important

FIGURE 1 | SLAC analysis. The dN-dS value was analyzed along the MMP20 codon sequence. dN, non-synonymous substitution rate; dS, synonymous substitution

rate. When dN-dS < 0, the codon is subjected to purifying selection. When dN-dS > 0 (i.e., dN > dS), the codon is considered positively selected.
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FIGURE 2 | Evolutionary chart of MMP20. This chart was obtained from the alignment of 75 sequences representative of the main mammalian lineages (approx. 180

million years of evolution) and was deduced from the results obtained when dN/dS was calculated at each codon of MMP20 by Consurf (see Supplementary Figures

1, 2). Human sequence is used as a reference. Positions subjected to purifying selecton are on black (conserved positions) and gray (conservative positions)

background. Variable positions on white background.

domains of the protein, (ii) highlighted many sensitive residues,
and (iii) revealed various domains having putative important
roles that should be experimentally studied in the future
(Figure 2).

Mutation Analyses
Genotypes
Among our patients displaying non-syndromic AI, mutations
in the MMP20 coding gene were diagnosed in six, unrelated
families. Clinical diagnoses were confirmed through sequencing
as described below. Sequencing DNA of patients 1 and 2
revealed new mutations in the MMP20 sequence, which are
validated as being responsible for the AI phenotype by means
of evolutionary analysis. The pedigrees and DNA sequencing
chromatograms are presented in Figure 3. Moreover, patient
4 displayed two, already reported mutations, but in a new,
compound heterozygous context. In patient 3, the compound
heterozygous mutations were already described by Prasad et al.

(2016a) but not illustrated (see below). Eventually, patients 5
and 6 possessed an already described homozygous mutation. In
addition, in these six families we identified several SNPs that
change the amino acid but these mutations are not validated by
our evolutionary analysis as they occurred in variable positions.

Patient 1: homozygous mutation c.323 A>G
We identified a missense, homozygous mutation in exon 2 of
MMP20 of this male proband. The mutation was not previously
reported and is referred to as g.8,470 A>G, c.323 A>G, p.Y108C.
Both unaffected parents were heterozygous (Figures 3A,B). The
mutation occurred at a tyrosine residue of the catalytic domain,
a position that is unchanged in the 75 MMP20 mammalian
sequences studied and surrounded by a number of conserved
residues of this domain (Figure 2, Supplementary Figures 1, 2).
This finding indicates a putative important function for this
amino acid and validates this homozygous mutation as being
responsible for the AI phenotype.
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FIGURE 3 | Mutational analysis of the two new MMP20 mutations. (A,C)

Pedigree of the AI kindred; (B,D) DNA sequencing chromatograms of control

(+/+) and of heterozygous (+/−) mutations. Arrows point to the mutation

sites. See Figure 2, Supplementary Figure 1, Supplementary Table 2 for the

validation of these mutations by means of evolutionary analyses. (A,B) Patient

1 with the homozygous mutation (c.323 A>G; p.Y108C). (C,D) Patient 2 with

the compound heterozygous mutation (c.567 T>C; p.L189P / c.910 G>A;

p.A304T). The second mutation was already reported as homozygous MMP20

mutation (Lee et al., 2010).

A second missense, homozygous mutation was identified in
exon 1, p.K18T. This frequent mutation in the human population
occurred in a variable region ofMMP20 and is not responsible for
the enamel disorder.

Patient 2: compound heterozygous mutation c.567 T>C and

c.910 G>A
In this female proband, we identified two missense, heterozygous
mutations that were validated as responsible for AI phenotype
in a compound genotype. The mutation on allele 1 is located
in exon 6 and referred to as g.18,755 G>A, c.910 G>A,
p.A304T. This MMP20 mutation was already reported in the
literature as responsible for the AI phenotype in a patient
homozygous for the mutation (Lee et al., 2010). The patient 2
was heterozygous for this mutation, as well as his unaffected
father and his brother (Figure 3C). The second mutation, on
allele 2 was not previously reported and is located in exon 4
and referred to as g.15,345 T>C, c.567 T>C, p.L189P. The
patient 2 was heterozygous for this mutation, as well as her
unaffected mother (Figures 3C,D). The substitution of a leucine
with a proline occurred at a conserved position, unchanged in
mammals, and surrounded by numerous conserved residues.
The substitution of this putative, functionally, or structurally
important amino acid validates the mutation as involved in the
AI phenotype.

In addition, the MMP20 sequence of patient 2 displayed four
other missense mutations of various functional weight when
considering our evolutionary analysis (Figure 2, Supplementary
Figures 1, 2): (i) An uncommon missense mutation, on allele

2, was found in exon 3 and referred to as g.13,560 A>C, c.505
A>C, p.I169L. The mother is heterozygous for this mutation.
The substitution of the isoleucine with a leucine occurred at a
conservative position, at which isoleucine is substituted with the
only valine in a few mammalian species but not with leucine
(Figure 2, Supplementary Figures 1, 2). These amino acids have,
however, similar properties. Also, this mutation occurred in a
position surrounded by many conserved residues. The missense
mutation p.I169L is present in 3% of the human population
(the 1,000 genomes project). The involvement of this missense
mutation in the AI phenotype is therefore quite doubtful; (ii)
three, common, missense mutations were identified in exon 1,
p.K18T (as in patient 1) and p.P31L, and in exon 6, p.T281N, also
located in a variable region. These mutations are frequent in the
human population occurred in variable regions of MMP20 and
are not responsible for the enamel disorder.

The compound heterozygous mutation c.567 T>C (p.L189P)
and c.910 G>A (p.A304T) is validated by our evolutionary
analysis as the two mutations are located in conserved domains
of MMP20, indicating putative important functions for these two
amino acids.

Patient 3: compound heterozygous mutation c.126+6 t>g

and c.954-2 a>t
The compound heterozygous mutation of MMP20 in intronic
splicing sites identified in this male proband was recently
reported in the literature (Prasad et al., 2016a) but was not
detailed and not documented with pictures (see below).

The mutation on allele 1 is located at the splicing acceptor
site of intron 6 (3′ splice site) and referred to as g.30574 a>t,
c.954-2 a>t, p.I319fs338X. This MMP20 mutation disturbing
the splice site consensus sequence for introns was already
reported in the literature as responsible for the AI phenotype,
but in a homozygous context (Kim et al., 2005). Patient 3 was
heterozygous for the mutation, as well as his unaffected mother.
The mutation on allele 2 is located at the splicing donor site of
intron 1 (5′ splice site) and referred to as g.145 t>g, c.126+6 t>g.
The male proband was heterozygous for the mutation as well
as his unaffected father. This substitution did not occur during
180 million years of mammalian evolution (Supplementary Table
2) and this position is therefore considered of importance for
correct intron 1 splicing. In addition, (i) the position+6 belongs
to the splice site consensus sequence of the 5′ splice site for
introns (A/CAG | gta/gagt), (ii) Netgen2 server predicted that
the splice donor site in intron 1 does not exist in the mutant
sequence and MaxEntScan analysis showed a reduced score of
the splicing signal in the mutant compared to the wild sequence
(Supplementary Data 2), and (iii) this mutation is not present in
the human population (1,000 genomes project).

In addition, three missense mutations, common in the human
population (p.K18T, V275A, and p.N281T) were also identified
in this patient but are not responsible for the enamel disorder.

Patient 4: compound heterozygous mutation c.389 C>T and

c.954-2 a>t<
We identified two already reported mutations in this male
proband. These mutations were, however, described as
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homozygous MMP20 mutations in two, unrelated patients,
and are reported here to occur as a compound heterozygous
mutation in the same patient. The first mutation found on allele
1 and located in exon 3 is referred to as: g.13444 C>T, c.389 C>T,
p.T130I (Gasse et al., 2013). Patient 4 was heterozygous for the
mutation as well as his unaffected father. The second mutation
on allele 2 occurred at the splicing acceptor site of intron 6
and was referred to as g.30574 a>t, c.954-2 a>t, p.I319fs338X
(Kim et al., 2005). The male proband was heterozygous for the
mutation as well as his unaffecte mother.

Patients 5 and 6: homozygous mutation c.954-2 a>t
Patient 5: The homozygous mutation at the splicing acceptor
site of intron 6 identified also in patients 3 and 4 was identified
in two sisters of a family, in which the mother, the father, two
sisters and a brother were unaffected as heterozygous for thed
mutation.

Patient 6: The same mutation was also found in two sisters of
this family.

All patients sharing the c.954-2 a>t mutation were from
unrelated families, a finding that could indicate a high frequency
of this mutation in the human population in an heterozygous
context.

Clinical Phenotypes
Here below is a brief description of the features for the six patients
displaying non-syndromic hypomature AI and diagnosed as
possessing mutations in theMMP20 coding gene (Figure 4).

Patient 1 (Figures 4A–D)
All teeth of this young boy were affected and parents reported
damaged teeth since eruption. Enamel was chalky white and
opaque. In primary teeth, enamel was either hypoplastic and/or
was prematurely shed and worn through mastication and
occlusal forces. The panoramic radiograph revealed the poor
contrast of enamel compared to dentine, confirming the under-
mineralization of enamel.

Patient 2 (Figures 4E,F)
This 5 years old girl was in her primary dentition. The parents
reported that primary tooth eruption was delayed as no teeth
were present at 1 year. As soon as teeth erupted they showedmore
opaque enamel and it crumbled. Teeth were small microdont and
numerous diastema separated them. Enamel was white, orangy
and wore off. On panoramic radiograph, no or very thin enamel
was visible on primary teeth. In non-erupted permanent teeth,
enamel seemed thicker and more mineralized with a stronger
differential contrast with dentine, at least on the first permanent
molar germs.

Patient 3 (Figures 4G–J)
In this 5 years old boy, the enamel of primary teeth was
more opaque and was prone to disintegration, leaving areas
of dentine apparent. In permanent teeth, enamel was also
colored and opaque. Erupting teeth were sensitive and the
patient experienced difficulties to brush teeth. Dental plaque and
gingivitis were clearly visible. On panoramic radiographs limited
radiopaque enamel if none was visible, and no contrast existed

between enamel and dentine. This patient displayed a severe
phenotype.

Patient 4 (Figures 4K,L)
In this 20 year old man, all permanent teeth demonstrated
colored, opaque white brownish teeth with hypomature enamel.
On the panoramic radiograph enamel is thin and the contrast
with dentine is hardly visible.

Patient 5 and patient 6 (Figures 4M,N)
These two girls from unrelated families shared the same
mutation and displayed similar phenotypes with colored
hypomature amelogenesis imperfecta. The overall tooth contour
was respected and enamel chipping was visible at the incisal edge.

Phenotype Comparison
Patient 1 (p.Y108C) was the least affected patient, while the most
severe case was patient 3 displaying two mutations in splicing
sites, leading to porous enamel and very sensitive teeth. Patient
2′s phenotype was slightly different as it presented additional
quantitative defect associated to hypoplastic AI (smaller teeth).
The enamel of patients 4, 5, and 6 showed similar mottled
appearance of the enamel with more or less irregular staining.
In patients 5 and 6 enamel looked rather opaque and uniformly
colored.

The comparison of our case series with patients’ phenotypes
published in the literature led us to the following observations:
Patient 1 phenotype was close to the one described for patient
1 by Gasse et al. (2013), characterized by a stronger contrast
between enamel and dentine on X-rays. The enamel phenotype
of patient 4 was similar to the affected individual described by
Kim et al. (2005, Figure 1), to patient 2 described by Gasse et al.
(2013), and to our patients 5 and 6. However, an anterior openbite
was not present. Taurodontism was seen in molars especially in
the upper permanent molars.

MMP20 Mutations Known to Date and
Validation Using Evolutionary Analysis
When including the two new mutations reported in the present
study, there are now 13 different MMP20 mutations leading to
AI reported in the literature. Eight of them are simply missense
mutations leading to the only substitution of an amino acid
(Figures 2, 5). This finding demonstrates the crucial importance
of these residues for the correct function of this protease. With
the exception of p.Arg35Arg, which concerns the substitution
of a nucleotide only (see discussion in Prasad et al., 2016a),
the seven other residue substitutions in MMP20 are validated
by our evolutionary analysis as occurring either on a conserved
(unchanged residue: 5 cases) or on a conservative (2 cases)
position.

To date, 18 other genes have been shown causing non-
syndromic AI: AMELX (16 different mutations; Kim et al., 2017),
FAM83H (14, Pourhashemi et al., 2014), WDR72 (10, Hentschel
et al., 2016), ENAM (4; Pavlic et al., 2007; Seymen et al., 2014),
ITGB6/4 (4; Poulter et al., 2014; Wang et al., 2014b), SLC24A4 (3;
Wang et al., 2014b), LAMA3 (3, Gostyńska et al., 2016), GPR68
(3, Parry et al., 2016b), LTBP3 (3; Huckert et al., 2015), AMBN
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FIGURE 4 | Hypomature amelogenesis imperfecta encountered in patients with diverse MMP20 mutations. (A–D): Patient 1 (c. 323 A>G). Intraoral clinical views and

panoramic radiograph of primary, mixed (A: 6 years old; B: 7 years old) and permanent (C,D: 11 year old) dentitions. Note the limited contrast between enamel and

dentine on X-rays. (E,F): Patient 2 (c.567 T>C + c.910 G>A). Primary dentition of a 5 year old girl. No enamel or very thin enamel was visible on X-rays. (G–J):

Patient 3 (c.126+6 t>g + c.954-2 a>t). A young boy at 5 (G,I: primary teeth) and then at 8 years (H,J: permanent teeth). Limited radio-opaque enamel, if none, was

seen on X-rays. (K, L): Patient 4 (c.389 C>T + c.954-2 a>t). Permanent teeth of a 20-year old man. Hypomature enamel is clearly visible on X-rays. (M,N): Patient 5

and patient 6 (c.954-2 a>t). Two girls displaying the same mutation leading to similar phenotypes with hypomature amelogenesis imperfecta.
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FIGURE 5 | MMP20 mutations known to date. Schematical representation of the human MMP20 gene structure with indication of the previously reported mutations

and the two new mutations identified in this study (in red).

(2; Prasad et al., 2016a), KLK4 (2; Lu et al., 2008; Wang et al.,
2013), DLX3 (2; Kim et al., 2016b), STIM1 (2; Wang et al., 2014b;
Parry et al., 2016a), COL17A1 (1; Prasad et al., 2016b), C4orf26
(1; Prasad et al., 2016b), LAMB3 (1; Kim et al., 2016c), ACPT
(1, Seymen et al., 2016), and AMTN (1, Smith et al., 2016). A
total of 13 different mutations on the gene sequence causing AI
places MMP20 among the top three sensitive proteins involved
in non-syndromic AI when mutated.

Providing a clear genetic diagnosis linking genotype and
phenotype on the basis of a missense variant can be challenging.
A mutation present in a region that is highly conserved in
evolution suggests that the amino acid is functionally important.
The validated evolutionary analysis is crucial to address these
important conserved positions and to facilitate variant analysis
leading to disease diagnosis.
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