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Abstract

We introduce in this paper a technique for the reduced order approximation of parametric
symmetric elliptic partial differential equations. For any given dimension, we prove the existence
of an optimal subspace of at most that dimension which realizes the best approximation in
mean of the error with respect to the parameter in the quadratic norm associated to the elliptic
operator between the exact solution and the Galerkin solution calculated on the subspace.
This is analogous to the best approximation property of the Proper Orthogonal Decomposition
(POD) subspaces, excepting that in our case the norm is parameter-depending, and then the
POD optimal sub-spaces cannot be characterized by means of a spectral problem. We apply
a deflation technique to build a series of approximating solutions on finite-dimensional optimal
subspaces, directly in the on-line step. We prove that the partial sums converge to the continuous
solutions in mean quadratic elliptic norm.
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1 Introduction

The Karhunen-Loève’s expansion (KLE) is a widely used tool, that provides a reliable proce-
dure for a low dimensional representation of spatiotemporal signals (see [8, 18]). It is referred
to as the principal components analysis (PCA) in statistics (see [10, 12, 23]), or called singular
value decomposition (SVD) in linear algebra (see [9]). It is named the proper orthogonal de-
composition (POD) in mechanical computation, where it is also widely used (see [3]). Its use
allows large savings of computational costs, and make affordable the solution of problems that
need a large amount of solutions of parameter-depending Partial Differential Equations (see
[2, 6, 11, 16, 23, 24, 25, 26]).

However the computation of the POD expansion requires to know the function to be ex-
panded, or at least its values at the nodes of a fine enough net. This makes it rather expensive
to solve parametric elliptic Partial Differential Equations (PDEs), as it requires the previous
solution of the PDE for a large enough number of values of the parameter (“snapshots”) (see
[13]), even if these can be located at optimal positions (see [15]). Galerkin-POD strategies are
well suited to solve parabolic problems, where the POD basis is obtained from the previous
solution of the underlying elliptic operator (see [14, 20]).

An alternative approach is the Proper Generalized Decomposition that iteratively computes
a tensorized representation of the parameterized PDE, that separates the parameter and the
independent variables, introduced in [1]. It has been interpreted as a Power type Generalized
Spectral Decomposition (see [21, 22]). It has experienced a fast development, being applied to
the low-dimensional tensorized solution of many applied problems. The mathematical analysis
of the PGD has experienced a relevant development in the last years. The convergence of a
version of the PGD for symmetric elliptic PDEs via minimization of the associated energy has
been proved in [17]. Also, in [7] the convergence of a recursive approximation of the solution
of a linear elliptic PDE is proved, based on the existence of optimal subspaces of rank 1 that
minimize the elliptic norm of the current residual.

The present paper is aimed at the direct determination of a variety of reduced dimension
for the solution of parameterized symmetric elliptic PDEs. We intend to on-line determine
an optimal subspace of given dimension that yields the best approximation in mean (with
respect to the parameter) of the error (in the quadratic norm associated to the elliptic operator)
between the exact solution and the Galerkin solution calculated on the subspace. The optimal
POD sub-spaced can no longer be characterized by means of a spectral problem for a compact
self-adjoint operator (the standard POD operator) and thus the spectral theory for compact
self-adjoint operators does no apply. We build recursive approximations on finite-dimensional
optimal subspaces by minimizing the mean quadratic error of the current residual, similar to the
one introduced in [7], that we prove to be strongly convergent in the “natural”mean quadratic
elliptic norm. The method shares some properties of PGD and POD expansions: It builds a
tensorized representation of the parameterized solutions, by means of optimal subspaces that
minimize the residual in mean quadratic norm.

The paper is structured as follows: In Section 2 we state the general problem of finding
optimal subspaces of a given dimension. We prove in Section 3 that there exists a solution for
1D optimal subspaces, characterized as a maximization problem with a non-linear normalization
restriction. We extend this existence result in Section 4 to general dimensions. Finally, in
Section 5 we use the results in Sections 3 and 4 to build a deflation algorithm to approximate
the solution of a parametric family of elliptic problems and we show the convergence.
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2 Statement of the problem

Let H be a separable Hilbert space endowed with the scalar product (·, ·). The related norm is
denoted by ‖ · ‖.

We denote by Bs(H) the space of bilinear, symmetric and continuous forms in H.
Assume given a measure space (Γ,B, µ), with standard notation, so that µ is σ-finite.
Let a ∈ L∞(Γ, Bs(H); dµ) be such that there exists α > 0 satisfying

α ‖u‖2 ≤ a(u, u; γ), ∀u ∈ H, dµ-a.e. γ ∈ Γ. (1)

For µ−a.e γ ∈ Γ, the bilinear form a(·, ·; γ) determines a norm uniformly equivalent to the norm
‖ · ‖. Moreover, a ∈ Bs(H) defined by

a(v, w) =

∫
Γ
a(v(γ), w(γ); γ) dµ(γ), ∀v, w ∈ L2(Γ, H; dµ) (2)

defines an inner product in H which generates a norm equivalent to the standard one in
L2(Γ, H; dµ).

Let be given a data function f ∈ L2(Γ, H ′; dµ). We are interested in the variational problem:

Find u(γ) ∈ H such that a(u(γ), v; γ) = 〈f(γ), v〉, ∀v ∈ H, dµ-a.e. γ ∈ Γ, (3)

where 〈·, ·〉 denotes the duality pairing between H ′ and H.
By Riesz representation theorem, problem (3) admits a unique solution for dµ-a.e. γ ∈ Γ.

On the other hand, we claim that ũ solution of

ũ ∈ L2(Γ, H; dµ), ā(ũ, v̄) =

∫
Γ
〈f(γ), v̄(γ)〉 dµ(γ), ∀ v̄ ∈ L2(Γ, H; dµ), (4)

also satisfies (3): Indeed taking v̄ = vχB, with v ∈ H fixed and B ∈ B arbitrary, implies that
there exists a subset Nv ∈ B with µ(Nv) = 0 such that

a(ũ(γ), v; γ) = 〈f(γ), v〉, ∀ γ ∈ Γ \Nv.

The separability of H implies that Nv can be chosen independent of v, which proves the claim.
By the uniqueness of the solution of (3) this shows that

ũ = u dµ-a.e. γ ∈ Γ. (5)

This proves that u belongs to L2(Γ, H; dµ) and provides an equivalent definition of u. Namely,
that u is the solution of (4).

Given a closed subspace Z of H, let us denote by uZ(γ) the solution of the Galerkin approx-
imation of problem (3) on Z, which reads as

uZ(γ) ∈ Z, a(uZ(γ), z; γ) = 〈f(γ), z〉, ∀z ∈ Z, dµ-a.e. γ ∈ Γ, (6)

or equivalently as

uZ ∈ L2(Γ, Z; dµ), ā(uZ , z) =

∫
Γ
〈f(γ), z(γ)〉 dµ(γ), ∀ z ∈ L2(Γ, Z; dµ). (7)

For every k ∈ IN, we intend to find the best subspace W of H of dimension smaller than or
equal to k that minimizes the mean error between u(γ) and uW (γ). That is, W solves

min
Z∈Sk

ā(u− uZ , u− uZ), (8)
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where Sk is the family of subspaces of H of dimension smaller than or equal to k. This problem
will be proved to have a solution in Sections 3 and 4. We will then use this result to approximate
the solution u of problem (3) by a deflation algorithm.

To finish this section we provide some equivalent formulations of the problem. First we
observe that

Proposition 2.1 For every closed subspace Z ⊂ H, the function uZ defined by (7) is also the
unique solution of

min
z∈L2(Γ,Z;dµ)

ā(u− z, u− z). (9)

Moreover, for dµ-a.e. γ ∈ Γ, the vector uZ(γ) is the solution of

min
z∈Z

a(u(γ)− z, u(γ)− z; γ). (10)

Proof: It is a classical property of the Galerkin approximation of the variational formulation
of linear elliptic problems that uZ satisfies (9). Indeed, the symmetry of ā gives

ā(u− z, u− z) = ā(u− uZ , u− uZ) + 2ā(u− uZ , uZ − z) + ā(uZ − z, uZ − z),

for every z ∈ L2(Γ, H; dµ), where by (4), (5) and (7) the second term on the right-hand side
vanishes, while the third one is nonnegative. This proves (9).

The proof of (10) is the same by taking into account (3) and (6) instead of (4) and (7).

As a consequence of Proposition 2.1 and definition (2) of ā, we have

Corollary 2.2 A space W ∈ Sk is a solution of (8) if and only if it is a solution of

min
Z∈Sk

min
z∈L2(Γ,Z;dµ)

ā(u− z, u− z). (11)

Moreover

min
Z∈Sk

min
z∈L2(Γ,Z;dµ)

ā(u− z, u− z) = min
Z∈Sk

∫
Γ

min
z∈Z

a(u(γ)− z, u(γ)− z; γ)dµ(γ). (12)

Remark 2.3 Optimization problem (11) is reminiscent of the Kolmogorov k-width related to the
best approximation of the manifold (u(γ))γ∈Γ by subspaces in H with dimension k as presented
in [19]. In the present minimization problem, we use the norm of L2(Γ, H, dµ) instead of the
norm of L∞(Γ, H, dµ) as used there. The minimization problem in [19] can indeed be written as

min
Z∈Sk

esssup
γ∈Γ

min
z∈Z

a(u(γ)− z, u(γ)− z; γ),

if one uses a(·, ·; γ) as the inner product in H.

For a function v ∈ L2(Γ, V ; dµ), we denote by R(v) the vectorial space spanned by v(γ)
when γ belongs to Γ; more exactly, taking into account that v is only defined up to sets of zero
measure, the correct definition of R(v) is given by

R(v) =
⋂

µ(N)=0

Span
{
v(γ) : γ ∈ Γ \N

}
. (13)

Taking into account (11), a new formulation of (8) is given by



5

Proposition 2.4 If W is a solution of (8), then uW is a solution of

min
v∈L2(Γ,H;dµ)

dimR(v)≤k

ā(u− v, u− v). (14)

Reciprocally, if û is a solution of (14), then R(û) is a solution of (8) and û = uR(û).

The next proposition provides another formulation for (8) which depends on f and not on
the solution u of (3).

Proposition 2.5 The subspace W ∈ Sk solves problem (8) if and only if it is a solution of the
problem

max
Z∈Sk

∫
Γ
〈f(γ), uZ(γ)〉 dµ(γ). (15)

Proof: As in the proof of the first part of Proposition 2.1, one deduces from (4), (5) and (7)
that

ā(u− uZ , z) = 0, ∀z ∈ L2(Γ, Z; dµ).

Using the symmetry of ā, we then have

ā(u− uZ , u− uZ) = ā(u, u)− a(uZ , u) = ā(u, u)− ā(uZ , uZ)

= ā(u, u)−
∫

Γ
〈f(γ), uZ(γ)〉 dµ(γ).

Thus W solves (8) if and only if it solves (15).

Remark 2.6 In [7] a problem similar to (8) has been studied, namely

(Pk)
′ min

Z∈Sk

∫
Γ
(u(γ)− uZ(γ), u(γ)− uZ(γ))H dµ(γ), (16)

where (·, ·)H is an inner product on H. In this case a solution of (Pk)
′ is the space generated by

the first k eigenfunctions of the POD operator P : H 7→ H, which is given by

P(v) =

∫
Γ
(v, u(γ))H u(γ) dµ(γ), ∀v ∈ H.

In the present case, due the dependence of a with respect to γ, it does not seem that the
problem can be reduced to a spectral problem. As an example, we consider the case k = 1. Then
problem (14) can be written as

min
v∈H,ϕ∈L2(Γ;dµ)

∫
Γ
a(u(γ)− ϕ(γ)v, u(γ)− ϕ(γ)v; γ)dµ(γ). (17)

So, taking the derivative of the functional

(v, ϕ) ∈ H × L2(Γ; dµ) 7→
∫

Γ
a(u(γ)− ϕ(γ)v, u(γ)− ϕ(γ)v; γ)dµ(γ),

we deduce that if (w,ψ) ∈ H × L2(Γ; dµ) is a solution of (17), with w 6= 0, then

ψ(γ) =
a(u(γ), w; γ)

a(w,w; γ)
, dµ-a.e. γ ∈ Γ, (18)
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and w is a solution of the non-linear variational problem∫
Γ

a(u(γ), w; γ)

a(w,w; γ)
a(u(γ), v; γ)dµ(γ) =

∫
Γ

a(u(γ), w; γ)2

a(w,w; γ)2
a(w, v; γ)dµ(γ), ∀ v ∈ H. (19)

Note that if w = 0, then u = 0 and therefore f = 0.
If a does not depend on γ, statement (19) can be written as

a

(∫
Γ
a(u(γ), w)u(γ)dµ(γ), v

)
= a


∫

Γ
a(u(γ), w)2dµ(γ)

a(w,w)
w, v

 , ∀ v ∈ H,

which implies that

∫
Γ
a(u(γ), w)u(γ)dµ(γ) =

∫
Γ
a(u(γ), w)2dµ(γ)

a(w,w)
w,

i.e. w is an eigenvector of the operator

v ∈ H 7→
∫

Γ
a(u(γ), v)u(γ)dµ(γ)

for the eigenvalue ∫
Γ
a(u(γ), w)2dµ(γ)

a(w,w)
.

In contrast, when a depends on γ problem (19) does not correspond to an eigenvalue equation.
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3 One-dimensional approximations

In Section 4 we shall show the existence of the solution of problem (8) for any arbitrary k.
However a particularly interesting case from the point of view of the applications is k = 1. We
dedicate this section to this special case. Observe that for Z ∈ S1, there exists z ∈ H such that
Z = Span{z}. The problem to solve can be reformulated as follows.

Lemma 3.1 Assume f 6≡ 0. Then, the subspace W ∈ S1 solves problem (15) if and only if
W = span{w}, where w is a solution of

max
z∈H
z 6=0

∫
Γ

〈f(γ), z〉2

a(z, z; γ)
dµ(γ). (20)

Proof: Let Z ∈ S1. Then Z = span{z}, for some z ∈ H, and there exists a function ϕ : Γ 7→ R
such that

uZ(γ) = ϕ(γ) z, dµ-a.e. γ ∈ Γ.

If z 6= 0, then, as uZ(γ) is the solution to the variational equation (7), we derive that

ϕ(γ) =
〈f(γ), z〉
a(z, z; γ)

, dµ-a.e. γ ∈ Γ.

Using this formula we obtain that∫
Γ
〈f, uZ(γ)〉 dγ =

∫
Γ

〈f(γ), z〉2

a(z, z; γ)
dµ(γ). (21)

If the maximum in (15) is obtained by a space of dimension one, then formula (21) proves
the desired result.

In contrast, if the maximum in (15) is obtained by the null space, then the maximum in S1

is equal to zero. Therefore the right-hand side of (21) is zero for every z ∈ H, which implies
that f = 0 dµ-a.e. in Γ, in contradiction with the assumption f 6≡ 0.

Remark 3.2 Since the integrand which appears in (20) is homogenous of degree zero in z,
problem (20) is equivalent to

max
z∈H
‖z‖=1

∫
Γ

〈f(γ), z〉2

a(z, z; γ)
dµ(γ).

We now prove the existence of a solution to problem (20).

Theorem 3.3 Assume f 6≡ 0. Problem (20) admits at least a solution.

Note that if f ≡ 0, then, every vector w ∈ H \ {0} is a solution of (20).

Proof: Define

M∗ := sup
z∈H
‖z‖=1

∫
Γ

〈f(γ), z〉2

a(z, z; γ)
dµ(γ), (22)

and consider a sequence wn ⊂ H, with ‖wn‖ = 1 such that

lim
n→∞

∫
Γ

〈f(γ), wn〉2

a(wn, wn; γ)
dµ(γ) = M∗. (23)
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Up to a subsequence, we can assume the existence of w ∈ H, such that wn converges weakly
in H to w. Taking into account that f(γ) ∈ H ′, a(·, ·, γ) ∈ Bs(H) dµ-a.e. γ ∈ Γ and (1) is
satisfied, we get

lim
n→∞

〈f(γ), wn〉 = 〈f(γ), w〉, dµ-a.e. γ ∈ Γ, (24)

lim inf
n→∞

a(wn, wn; γ) ≥ a(w,w; γ), dµ-a.e. γ ∈ Γ. (25)

On the other hand, we observe that (1) and ‖wn‖ = 1 imply

|〈f(γ), wn〉| ≤ ‖f(γ)‖H′ ,
1

a(wn, wn; γ)
≤ 1

α
dµ-a.e. γ ∈ Γ. (26)

If w = 0, then (24), (26) and Lebesgue’s dominated convergence theorem imply

lim
n→∞

∫
Γ

〈f(γ), wn〉2

a(wn, wn; γ)
dµ(γ) = 0,

which by (23) is equivalent to M∗ = 0. Taking into account (1) and the definition (22) of M∗,
this is only possible if f ≡ 0 is the null function. As we are assuming f 6≡ 0, we conclude that
w is different of zero. Then, (26) proves

0 ≤
‖f(γ)‖2H′

α
− 〈f(γ), wn〉2

a(wn, wn; γ)
, dµ-a.e. γ ∈ Γ,

while (24) and (25) prove

lim inf
n→∞

(
‖f(γ)‖2H′

α
− 〈f(γ), wn〉2

a(wn, wn; γ)

)
≥
‖f(γ)‖2H′

α
− 〈f(γ), w〉2

a(w,w; γ)
, dµ-a.e. γ ∈ Γ. (27)

Using (23), Fatou’s lemma implies∫
Γ

(
‖f(γ)‖2H′

α
− 〈f(γ), w〉2

a(w,w; γ)

)
dµ(γ) ≤ lim inf

n→∞

∫
Γ

(
‖f(γ)‖2H′

α
− 〈f(γ), wn〉2

a(wn, wn; γ)

)
dµ(γ)

=

∫
Γ

‖f(γ)‖2H′
α

dµ(γ)−M∗,

or equivalently

M∗ ≤
∫

Γ

〈f(γ), w〉2

a(w,w; γ)
dµ(γ). (28)

By definition (22) of M∗, this proves that the above inequality is an equality and that w is a
solution of (20).

Remark 3.4 Actually, in place of (27), one has the stronger result

lim inf
n→∞

(
‖f(γ)‖2H′

α
− 〈f(γ), wn〉2

a(wn, wn; γ)

)
=
‖f(γ)‖2H′

α
− 〈f(γ), w〉2

lim inf
n→∞

a(wn, wn; γ))
, dµ-a.e. γ ∈ Γ,

which by the proof used to prove (28) shows

M∗ ≤
∫

Γ

〈f(γ), w〉2

lim inf
n→∞

a(wn, wn; γ)
dµ(γ).
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Combined with

M∗ =

∫
Γ

〈f(γ), w〉2

a(w,w; γ)
dµ(γ)

and (25), this implies

a(w,w; γ) = lim inf
n→∞

a(wn, wn; γ) dµ-a.e. γ ∈ Γ such that 〈f(γ), w〉 6= 0.

By (1) and f 6≡ 0, this proves the existence of a subsequence of wn which converges strongly to
w.

Since this proof can be carried out by replacing wn by any subsequence of wn, we conclude
that the whole sequence wn (which we extracted just after (23) assuming that it converges weakly
to some w) actually converges strongly to w.

The above result may be used to build a computable approximation of a solution of (20).
Indeed, for f 6≡ 0, let {Hn}n≥1 be an internal approximation of H, that is a sequence of subspaces
of finite dimension of H such that

lim
n→∞

inf
ψ∈Hn

‖z − ψ‖ = 0, ∀z ∈ H.

and consider a solution wn of

max
z∈Hn
‖z‖=1

∫
Γ

〈f(γ), z〉2

a(z, z; γ)
dµ(γ).

The existence of such a wn can be obtained by reasoning as in the proof of Theorem 3.3 or just
using Weierstrass theorem because the dimension of Hn is finite.

Taking w̃ a solution of (20) and a sequence w̃n ∈ Hn converging to w̃ in H, we have∫
Γ

〈f(γ), w̃〉2

a(w̃, w̃; γ)
dµ(γ) = lim

n→∞

∫
Γ

〈f(γ), w̃n〉2

a(w̃n, w̃n; γ)
dµ(γ)

≤ lim inf
n→∞

∫
Γ

〈f(γ), wn〉2

a(wn, wn; γ)
dµ(γ) ≤ lim sup

n→∞

∫
Γ

〈f(γ), wn〉2

a(wn, wn; γ)
dµ(γ) ≤

∫
Γ

〈f(γ), w̃〉2

a(w̃, w̃; γ)
dµ(γ),

and thus

lim
n→∞

∫
Γ

〈f(γ), wn〉2

a(wn, wn; γ)
dµ(γ) =

∫
Γ

〈f(γ), w̃〉2

a(w̃, w̃; γ)
dµ(γ) = M∗.

This proves that the sequence wn satisfies (23). Therefore any subsequence of wn which converges
weakly to some w converges strongly to w which is a solution of (20).
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4 Higher-dimensional approximations

This section is devoted to the proof of the existence of an optimal subspace which is solution of
(8) when k ≥ 1 is any given number.

Theorem 4.1 For any given k ≥ 1, problem (8) admits at least one solution.

Proof: As in the proof of Theorem 3.3, we use the direct method of the Calculus of Variations.
Denoting by mk

mk = inf
Z∈Sk

ā(u− uZ , u− uZ), (29)

we consider a sequence of spaces Wn ∈ Sk such that wn := uWn satisfies

lim
n→∞

ā(u− wn, u− wn) = mk. (30)

Taking into account that by Proposition 2.1

Z ⊂ Z̃ =⇒ ā(u− uZ̃ , u− uZ̃) ≤ ā(u− uZ , u− uZ), (31)

we can assume that the dimension of Wn is equal to k. Moreover, we observe that (30) implies
that wn is bounded in L2(Γ, H; dµ).

Let (z1
n, · · · , zkn) be an orthonormal basis of Wn. It holds

wn(γ) =
k∑
j=1

(wn(γ), zjn) zjn, dµ-a.e. γ ∈ Γ. (32)

Since the norm of the vectors zjn is one, there exists a subsequence of n and k vectors zj ∈ H
such that

zjn ⇀ zj in H, ∀ j ∈ {1, · · · , k}. (33)

Using also
|(wn(γ), zjn)| ≤ ‖wn(γ)‖, dµ-a.e γ ∈ Γ,

we get that (wn, z
j
n) is bounded in L2(Γ, H; dµ) for every j and thus, there exists a subsequence

of n and k functions pj ∈ L2(Γ; dµ) such that

(wn, z
j
n) ⇀ pj in L2(Γ, H; dµ), ∀ j ∈ {1, · · · , k}. (34)

We claim that

wn ⇀ w :=
n∑
j=1

pjzj in L2(Γ; dµ). (35)

Indeed, taking into account that wn is bounded in L2(Γ, H; dµ) and (32), it is enough to show

lim
n→∞

∫
Γ

(
(wn, z

j
n)zjn, ϕ v

)
dµ(γ) =

∫
Γ
(pjzj , ϕ v) dµ(γ), ∀ϕ ∈ L2(Γ; dµ), ∀ v ∈ H. (36)

This is a simple consequence of∫
Γ

(
(wn, z

j
n)zjn, ϕ v

)
dµ(γ) = (zjn, v)

∫
Γ
(wn, z

j
n)ϕdµ(γ),

combined with (33) and (34).
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From the continuity and convexity of the quadratic form associated to ā, as well as from
(35) and (30), we have

ā(u− w, u− w) ≤ lim
n→∞

ā(u− wn, u− wn) = mk. (37)

Using that W = Span{z1, · · · , zk} ∈ Sk, and that (see Proposition 2.1)

ā(u− uW , u− uW ) ≤ ā(u− w, u− w), (38)

we conclude that W is a solution of (8).

Remark 4.2 From (37), (38), definition (29) of mk and Proposition 2.1, we have that w = uW
in the proof of Theorem 4.1. Moreover,

ā(u− w, u− w) = mk = lim
n→∞

ā(u− wn, u− wn),

which combined with (35) proves that wn converges strongly to w in L2(Γ, H; dµ). As in Remark
3.4, this can be used to build a strong approximation of a solution of (8) by using an internal
approximation of H.
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5 An iterative algorithm by deflation

In the previous section, for any given k ≥ 1, we have proved the existence of an optimal subspace
for problem (8). We use here this fact to build an iterative approximation of the solution of (3)
by a deflation approach. Let us denote

Πk(v) =

{
vW | W solves min

Z∈Sk
ā(v − vZ , v − vZ)

}
, ∀ v ∈ L2(Γ, H; dµ). (39)

The deflation algorithm is as follows

• Initialization:
u0 = 0 (40)

• Iteration: Assuming ui−1 ∈ H known for i = 1, 2, · · · , set

ui = ui−1 + si, with si ∈ Πk(ei−1), where ei−1 = u− ui−1 (41)

Remark 5.1 Since one has ei−1 = u− ui−1 by (41) and since by (5), u is the solution of (4),
the function ei−1 satisfies

ei−1 ∈ L2(Γ, H; dµ),

ā(ei−1, v) =

∫
Γ
〈f(γ), v(γ)〉 dµ(γ)− ā(ui−1, v), ∀ v ∈ L2(Γ, H; dµ).

Therefore Proposition 2.5 applied to the case where f is replaced by the function f̂i defined by∫
Γ
〈f̂i(γ), v(γ)〉dµ(γ) =

∫
Γ
〈f(γ), v(γ)〉 dµ(γ)− ā(ui−1, v), ∀ v ∈ L2(Γ, H; dµ),

proves that si ∈ Πk(ei−1) is equivalent to si = (ei−1)W , where W is a solution of

max
Z∈Sk

{∫
Γ
〈f(γ), (ei−1)Z(γ)〉 dµ(γ)− ā(ui−1, (ei−1)Z)

}
,

where, in accordance to (7), (ei−1)Z denotes the solution of
(ei−1)Z ∈ L2(Γ, Z; dµ),

ā
(
(ei−1)Z , z

)
=

∫
Γ
〈f(γ), z(γ)〉 dµ(γ)− ā(ui−1, z), ∀ z ∈ L2(Γ, Z; dµ).

This observation allows one to carry out the iterative process without knowing the function
u (compare with (41)).

The convergence of the algorithm is given by the following theorem. Its proof follows the
ideas of [7].

Theorem 5.2 The sequence ui provided by the least-squares PGD algorithm (40)-(41) strongly
converges in L2(Γ, H; dµ) to the parameterized solution γ ∈ Γ 7→ u(γ) ∈ H of problem (3).
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Proof: By (41) and Proposition 2.4 applied to the case where u is replaced by ei−1, we have
that si is a solution of

min
v∈L2(Γ,H;dµ)

dimR(v)≤k

ā(ei−1 − v, ei−1 − v). (42)

This proves in particular that si is a solution of

min
v∈L2(Γ,H;dµ)
R(v)⊂R(si)

ā(ei−1 − v, ei−1 − v),

and therefore

ā(ei−1 − si, v) = 0, ∀ v ∈ L2(Γ, H; dµ) with R(v) ⊂ R(si).

But (41) implies that
ei−1 − si = ei, (43)

which gives
ā(ei, v) = 0, ∀ v ∈ L2(Γ, H; dµ) with R(v) ⊂ R(si). (44)

Taking v = si and using again (43) we get

ā(ei−1, ei−1) = ā(si, si) + ā(ei, ei), ∀ i ≥ 1, (45)

and therefore

ā(ei, ei) +
i∑

j=1

ā(sj , sj) = ā(e0, e0), ∀ i ≥ 1. (46)

Thus, we have
ei is bounded in L2(Γ, H; dµ), (47)

∞∑
j=1

ā(sj , sj) ≤ ā(e0, e0). (48)

By (47), there exists a subsequence ein of ei and e ∈ L2(Γ, H; dµ), such that

ein ⇀ e in L2(Γ, H; dµ). (49)

On the other hand, since sin+1 is a solution of (42) with i− 1 replaced by in, we get

ā(ein − sin+1, ein − sin+1) ≤ ā(ein − v, ein − v) = ā(ein , ein)− 2ā(ein , v) + ā(v, v),

∀ v ∈ L2(Γ, H; dµ), dimR(v) ≤ k,
(50)

and then

ā(ein−sin+1, ein−sin+1)− ā(ein , ein) ≤ −2ā(ein , v)+ ā(v, v), ∀ v ∈ L2(Γ, H; dµ), dimR(v) ≤ k,

or in other terms

−2ā(ein , sin+1) + ā(sin+1, sin+1) ≤ −2ā(ein , v) + ā(v, v), ∀ v ∈ L2(Γ, H; dµ), dimR(v) ≤ k.

Thanks to (47) and (48), the left-hand side tends to zero when n tends to infinity, while in the
right-hand side we can pass to the limit by (49). Thus, we have

2ā(e, v) ≤ ā(v, v), ∀ v ∈ L2(Γ, H; dµ), dim R(v) ≤ k.
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Replacing in this equality v by tv with t > 0, dividing by t, letting t tend to zero and writing
the resulting inequality for v and −v, we get

ā(e, v) = 0, ∀ v ∈ L2(Γ, H; dµ), dim R(v) ≤ k.

Taking v = wϕ, with w ∈ H, ϕ ∈ L2(Γ; dµ), and recalling definition (2) of ā we deduce∫
Γ
a(e(γ), w; γ)ϕ(γ) dµ(γ) = 0, ∀ z ∈ H, ∀ϕ ∈ L2(Γ; dµ),

and then for any w ∈ H, there exists a subset Nw ∈ B with µ(Nw) = 0 such that

a(e(γ), w; γ) = 0, ∀ γ ∈ Γ \Nw.

The separability of H implies that Nw can be chosen independent of w, and then we have

a(e(γ), w; γ) = 0, ∀w ∈ H, dµ-a.e. γ ∈ Γ,

and therefore
e(γ) = 0 dµ-a.e. γ ∈ Γ. (51)

This proves that e does not depend on the subsequence in (49) and that

ei ⇀ 0 in L2(Γ, H; dµ). (52)

Let us now prove that in (52) the convergence is strong in L2(Γ, H; dµ). We use that thanks
to (43), we have

ei = −
i∑

j=1

sj + e0, ∀ i ≥ 1,

and so,

ā(ei, ei) = −
i∑

j=1

ā(ei, sj) + ā(ei, e0), ∀ i ≥ 1. (53)

In order to estimate the right-hand side of the latest equality, we introduce, for i, j ≥ 1, the
function zi,j as the solution of

zi,j ∈ L2(Γ,R(sj); dµ), ā(zi,j , v) = ā(ei−1, v), ∀ v ∈ L2(Γ,R(sj); dµ). (54)

We have ∣∣ā(ei−1, sj)
∣∣ =

∣∣ā(zi,j , sj)
∣∣ ≤ ā(zi,j , zi,j)

1
2 ā(sj , sj)

1
2 . (55)

Using (45), (43), the fact that si is a solution of (42) and dim R(sj) ≤ k

ā(ei−1, ei−1)− ā(si, si) = ā(ei−1 − si, ei−1 − si) ≤ ā(ei−1 − zi,j , ei−1 − zi,j).

Expending the right-hand side and using v = zi,j in (54) this gives

ā(zi,j , zi,j) ≤ ā(si, si),

which combined with (55) provides the estimate∣∣ā(ei−1, sj)
∣∣ ≤ ā(si, si)

1
2 ā(sj , sj)

1
2 , ∀ i, j ≥ 1.
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Using the latest estimate in (53) and then Cauchy-Schwarz’s inequality, we get

ā(ei, ei) ≤ ā(si+1, si+1)
1
2

i∑
j=1

ā(sj , sj)
1
2 + ā(ei, e0)

≤ ā(si+1, si+1)
1
2 i

1
2

 ∞∑
j=1

ā(sj , sj)

 1
2

+ ā(ei, e0), ∀ i ≥ 1.

(56)

But the criterion of comparison of two series with nonnegative terms and the facts that (see
(48))

∞∑
i=1

1

i
=∞,

∞∑
i=1

ā(si, si) <∞,

prove that

lim inf
i→∞

ā(si+1, si+1) i = lim inf
i→∞

ā(si+1, si+1)
1
i

= 0.

Since ā(ei, ei) is a decreasing sequence by (45) and since (52) asserts that ei converges weakly
to zero, we can pass to the limit in (56), to deduce

lim
i→∞

ā(ei, ei) = lim inf
i→∞

ā(ei, ei)

≤ lim inf
i→∞

 ā(si+1, si+1)
1
2 i

1
2

 ∞∑
j=1

ā(sj , sj)

 1
2

+ ā(ei, e0)

 = 0.

This proves that ei converges strongly to zero in L2(Γ, H; dµ). Since ei = u − ui this finishes
the proof of Theorem 5.2.

Remark 5.3 In many cases the corrections si decrease exponentially in the sense that:

‖si‖ = O(ρ−i) as i→ +∞, for some ρ > 1.

This occurs in particular for the standard POD expansion when Γ is an open set of RN , µ is
the Lebesgue measure and the function f = f(γ) is analytic with respect to γ (see [5]). Then
‖si‖ is a good estimator for the error ‖u− ui‖.
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6 Conclusion

In this paper we have introduced an iterative deflation algorithm to solve parametric symmetric
elliptic equations. It is a Proper Generalized Decomposition algorithm as it builds a tensorized
representation of the parameterized solutions, by means of optimal subspaces that minimize
the residual in mean quadratic norm. It is intrinsic in the sense that in each deflation step the
residual is minimized in the “natural” mean quadratic norm generated by the parametric elliptic
operator. It is conceptually close to the Proper Orthogonal Decomposition with the difference
that in the POD the residual is minimized with respect to a fixed mean quadratic norm. Due
to this difference, spectral theory cannot be applied.

We have proved the existence of the optimal subspaces of dimension less than or equal to a
fixed number, as required in each iteration of the deflation algorithm, with a specific analysis
for the one-dimensional case. Also, we have proved the strong convergence in the natural mean
quadratic norm of the deflation algorithm for quite general parametric elliptic operators.

We will next focus our research on the analysis of convergence rates of the deflation algorithm
that we introduced. We will compare the convergence rates with those of the POD expansion, to
determine whether the use of the “natural” mean quadratic norm provides improved convergence
rates. We will also work on the numerical approximation of the algorithm, based upon a “trust”
solution on high-fidelity finite-dimensional subspaces of the given Hilbert space, to construct a
feasible Reduced Order Modeling algorithm.

All the results obtained in the present paper refer to a symmetric. In a future work we will
consider the non-symmetric case.
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[22] A. Nouy, O.P. Le Mâıtre, Generalized spectral decomposition method for stochastic non linear prob-
lems. J. Comput. Phys., 228, pp. 202–235, (2009).



18

[23] K. Pearson, On lines and planes of closest fit system of points in space. Philo. Mag. J. Sci., 2,
pp. 559-572, (1901).

[24] A. Quarteroni, G. Rozza, Reduced order methods for modeling and computational reduction. Mod-
eling, Simulation and Applications, 9, Springer, 2014.

[25] W.H. Schilders, H.A. van der Vorst, J. Rommes, Model order reduction: Theory, research aspects
and applications. Mathematics in Industry. The European Consortium for Mathematics in Industry,
13, Springer, 2008.

[26] S. Volkwein, Proper orthogonal decomposition: Theory and reduced-order Modelling. Lecture Notes,
University of Konstanz, Department of Mathematics and Statistics, 2013.


