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This paper deals with Weakly Supervised Learning (WSL), i.e. performing image classification by leveraging local information with models trained from global image labels. We propose a new WSL method which incorporates gaze features collected by an eye-tracker to guide the region selection policy. Our approach presents two appealing advantages: gaze features are cheap to collect, e.g. one order of magnitude faster than bounding boxes, and our method only requires gaze features during training, while being gaze free at test time. For this purpose, the training objective is enriched with a gaze loss, from which we derive a concave-convex upper bound, leading to an off-the-shelf CCCP optimization scheme. Extensive experiments are conducted to validate the effectiveness of the approach for WSL image classification on two public datasets with gaze annotation, i.e. PASCAL VOC 2012 action and POET. In addition, we publicly release a new food-related dataset, the Gaze-based UPMC Food dataset (UPMC-G20), which covers 20 food categories and 2,000 images. This dataset intends to promote the research in the food-related computer vision community.
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Introduction

Deep learning has achieved great success in the era of big data. The dominance of deep models is witnessed in the fields of face recognition [START_REF] Learned-Miller | Labeled faces in the wild: A survey[END_REF], machine translation [START_REF] Zhou | Deep recurrent models with fast-forward connections for neural machine translation[END_REF], speech recognition [START_REF] Saon | The IBM 2016 English conversational telephone speech recognition system[END_REF], and even the Go game [START_REF] David | Mastering the game of Go with deep neural networks and tree search[END_REF]. One typical example is the success of deep convolutional neural network (DCNN) in computer 5 vision. From the AlexNet [5] to the state-of-the-art deep Residual Networks [START_REF] He | Deep residual learning for image recognition[END_REF],

the DCNN has much outperformed the traditional hand-crafted feature-based machine learning methods, and now being even better than the human experts on the largest classification competition ImageNet Large Scale Visual Recognition Competition (ILSVRC) [START_REF] Deng | ImageNet: A Large-530 Scale Hierarchical Image Database[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF]. Moreover, deep models trained on ImageNet 10 can also be applied effectively to different target domain or different tasks by transfer learning [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF]. As a result, state-of-the-art results on standard benchmarks are nowadays obtained with deep features as input. Recent studies show that fine-tuning and data-augmentation can further boost the performance of the transferred models [START_REF] Chatfield | Return of the devil in the details: Delving deep into convolutional nets[END_REF].

15

Although deep models are leading the state-of-the-art of computer vision, current DCNN architectures have limited capabilities in capturing local information in clutter images. However, for the real-world images, local information is critical for identifying the existence of the target object in a clutter environment.

Recently, attempts have been made to overcome this limitation by encoding lo-20 cal information by following the design of Bag-of-words (BoW): [START_REF] He | Spatial pyramid pooling in deep convolutional networks for visual recognition[END_REF][START_REF] Gong | Multi-scale orderless pooling of deep convolutional activation features[END_REF] propose BoW models with deep features as local region activations and [START_REF] Arandjelovic | Netvlad: CNN 545 architecture for weakly supervised place recognition[END_REF] developed BoW layers. Despite the encoding contains information locally, the entire image is encoded into the final representation, which may include the irrelevant information. Such clutter information decreases the discriminative power of the 25 model. In this case, expensive annotations such as bounding boxes are often used to localize the target object. Clutter information is subsequently filtered out by omitting the information outside the bounding boxes.

One promising option is to develop weakly supervised learning (WSL) model.

Weakly supervised learning (WSL) is a general learning problem which attempts Last but not least, we publicly release a new food-related dataset with gaze annotation: Gaze-based UPMC Food dataset (UPMC-G20), which will be useful for the community to evaluate gaze models in food oriented applications.
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This paper is organized as follows. In section 2, we review gaze analysis and weakly supervised learning methods for computer vision . In section 3 we formally introduce our weakly supervised learning image classification models.

In section 4, we introduce the optimization procedure. In section 5, we present our experimental results to validate our models. Specifically, in section 5.2.3,

90
we introduce our new food-related gaze dataset UPMC-G20 in detail. The conclusion is provided in section 6.

Related works

Eye-tracking gaze

Gaze features are appealing since they can reflect the salient parts of the 95 image [23,[START_REF] Yun | Studying relationships between human gaze, description, and computer vision[END_REF]. People usually use gaze as an extra information channel for solving computer vision problems, such as action recognition [START_REF] Mathe | Actions in the eye: Dynamic gaze datasets and 585 learnt saliency models for visual recognition[END_REF][START_REF] Ge | Action classification in still images using human eye movements[END_REF], object detection [START_REF] Karthikeyan | From where and how to what we see[END_REF][START_REF] Yun | Studying relationships between human gaze, description, and computer vision[END_REF], saliency prediction [START_REF] Pan | Shallow and deep convolutional networks for saliency prediction[END_REF][START_REF] Kruthiventi | Saliency unified: A deep architecture for simultaneous eye fixation prediction and salient object segmentation[END_REF] and segmentation [START_REF] Walber | Can you see it? two novel eye-trackingbased measures for assigning tags to image regions[END_REF]16]. In video analysis, since subjects tend to watch at the moving objects, gaze are also widely used to localize important objects [31,[START_REF] Shapovalova | Action is in the eye of the beholder: Eye-gaze driven model for spatio-temporal action localization[END_REF][START_REF] Damen | You-do, i-learn: Egocentric unsupervised discovery of objects and their modes of interaction towards video-based guidance[END_REF][START_REF] Xu | Gazeenabled egocentric video summarization via constrained submodular maximization[END_REF].
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Another appealing property of gaze is that generating gaze by the human is at almost zero-cost. Collecting gaze is more user-friendly and less timeconsuming than collecting traditional annotations: it takes about 1 second to collect gaze for one image [16], comparing to 26s for drawing a bounding box [START_REF] Su | Crowdsourcing Annotations for Visual 620 Object Detection[END_REF] and 15-60 min for labeling the segmentation mask for an image [START_REF] Kohli | Robust Higher Order Potentials for Enforcing Label Consistency[END_REF]. Then the annotation interface exposes to the annotator one image from a selected pair. The annotator should make a decision on the category of the image.

The advantage of this protocol is that it does not need the target-absent image to avoid guess, which further reduces unnecessary labeling time. Similarly, Mathe et al. [START_REF] Mathe | Action from still image dataset and inverse optimal control to learn task specific visual scanpaths[END_REF] annotate two concepts: actions and context. One image is 120 exposed to the annotator. Then the annotator is told to find all the actions in the image. Since then, gaze in one image are related to all categories. Gilani et al. [START_REF] Gilani | PET: an eye-tracking dataset for animal-centric pascal object classes[END_REF] use a similar protocol as [START_REF] Mathe | Action from still image dataset and inverse optimal control to learn task specific visual scanpaths[END_REF]. But additionally, they have an extra free-viewing protocol for comparing the internal connection with the taskdriven protocol. In this paper, we propose a new dataset, UPMC-G20, with 125 gaze annotation using a similar task-driven protocol as in [16]. This dataset is based on the large-scale food-related dataset UPMC Food-101 [START_REF] Wang | Recipe recognition with large multimodal food dataset[END_REF]. The detail of UPMC-G20 is described in section 5.2.3.

Weakly supervised learning

Multiple Instance Learning (MIL) [14] is one of the main paradigms for train-130 ing WSL models. Under the assumption of MIL, a bag is positive if there is at least one positive instance in the bag, while a bag is negative if all the instances in the bag are negative. Several attempts have been devoted to applying MIL for object detection [15,[START_REF] Wang | Relaxed multiple-instance SVM with application to object discovery[END_REF][START_REF] Shen | Multiple instance subspace learning 640 via partial random projection tree for local reflection symmetry in natural images[END_REF], scene recognition [START_REF] Juneja | Blocks that shout: Distinctive parts for scene classification[END_REF][START_REF] Sun | Learning discriminative part detectors for image classification and cosegmentation[END_REF] and dictionary learning [START_REF] Wang | Max-margin multiple-instance dictionary learning[END_REF][START_REF] Shrivastava | Generalized dictionaries for multiple instance learning[END_REF]. As an instantiation of MI-SVM [START_REF] Andrews | Support vector machines for 655 multiple-instance learning[END_REF], the latent Support Vec- One challenge with LSVM is due to the introduction of latent variables, which makes the resulting optimization problem non-convex. When using sliding window approaches for generating the candidate regions, the size of the latent space becomes enormous. To overcome this issue, incremental exploration strategies 140 have been proposed in [START_REF] Durand | Incremental learning of latent structural SVM for weakly supervised image classification[END_REF][START_REF] Bilen | Object and action classification with latent window parameters[END_REF]. Finally, recent works focus on enriching the prediction function, by using several (top) instance scores instead of using a single max [22], or by incorporating negative evidence [START_REF] Azizpour | Spotlight the negatives: A generalized discriminative latent model[END_REF][START_REF] Durand | MANTRA: minimum maximum latent structural SVM for image classification and ranking[END_REF][START_REF] Durand | WELDON: weakly supervised learning 670 of deep convolutional neural networks[END_REF].

A growing interest is incorporating gaze information into WSL models.

Mathe et al. [START_REF] Mathe | Multiple instance reinforcement learning for efficient weakly-supervised detection in images[END_REF][START_REF] Mathe | Reinforcement learning for visual 675 object detection[END_REF] proposes using reinforcement learning to find a latent 145 space sampling policy from gaze. This method is efficient at the cost of prediction accuracy. 

f w (x) = max z∈Z(x) w, Φ(x, z) . (1) 
A standard classification metric is the 0/1 loss, which means the loss equals 0/1 if the classification is correct/false. However, 0/1 loss is difficult to optimize.

As in LSVM, we use the hinge loss as a conventional upper-bound of 0/1 loss.

As a result, a classical-SVM like loss is proposed for LSVM:

L LSV M (w) = 1 2 w 2 + n i=1 max(0, 1 -y i f w (x i )), (2) 
where y i is the true label of image x i , ŷi = sgn (f w (x i )) is the label predicted by our model, hinge loss is defined as ∆ c (ŷ i , y i ) = max(0, 1y i f w (x i )) and 1 2 w 2 is the standard max margin regularization term. 

L G + (w) = 1 2 w 2 + n i=1 ∆ c (ŷ i , y i ) + γ • δ g (ẑ i , x i , y i ), (3) 
where z i is the region with the maximum total duration of fixations, ẑi = arg max z∈Z(xi) w, Φ(x i , z) interpreted as the relevant region selected by our model.

For each training example, Eq. (3) includes a classification hinge loss and a gaze loss δ g , with a scalar trade-off parameter γ ≥ 0.
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The novelty in our training scheme is the introduction of a gaze loss δ g defined as:

δ g (ẑ i , x i , y i ) =    1 -g(xi,ẑi) g + (xi) if y i = 1 0 if y i = -1, (4) 
where g(x i , z) is the density of fixations in the region z for image

x i , g + (x i )
is the maximum density of fixations among all the regions of image x i . Fig. 2 illustrates the proposed gaze loss. In this example, when the color of heatmap is closer to red, the density of gaze is higher. The region contains the maximum density of gaze is shown as z i (shown as the green rectangle). The gaze loss of 185 z i is thus defined as 0. The red region z 1 contains a smaller density of gaze with respect to the blue region z 2 , leading to a larger gaze loss. 195

Note that given a model parameter w, the relevant region ẑ only depends on image feature as LSVM, without any gaze information (eq. 1). The benefit of this modeling strategy is that G+LSVM only uses gaze loss for training, not for the test. This idea is inspired from learning using Privileged Information (LUPI) [START_REF] Vapnik | Learning using privileged information: Similarity 680 control and knowledge transfer[END_REF][START_REF] You | Privileged multi-label learning[END_REF]. The problem addressed by LUPI is that the privileged 200 information is available only at the training stage and is not available at the test stage. By including privileged information into training we obtain a better model, which commits lower generalization error thanks to the localization information for human gaze. This modeling strategy is also practical because models trained with gaze can be applied without gaze annotations. This strategy is also 205 applicable to the following models in section 3.3 and 3.4.

Positive Negative Latent SVM

One drawback of G+LSVM is the absence of gaze information in negative image. However, a straightforward application of positive gaze loss on the negative image may not work. The reason is that for the positive image, the model 210 should tend to localize where the foreground object is. For the negative image, however, the model should tend to localize where the background is [START_REF] Azizpour | Spotlight the negatives: A generalized discriminative latent model[END_REF]. That's because the overlapping instances between positive and negative example are likely to be the background. According to the task-driven protocol, image semantic is related with gaze distribution. Indicated by the gaze, the region with 215 lower density of gaze is more likely to be background. Since then, we should heavily penalize the object region of negative image. This intuition leads to a generalization of G+LSVM, called G±LSVM. In G±LSVM we defined a negative gaze loss, which prefers the region where there is less objectness. Contrary to positive image, if a region of negative image contains more gaze, it is force 220 not to be the relevant region of the negative image.

A C C E P T E D M A N U S C R I P T

Based on this assumption, we propose a negative gaze loss defined as follows:

δ g (ẑ i , x i , y i ) =    1 -g(xi,ẑi) g + (xi) if y i = 1 g(x, ẑi)-g -(xi) g + (xi)-g -(xi)+ if y i = -1 (5) 
where g -(x i ) is the minimum number of gaze among all regions of image x i , is set to be 10 -6 . We subtract the term g -(x i ) from the numerator and denominator only to normalize the minimum negative gaze loss to be 0.

We introduce independent parameters γ + and γ -for trading positive gaze loss and negative gaze loss. Assembling all together we get the objective function of G±LSVM:

L G + - (w) = 1 2 w 2 + n i=1 ∆ c (ŷ i , y i ) + (〚y i = 1〛γ + + 〚y i = -1〛γ -) • δ g (ẑ i , x i , y i ) (6) 

Top k instance model 225

Taking only the maximum scored region as the representative is rigid because one region may be to small to fit an object. To soften the constraint, [22] proposes the definition of soft bags of top k instances. In soft bags, example is represented by the average feature of the top k instances. This method is proved to be robust to the noise in the examples and generalized better than
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LSVM.

An useful property of top k related to gaze information is its smooth functionality for sparse gaze limitation. This limitation is due to the truth that gaze on an image often focus on a small part of the image. For a given example, the gaze loss term has no difference on regions with the same gaze loss. Selec-235 tion among these regions is random in previous single instance models. This randomness can be eliminated by taking them all via top k strategy.

Fig. 3 illustrates the rationale of our final model. Remind that the goal is to select semantically meaningful regions, e.g. those containing the target object class (eggs benedict region or its sub-regions in Fig. 3a). By assuming that gaze The objective function of top k G±LSVM is as follows:

L kG + - (w) = 1 2 w 2 + n i=1 ∆ c (ŷ i , y i ) + (〚y i = 1〛γ + + 〚y i = -1〛γ -) • δ g (ẑ i , x i , y i ) (7) 
where

∆ c (ŷ i , y i ) = max(0, 1 -y i f w (x i )) δ g (ẑ i , x i , y i ) = 1 k k j=1 δ g (ẑ ij , x i , y i ) ẑi = arg max z∈Z(xi) w, Φ(x i , z) ,
where z is a vector of latent variables, Z(x i ) the hypothesis space {0, 1} k \ {0}.

Φ(x i , z) = 1 k k j=1 Φ(x i , z ij ).
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G-LSVM Optimization

In the section 3 we have revised the baseline LSVM, G+LSVM, and proposed 250 three variations, G±LSVM, top k G+LSVM, top k G±LSVM. Each of the five models has a different objective function to optimize. However, notice that when k = 1, top k models reduce to the single instance model. Furthermore, when γ -= 0, the objective function of G±LSVM (Eq. 6) reduces to G+LSVM (eq. 3), and when γ + = 0, G+LSVM reduces to LSVM (eq. 2). For the reason 255 above, without losing the generality, we only explain how to optimize the most generalized top k G±LSVM objective function Eq. 7 in this section.

Eq. 7 is a sum of hinge loss (classification loss) and gaze loss. We first derive a concave-convex upper bound of Eq. 7 by following steps:

1) Classification loss part: For negative example, y i = -1. The second 260 term 1y i f w (x i ) in its classification loss is convex because it is a sum of a constant and a maximum over a set of convex functions. As a result, the sum of the classification loss of all negative examples are convex. For positive example, since y i = 1, it is not convex. We propose to optimize by decomposing the hinge loss of positive example into a difference of two convex functions by applying 265 the following theorem:

max(0, u -v) = max(u, v) -v, (8) 
where u, v are two convex functions. The non-convex classification loss of every positive example is thus decomposed as:

max(0, 1 -f w (x)) = max(1, f w (x)) -f w (x). (9) 
The maximum of a set of linear functions is convex, so Eq. 9 is a difference of two convex functions.

2) Gaze loss part: δ g (ẑ i , x i , y i ) is difficult to optimize, because the dependency on w is complex and non-smooth. To overcome this issue, we derive a
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convex upper-bound ∆ g , inspired from margin-rescaling [START_REF] Joachims | Cutting-plane training of structural svms[END_REF]:

δ g (ẑ, x i , y i ) ≤ δ g (ẑ, x i , y i ) + w • Φ(x i , ẑ) -w • Φ(x i , z i ) ≤ max z∈Z(xi) [δ g (z, x i , y i ) + w • Φ(x i , z)] -w • Φ(x i , z i ) := ∆ g (ẑ, x i , y i ) (10) 
where max z∈Z(xi) [δ g (z, x i , y i ) + w • Φ(x i , z)] is a max over linear functions, so it is convex. The second term w •Φ(x i , z i ) is linear. As a result, the difference 270 of the two terms is convex.

Aggregating Eq. 9 and Eq. 10 together, the concave-convex upper bound of the objective function of top k G±LSVM is eq. 11:

L kG + - (w) ≤ L kG + - (w) = 1 2 w 2 + C 1 n n nn in=1 max(0, 1 + f w (x in )) cn(w) + 1 n p np ip=1 max(1, f w (x ip )) cp1(w) - 1 n p np ip=1 f w (x ip )+ cp2(w) n i=1 〚y i = 1〛 γ + n p + 〚y i = -1〛 γ - n n • ∆ g (ẑ, x i , y i ) g(w) (11) 
where n p , n n are respectively number of positive examples and negative examples. The losses of positive example and negative example are also balanced 275 according to their quantity.

For brevity, we rewrite Eq. 11 as u(w)v(w), where:

u(w) = 1 2 w 2 + C(cp 1 (w) + cn(w) + g(w)). ( 12 
) v(w) = Ccp 2 (w). (13) 
We then optimize u(w)v(w) by CCCP (algo.1). The CCCP algorithm is guaranteed to decrease the objective function at every iteration and to converge the concave part -v(w). We calculate the supergradient v t of -v(w) at the point w t , where v t = -np ip=1 Φ(x i , ẑi ). At line 4, the problem becomes convex, we can use any convex optimization tool for solving this problem.

Algorithm 1: Concave-Convex Procedure

Output: w * 1 Set t = 0, stopping criterion and initialize w by w 0 , u(w) and v(w) are defined as Eq. 12 and Eq. 13. 

2 repeat 3 Find hyperplane v t to linearize -v(w): -v(w) ≤ -v(w t ) + (w -w t ) • v t , 4 Solve w t+1 = argmin w u(w) + w • v t , 5 Set t = t+1, 6 until [u(w t ) -v(w t )] -[u(w t-1 ) -v(w t-1 ))] < ;

Datasets

We validate our ideas on three datasets, PASCAL VOC Action dataset annotated with gaze (short for Action) [START_REF] Mathe | Action from still image dataset and inverse optimal control to learn task specific visual scanpaths[END_REF], PASCAL VOC Object dataset annotated 
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UPMC-G20 contains 2000 images, covering 20 food categories. The detail of UPMC-G20 is described in section 5.2.3.

Acquisition protocols of POET and Action

The gaze annotations over these datasets are all collected in task-control manners with slight variations. 

Qualitative analysis of gaze information 330

We provide a detailed analysis of the gaze data consistency with respect to ground truth bounding boxes on Action and POET. Currently, UPMC-G20 does not have bounding box, so we do not provide the results. We compute statistics for the proportion of gaze falling into or outside of the bounding boxes and compare it to the proportion of image pixels (Fig. 5). Statistically, for action 335 dataset, 68.8% of the gaze fall into the ground-truth bounding-box, while the score of pixels is only 30.6%. Similarly, the scores of object dataset are 77.3% vs.

36.9%. This preliminary study provides a quantitative validation that human gaze are highly related to object localization, and convey relevant features for classification. food categories from UPMC-food 101, resulting in 2,000 images. The images selected do not contain text, because it's verified that texts attract attention 345 most [START_REF] Hsueh-Cheng | The attraction of visual attention to texts in real-world scenes[END_REF]. For each image, about 15 fixations across 3 subjects (in average) with a total duration of 2.5 seconds are collected. In total, we have collected 31104 fixations. The categories selected are apple-pie/bread-pudding, beefcarpaccio/beet-salad, chocolate-cake/chocolate-mousse, donuts/beignets, eggsbenedict/croque-madame, gnocchi/shrimp-and-grits, grilled-salmon/pork-chop, 350 lasagna/ravioli, pancakes/french-toast, spaghetti-bolognese/pad-thai.

Samples of images and gaze annotations are shown in the Fig. 6. For full visualization of UPMC-G20, we refer our reader to this page of our dataset:

http://webia.lip6.fr/~wangxin/upmcg20/.

Apparatus. Our eye-tracker is a non-invasive Tobii X2-30 with a double eyes 355 gaze sampling rate 30Hz. Eye-tracker is fixed under a 12.6" laptop screen with resolution 1366 × 768. The subject sits at a distance of about 60cm to the screen. The test environment is quiet and of suitable temperature for not introducing physiological error. The experiment was conducted with the software Tobii Studio (V3.4.5) [60]. Before annotating, for each subject, dominant eye, 360 gender, age are recorded. Before every experiment, Tobii X2-30 is calibrated
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making the subject answering a multiple choice question of which the category the image belongs to is shown using a mouse.

3. After exposing every 20 images, a page indicates the progress of the task is shown to heal the anxiety of annotators. In Table 1 we show the global score of different methods on the three datasets and the annotations they use. For POET dataset, Deep Fishing [START_REF] Gordo | Deep fishing: Gradient features from 695 deep nets[END_REF] and Z&F 415 network [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF] 

Ablation studies

In this section, we compare LSVM, G+LSVM, G±LSVM and their top k 430 variations. We present the scale-wise classification experiments in Fig. 8. In our model, scale measures the size of the sliding window with respect to the size of the image. In a heuristic manner, for top k models, we set k = 2, 4, 6, 8 for scale 90% -60%, and k = 10 for scale 50% -30%. For most scales, the model performance is better than wSVM (scale=100 in Fig. 8). This result proves 435 the effectiveness of weakly supervised learning: local information is critical for image classification.

We can also observe that adding gaze into the model improve the performance for all scales. The improvement can be explained by two reasons. One is that G+LSVM emphasizes small scales. That is what we expect: for large 440 scales, nearly all regions of positive images are informative, whereas at smaller scales, the model has to focus on relevant localized features. The other is that G±LSVM can also emphasize large scales. Paired T-tests show that G±LSVM is better than LSVM with a larger significance than for G+LSVM, especially for large scale. This phenomenon may have a dual explanation with respect 445 to G+LSVM: not all regions of negative images are non-informative. As a result, for large scale, the ground truth region z i of negative example has a larger probability to be unique. While for small scales, z i is selected randomly among all low gaze density regions, which may lead to a less optimal result. When k increases, for small scale, this problem no longer dominates the performance 450 because the set of ground truth regions for negative images is informative with less randomness. We think that is the reason why we constate a substantial performance enhancement at small scales for top G±LSVM. 

Study of hyper-parameters

We investigate the impact of the three hyper-parameters in our model: trade-465 off parameters γ + , γ -and k. The impact of the parameter γ + of G+LSVM is shown in Fig. 9 for small scale 50%, with k set to be 1. The performances in Fig. 9 are shown on average for all categories. For all three datasets, mAP reaches the peak when γ + is in the interval [0.1, 0.3]. Note that when γ + gets too high, mAP gets even lower than not adding gaze (Fig. 9). Fix γ -to be the best value obtained by cross-validation, for γ -, the effective value is found to be a relatively small value between [0.05, 0.1]. This result is reasonable because our objective is classification with gaze information as auxiliary information, so the gaze loss should tend to have a smaller weight than the classification loss.

The performance of k model varies in the similar trend.
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We show in Fig. 9 that our model outperforms k model significantly for all k value at scale 30%. We set γ + of G±LSVM and G+LSVM to 0.2, γ -of G±LSVM to 0.05. From Fig. 9, we also find that by increasing k, gaze latent SVM always outperforms latent SVM. This result signifies that gaze helps better select the regions even when the number of candidate regions largely increases. 

Localization results

The relevant regions proposed by our models are interpretable. We show 

Conclusion

In this paper, we introduce G(aze)-LSVM, a weakly supervised learning multi-scale model using sub-region strategy incorporating human gaze for image 
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 30 C C E P T E D M A N U S C R I P T at making accurate predictions from coarse annotations. For instance, using only image label for segmentation or using the preference relationships between examples for dimensionality reduction problem [13]. In this paper, we focus on applying WSL methods on object classification improved by weakly supervised region selection. Our model learns to remove the clutter background information 35 by selecting the relevant regions without explicit localization information. Multiple Instance Learning (MIL) [14] is one of the main paradigms for training WSL models. Following this paradigm, an image is described as a bag containing a certain number of instances. Under the hypothesis of MIL, a bag is positive if there is at least one positive instance in the bag, while a bag is negative 40 if all the instances in the bag are negative. Deformable part model (DPM) [15] is a well-known instantiation of MIL, which achieves excellent performance for object detection.

Figure 1 :

 1 Figure 1: Illustration of our model. Multi-scale latent regions are generated in a slidingwindow scheme, e.g. green (resp. blue) large scale (resp. small scale) regions. Our model can automatically select multiple semantically meaningful regions, e.g. those containing the target object class of different scales, from global image labels, e.g. french toast. To improve the quality of the region selection, G-LSVM supports regions with gaze information (shown as the heatmap), e.g. high density of gaze of positive example for training. (Best viewed in color)
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  Towards a more robust classification model, combining multiple features is a promising choice [17, 18]. In this paper, we propose a new weakly supervised learning model which attempts at incorporating gaze feature collected by an eye-tracker to improve classification performance. Our model, named as G(aze)-LSVM, generalizes latent SVM [15] by exploiting human gaze for local-60 izing objects. Fig. 1 illustrates the rationale of our model for exploiting local information. Latent regions correspond to a set of sub-regions in the image generated by a sliding window scheme. By assigning a scale (size) of the sliding window for each single-scale model, e.g. green (resp. blue) large scale (resp. small scale) regions, we then combine a multi-scale model by adapting the object 65 bank representation [19]. G-LSVM is able to automatically select semantically meaningful regions, e.g. those containing the target object class of different scales, from global image labels, e.g. french toast or pancakes or grilled salmon. To improve the quality of the region selection, G-LSVM supports regions with gaze information, 70 e.g. high density of gaze for positive example. Our model is then optimized by reducing a loss function incorporating gaze penalization using the Concave-Convex Procedure (CCCP) [20]. The optimization procedure ensures that our model only needs gaze for training rather for test. A preliminary version of our model was described in the conference pa-75 per [21]. We extend this work at several levels. Firstly, our contributions regarding the WSL model are two-fold: we take into account gaze features for A C C E P T E D M A N U S C R I P T negative images (Section 3.3) whereas only positive images are used in [21],and also extend the region selection policy from a single region to several regions for performing prediction (Section 3.4), leading to a generalization of top 80 k latent SVM model[22]. Beyond model extension, we also provide a much more thorough experimental analysis for validating the proposed contributions.

  S C R I P T tor Machine (LSVM) [15] introduces a theoretically sound formalism for WSL.

160 3 .

 3 G-LSVM: weakly supervised gaze latent SVM 3.1. Latent SVM We consider the problem of learning with weak supervision in a binary classification context based on the Latent SVM model [15]. A C C E P T E D M A N U S C R I P T The prediction function f : X → Y takes as input an image x, and outputs a 165 binary y ∈ {+1, -1}. Each image x is associated with latent variables z ∈ Z(x), which corresponds to a set of sub-regions. For each region z in image x, we extract a visual feature vector Φ(x, z) ∈ R d , e.g. deep features. Our model is linear with respect to Φ, i.e. each region z is assigned the score w, Φ(x, z) , where w is learned from data. The problem is weakly supervised since the 170 region-specific labels are unknown during training. Our prediction takes the maximum score over the latent variables:

175 3 . 2 .

 32 Positive Gaze Latent SVM This model generalizes latent SVM [15] by biasing the selection of latent regions based on the gaze information during the training scheme. The training objective of G+LSVM is as follows:

Figure 2 :

 2 Figure2: The rationale of the definition of gaze loss. When the color of heatmap is closer to red, the density of gaze is higher. The region contains the maximum density of gaze is shown as z i (shown as the green rectangle). The gaze loss of z i is thus defined as 0. The red region z 1 contains a smaller density of gaze with respect to the blue region z 2 , leading to a larger gaze loss.

240Figure 3 :

 3 Figure 3: Illustration of top k G±LSVM model. Human gaze density is represented by the heat map. In our models, positive example emphasize the latent regions with high gaze density (inside the solid boxes), while negative example emphasizes the regions with low gaze density (outside the dashed boxes). Different colors of regions indicate different scales. For one scale, our model takes multiple highest scored regions as the relevant regions. (Best viewed in color)

  S C R I P T to a local minimum or saddle point [20]. In Algo 1, the line 3 involves linearizing 280

1 .

 1 Weakly supervised classification setting 285In our models, the first step is generating the latent regions. Latent region set corresponds to square image regions extracted with a multi-scale sliding window strategy. Region size vary from 90% to 30% of the whole image area.For a given scale, a window slides from the upper-left to the bottom-right of the image with a step size 10% in both directions. As a result, for each image, the 290 size of sub-region space varies among {4, 9, 16, 25, 36, 49, 64}. Each region is described by the deep features extracted from the FC7 layer of the pre-trained imagenet-vgg-m-2048 deep model 1 , which are subsequently L2normalized and add a bias term. In this setting, the size of feature and model parameter are fixed as 2049.A C C E P T E D M A N U S C R I P TFor training the multi-scale model, we adapt the object bank representation [19] for our setting. For a given category, we first train the models independently for all 8 scales (including the full image scale). We then form an 8-dimensional vector for each image by the classification scores and train a linear SVM with C = 10 as the multi-scale model. Finally, the multi-scale classifica-300 tion score of all categories are averaged to give an mAP to show the overall performance of our models.
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  with gaze (short for POET) [16] and our dataset UPMC-G20. Action contains 4588 images, covering 10 categories. POET contains 6131 images, covering 10 categories out of 20 categories of PASCAL VOC Object dataset. The origin of these images is the train+val split of PASCAL VOC dataset. Two sample images of POET and Action are shown with gaze annotations in Fig. 4.

315 1 . 2 .

 12 POET uses the category specific protocol, which means that each subject has a specific category of object, e.g. cat, to look at. Images in POET may have multiple categories. These multiple classes images are annotated with more than one set of annotations. In out tests, for a positive image, we use the corresponding set of annotations, for a negative image, we calculate the 320 fixation duration for each region of each category, then take the maximum fixation duration across the categories as the fixation duration of this region. Action uses the category group protocol, which means the subject is required to find a specific group of categories, i.e. actions or context. In 325 other words, if a subject is required to find actions, the subject should find all possible actions in the image. The setting of Action is weaker than POET because annotations are only related with a person, not a specific action.

Figure 4 :

 4 Figure 4: Gaze annotations. left: sample image of POET dataset, right: sample image of Action dataset. Different colors indicate different observers.

3405. 2 . 3 .

 23 Figure 5: Proportions of gaze and pixel numbers in (outside) the ground-truth bounding boxes.

380 4 .

 4 After exposing a whole set of images, annotator gets an adequate rest then recalibrate for the next set of images.

Figure 7 :

 7 Figure 7: Food gaze collection protocol

Figure 8 :

 8 Figure 8: mAP(%) at different scales. In our model, scale measures the size of the sliding window with respect to the size of the image. Our model outperforms the whole image for most scales using top k instances. Also, k-G±LSVM significantly outperforms other G-LSVM variations at all scales.

480Figure 9 :

 9 Figure 9: The sensitivity of hyper-parameters γ + and k. left: At scale 50%, the performance with respect to γ + (γ -) is found to reach the peak value in the interval [0.1, 0.3] ([0.05, 0.1]).right: At scale 30%, generally, the larger k is, the better the performance is.
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  in Fig.10the predicted regions for the model k-G±LSVM at scale 30%, where k = 10. We present the first three high scored regions for visual clarity.Results for training images are shown in the first row: we show that k-G±LSVM selects areas with more (fewer) gaze for positive (negative) images.Results for test images are shown in the second row, of which gaze features 490 are not available. k-G±LSVM extracts regions which are highly semantic for positive images and extract background for negative images. For example, we find that running model has a good result on the positive image. Also for the negative image, the running model fires at the regions which have a similar visual semantic to the road and trees. Interestingly, these regions often appear 495 as the background in the running images. As these regions have a relatively low density of gaze, our model emphasizes the importance of these regions.

500classification.

  Our model exploits gaze for guiding the selection of region which is relevant with the image semantic. Furthermore, we find that generalizing the model to the selection of k maximum scored regions can also benefit from the gaze information. Our model leverage human gaze features for training, while the test is gaze free. Experimental results show that our model achieves 505 competitive results with respect to the state-of-the-arts methods on Pascal VOC Action and Object. We also publicly release a medium-sized food dataset with gaze annotation, UPMC-G20, covering 20 categories and 2000 images.

Table . 3

 . gives the performance at the smallest scale 30%. At scale 30%,

		for a risk less than 0.2%(1.0%), 1.0%(2.0%), 0.2%(0.5%) for respectively Ac-
		tion, POET, UPMC-G20. These statistical results show that k-G±LSVM is
	460	better than k-G+LSVM with significance at small scale. Top k models much
		outperform single instance models. Interestingly, as we expected, the gain of k-
		G±LSVM with respect to k-G+LSVM is much larger than the gain of G±LSVM with respect to G+LSVM. Action POET label train BB test BB part gaze Deep Fishing [64] -79.9 √ Z&F [65] -81.2 √ RMP [69] 65.1 -√ NUS-SCM [66] -84.3 √ √ Oquab [67] -84.5 √ √ A N U S C R I P T Action part [68] 64.6 -k-G±LSVM (ours) 69.6 85.9 √ √ G+LSVM [21] 66.8 82.6 √ √ M wSVM 59.1 79.8 √
	k-G±LSVM (k-G+LSVM) outperform k-LSVM by a margin of 1.8%(1.1%), A C C E P T E D 455
		1.2%(0.5%), 2.3%(1.2%) for respectively Action, POET and UPMC-G20. Paired
		T-tests show that k-G±LSVM (k-G+LSVM) is more significant than LSVM

Table 1 :

 1 Comparison with the state-of-the-art methods on the test set of Pascal VOC 2012

Object, and the validation set of Action. Our model outperforms other methods even when they use global label + training bounding box. We also achieve comparable results with respect to the models using accurate annotations such as test bounding box and/or human part annotation.

Table 2 :

 2 mAP(%) per category on the test set of PASCAL VOC 2012 Object.

		Action	POET	UPMC-G20
	k-G±LSVM 66.0 ± 0.9 88.1 ± 1.2	78.3 ± 1.0
	k-G+LSVM 65.3 ± 1.0 87.4 ± 1.0	77.1 ± 1.1
	k-LSVM	64.2 ± 0.8 86.9 ± 1.1	76.0 ± 1.2
	G±LSVM G+LSVM LSVM	62.4 ± 0.9 85.3 ± 1.1 62.1 ± 0.8 85.2 ± 1.0 58.2 ± 1.0 84.2 ± 1.1	73.0. ± 0.8 72.9 ± 0.9 71.6 ± 1.0

Table 3 :

 3 mAP(%) of scale 30% on Action, POET and UPMC-G20 datasets. Here we set k = 10.

http://www.vlfeat.org/matconvnet/pretrained/

2.5 seconds, recording the gaze data.
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