D. S. Mcnabb, Y. Xing, and L. Guarente, Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding., Genes & Development, vol.9, issue.1, pp.47-58, 1995.
DOI : 10.1101/gad.9.1.47

S. L. Forsburg and L. Guarente, Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer., Genes & Development, vol.3, issue.8, pp.1166-78, 1989.
DOI : 10.1101/gad.3.8.1166

D. S. Mcnabb and I. Pinto, Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA Complex in Saccharomyces cerevisiae, Hap5p-DNA complex in Saccharomyces cerevisiae, pp.1829-1868, 2005.
DOI : 10.1128/EC.4.11.1829-1839.2005

V. D. Dang, M. Valens, M. Bolotin-fukuhara, and B. Daignan-fornier, A genetic screen to isolate genes regulated by the yeast CCAAT-box binding protein Hap2p, Yeast, vol.10, issue.10, pp.1273-83, 1994.
DOI : 10.1128/MCB.10.3.1297

R. Lascaris, Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state, Genome Biology, vol.4, issue.1, p.3, 2003.
DOI : 10.1186/gb-2002-4-1-r3

R. S. Zitomer and C. Lowry, Regulation of gene expression by oxygen in Saccharomyces cerevisiae, Microbiol Rev, vol.56, pp.1-11, 1992.

J. L. Derisi, V. R. Iyer, and P. Brown, Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale, Science, vol.278, issue.5338, pp.680-686, 1997.
DOI : 10.1126/science.278.5338.680

D. Bourgarel, C. C. Nguyen, and M. Bolotin-fukuhara, HAP4, the glucose-repressed regulated subunit of the HAP transcriptional complex involved in the fermentation-respiration shift, has a functional homologue in the respiratory yeast Kluyveromyces lactis, Molecular Microbiology, vol.91, issue.4, pp.1205-1220, 1999.
DOI : 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C

K. Sybirna, A new Hansenula polymorpha HAP4 homologue which contains only the N-terminal conserved domain of the protein is fully functional in Saccharomyces cerevisiae, Current Genetics, vol.8, issue.3, pp.172-81, 2005.
DOI : 10.1007/s00294-004-0556-y

P. Hortschansky, Interaction of HapX with the CCAAT-binding complex???a novel mechanism of gene regulation by iron, The EMBO Journal, vol.175, issue.13, pp.3157-68, 2007.
DOI : 10.1016/S0167-4781(02)00286-5

P. C. Hsu, C. Y. Yang, and C. Y. Lan, Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence, Eukaryotic Cell, vol.10, issue.2, pp.207-232, 2011.
DOI : 10.1128/EC.00158-10

W. H. Jung, HapX Positively and Negatively Regulates the Transcriptional Response to Iron Deprivation in Cryptococcus neoformans, PLoS Pathogens, vol.302, issue.11, p.1001209, 2010.
DOI : 10.1371/journal.ppat.1001209.s016

A. Krober, HapX Mediates Iron Homeostasis in the Pathogenic Dermatophyte Arthroderma benhamiae but Is Dispensable for Virulence, PLOS ONE, vol.6, issue.3, p.150701, 2016.
DOI : 10.1371/journal.pone.0150701.s009

S. Labbe, M. G. Khan, and J. Jacques, Iron uptake and regulation in Schizosaccharomyces pombe, Current Opinion in Microbiology, vol.16, issue.6, pp.669-76, 2013.
DOI : 10.1016/j.mib.2013.07.007

M. S. Lopez-berges, HapX-Mediated Iron Homeostasis Is Essential for Rhizosphere Competence and Virulence of the Soilborne Pathogen Fusarium oxysporum, The Plant Cell, vol.24, issue.9, pp.3805-3827, 2012.
DOI : 10.1105/tpc.112.098624

M. Schrettl, HapX-Mediated Adaption to Iron Starvation Is Crucial for Virulence of Aspergillus fumigatus, PLoS Pathogens, vol.438, issue.9, p.1001124, 2010.
DOI : 10.1371/journal.ppat.1001124.s003

O. R. Homann, J. Dea, S. M. Noble, and A. D. Johnson, A Phenotypic Profile of the Candida albicans Regulatory Network, PLoS Genetics, vol.46, issue.12, p.1000783, 2009.
DOI : 10.1371/journal.pgen.1000783.s008

F. Gsaller, The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess, The EMBO Journal, vol.33, issue.19, pp.2261-76, 2014.
DOI : 10.15252/embj.201489468

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232046

J. Merhej, Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication, Molecular Microbiology, vol.3, issue.5, pp.951-72, 2015.
DOI : 10.1534/g3.113.006908

URL : https://hal.archives-ouvertes.fr/hal-01262282

A. Tanaka, M. Kato, T. Nagase, T. Kobayashi, and N. Tsukagoshi, Isolation of genes encoding novel transcription factors which interact with the Hap complex from Aspergillus species, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1576, issue.1-2, pp.176-82, 2002.
DOI : 10.1016/S0167-4781(02)00286-5

N. Petryk, Functional Study of the Hap4-Like Genes Suggests That the Key Regulators of Carbon Metabolism HAP4 and Oxidative Stress Response YAP1 in Yeast Diverged from a Common Ancestor, PLoS ONE, vol.128, issue.18, p.112263, 2014.
DOI : 10.1371/journal.pone.0112263.s004

C. Chen, K. Pande, S. D. French, B. B. Tuch, and S. M. Noble, An Iron Homeostasis Regulatory Circuit with Reciprocal Roles in Candida albicans Commensalism and Pathogenesis, Cell Host & Microbe, vol.10, issue.2, pp.118-153, 2011.
DOI : 10.1016/j.chom.2011.07.005

URL : http://doi.org/10.1016/j.chom.2011.07.005

P. Hortschansky, Deciphering the Combinatorial DNA-binding Code of the CCAAT-binding Complex and the Iron-regulatory Basic Region Leucine Zipper (bZIP) Transcription Factor HapX, Journal of Biological Chemistry, vol.17, issue.10, pp.6058-70, 2015.
DOI : 10.1016/j.mib.2013.07.007

J. Kaplan, D. Mcvey-ward, R. J. Crisp, and C. C. Philpott, Iron-dependent metabolic remodeling in S. cerevisiae, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1763, issue.7, pp.646-51, 2006.
DOI : 10.1016/j.bbamcr.2006.03.008

URL : http://doi.org/10.1016/j.bbamcr.2006.03.008

J. Ihrig, Iron Regulation through the Back Door: Iron-Dependent Metabolite Levels Contribute to Transcriptional Adaptation to Iron Deprivation in Saccharomyces cerevisiae, Eukaryotic Cell, vol.9, issue.3, pp.460-71, 2010.
DOI : 10.1128/EC.00213-09

C. C. Philpott, S. Leidgens, and A. G. Frey, Metabolic remodeling in iron-deficient fungi, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.9, pp.1509-1529, 2012.
DOI : 10.1016/j.bbamcr.2012.01.012

URL : http://doi.org/10.1016/j.bbamcr.2012.01.012

J. Merhej, A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata, Frontiers in Microbiology, vol.8, issue.843, p.645, 2016.
DOI : 10.1128/EC.00002-09

URL : https://hal.archives-ouvertes.fr/hal-01323791

S. Brunke and B. Hube, infection strategies, Cellular Microbiology, vol.109, issue.Part 3, pp.701-709, 2013.
DOI : 10.1073/pnas.1117676109

D. C. Johnson, K. E. Cano, E. C. Kroger, and D. S. Mcnabb, Novel Regulatory Function for the CCAAT-Binding Factor in Candida albicans, Eukaryotic Cell, vol.4, issue.10, pp.1662-76, 2005.
DOI : 10.1128/EC.4.10.1662-1676.2005

D. S. Mcnabb, K. A. Tseng, and L. Guarente, The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor., Molecular and Cellular Biology, vol.17, issue.12, pp.7008-7026, 1997.
DOI : 10.1128/MCB.17.12.7008

F. Gerwien, ABSTRACT, mBio, vol.7, issue.5, 2016.
DOI : 10.1128/mBio.01782-16

L. Li, D. Bagley, D. M. Ward, and J. Kaplan, Yap5 Is an Iron-Responsive Transcriptional Activator That Regulates Vacuolar Iron Storage in Yeast, Molecular and Cellular Biology, vol.28, issue.4, pp.1326-1363, 2008.
DOI : 10.1128/MCB.01219-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258748

L. Li, X. Jia, D. M. Ward, and J. Kaplan, Gene Protects Yeast from High Iron Toxicity, Journal of Biological Chemistry, vol.15, issue.44, pp.38488-97, 2011.
DOI : 10.1074/jbc.275.14.10709

C. Pimentel, The Role of the Yap5 Transcription Factor in Remodeling Gene Expression in Response to Fe Bioavailability, PLoS ONE, vol.414, issue.5, p.37434, 2012.
DOI : 10.1371/journal.pone.0037434.s006

N. Rietzschel, A. J. Pierik, E. Bill, R. Lill, and U. Muhlenhoff, The Basic Leucine Zipper Stress Response Regulator Yap5 Senses High-Iron Conditions by Coordination of [2Fe-2S] Clusters, Molecular and Cellular Biology, vol.35, issue.2, pp.370-378, 2015.
DOI : 10.1128/MCB.01033-14

K. Tan, A systems approach to delineate functions of paralogous transcription factors: Role of the Yap family in the DNA damage response, Proceedings of the National Academy of Sciences, vol.35, issue.suppl_1, pp.2934-2943, 2008.
DOI : 10.1093/nar/gkl857

A. Avendano, Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces???cerevisiae, Molecular Microbiology, vol.101, issue.1, pp.291-305, 2005.
DOI : 10.1128/MCB.16.5.1978

V. D. Dang, C. Bohn, M. Bolotin-fukuhara, and B. Daignan-fornier, The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms., Journal of Bacteriology, vol.178, issue.7, pp.1842-1851, 1996.
DOI : 10.1128/jb.178.7.1842-1849.1996

V. D. Dang, M. Valens, M. Bolotin-fukuhara, and B. Daignan-fornier, Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae: differential regulation by the CCAAT-box-binding factor, Molecular Microbiology, vol.22, issue.4, pp.681-92, 1996.
DOI : 10.1046/j.1365-2958.1996.d01-1715.x

H. Hernandez, C. Aranda, G. Lopez, L. Riego, and A. Gonzalez, Hap2-3-5-Gln3 determine transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions in the yeast Saccharomyces cerevisiae, Microbiology, vol.157, issue.3, pp.879-89, 2011.
DOI : 10.1099/mic.0.044974-0

P. C. Hsu, Diverse Hap43-Independent Functions of the Candida albicans CCAAT-Binding Complex, Eukaryotic Cell, vol.12, issue.6, pp.804-819, 2013.
DOI : 10.1128/EC.00014-13

L. Riego, A. Avendano, A. Deluna, E. Rodriguez, and A. Gonzalez, GDH1 expression is regulated by GLN3, GCN4, and HAP4 under respiratory growth, Biochemical and Biophysical Research Communications, vol.293, issue.1, pp.79-85, 2002.
DOI : 10.1016/S0006-291X(02)00174-2

F. Gsaller, Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex, PLOS Pathogens, vol.6, issue.22, p.1005775, 2016.
DOI : 10.1371/journal.ppat.1005775.s007

M. A. Kennedy, R. Barbuch, and M. Bard, Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1445, issue.1, pp.110-132, 1999.
DOI : 10.1016/S0167-4781(99)00035-4

M. Thon, The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes, Nucleic Acids Research, vol.38, issue.4, pp.1098-113, 2010.
DOI : 10.1093/nar/gkp1091

K. Sybirna, N. Petryk, Y. F. Zhou, A. Sibirny, and M. Bolotin-fukuhara, A novel Hansenula polymorpha transcriptional factor HpHAP4-B, able to functionally replace the S. cerevisiae HAP4 gene, contains an additional bZip motif, Yeast, vol.11, issue.1, pp.941-54, 2010.
DOI : 10.1128/MCB.16.6.3206

URL : https://hal.archives-ouvertes.fr/hal-00534369

K. Kitada, E. Yamaguchi, and M. Arisawa, Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation, Gene, vol.165, issue.2, pp.203-209, 1995.
DOI : 10.1016/0378-1119(95)00552-H

T. Schwarzmuller, Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes, PLoS Pathogens, vol.39, issue.6, p.1004211, 2014.
DOI : 10.1371/journal.ppat.1004211.s022

J. Merhej, bPeaks: a bioinformatics tool to detect transcription factor binding sites from ChIPseq data in yeasts and other organisms with small genomes, Yeast, vol.9, issue.8, pp.375-91, 2014.
DOI : 10.1371/journal.ppat.1003519

URL : https://hal.archives-ouvertes.fr/hal-01132624

M. S. Longtine, Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae, Yeast, vol.13, issue.10, pp.953-61, 1998.
DOI : 10.1128/MCB.4.8.1440

O. Puig, The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification, Methods, vol.24, issue.3, pp.218-247, 2001.
DOI : 10.1006/meth.2001.1183

G. Lelandais, C. Blugeon, and J. Merhej, ChIPseq in Yeast Species: From Chromatin Immunoprecipitation to High-Throughput Sequencing and Bioinformatics Data Analyses, Methods Mol Biol, vol.1361, pp.185-202, 2016.
DOI : 10.1007/978-1-4939-3079-1_11

URL : https://hal.archives-ouvertes.fr/hal-01400736

H. Thorvaldsdottir, J. T. Robinson, and J. P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration, Briefings in Bioinformatics, vol.14, issue.2, pp.178-92, 2013.
DOI : 10.1093/bib/bbs017

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603213

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, issue.6, pp.841-843, 2010.
DOI : 10.1093/bioinformatics/btq033

M. Thomas-chollier, RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets, Nucleic Acids Research, vol.40, issue.4, p.31, 2012.
DOI : 10.1093/nar/gkr1104

URL : http://doi.org/10.1093/nar/gkr1104

A. Medina-rivera, RSAT 2015: Regulatory Sequence Analysis Tools, Nucleic Acids Research, vol.43, issue.W1, pp.50-56, 2015.
DOI : 10.1093/nar/gkv362

URL : http://doi.org/10.1093/nar/gkv362

G. Csardi and T. Nepusz, The igraph software package for complex network research, InterJournal Complex Systems, p.1695, 2006.

D. O. Inglis, The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata, Nucleic Acids Research, vol.40, issue.D1, pp.667-74, 2012.
DOI : 10.1093/nar/gkr945

S. Lemoine, F. Combes, N. Servant, and S. Le-crom, Goulphar: rapid access and expertise for standard two-color microarray normalization methods, BMC Bioinformatics, vol.7, issue.1, p.467, 2006.
DOI : 10.1186/1471-2105-7-467

URL : https://hal.archives-ouvertes.fr/inserm-00122139

M. E. Ritchie, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, vol.43, issue.7, p.47, 2015.
DOI : 10.1093/nar/gkv007

URL : http://doi.org/10.1093/nar/gkv007

M. Oeffinger, Comprehensive analysis of diverse ribonucleoprotein complexes, Nature Methods, vol.148, issue.11, pp.951-957, 2007.
DOI : 10.1038/nmeth1101

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.325.1456