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Abstract

This paper deals with Weakly Supervised Learning (WSL), i.e. performing

image classification by leveraging local information with models trained from

global image labels. We propose a new WSL method which incorporates gaze

features collected by an eye-tracker to guide the region selection policy. Our

approach presents two appealing advantages: gaze features are cheap to collect,

e.g. one order of magnitude faster than bounding boxes, and our method only

requires gaze features during training, while being gaze free at test time. For

this purpose, the training objective is enriched with a gaze loss, from which

we derive a concave-convex upper bound, leading to an off-the-shelf CCCP

optimization scheme. Extensive experiments are conducted to validate the

effectiveness of the approach for WSL image classification on two public datasets

with gaze annotation, i.e. PASCAL VOC 2012 action and POET. In addition,

we publicly release a new food-related dataset, the Gaze-based UPMC Food

dataset (UPMC-G20), which covers 20 food categories and 2,000 images. This

dataset intends to promote the research in the food-related computer vision

community.
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1. Introduction

Deep learning has achieved great success in the era of big data. The domi-

nance of deep models is witnessed in the fields of face recognition [1], machine

translation [2], speech recognition [3], and even the Go game [4]. One typical ex-

ample is the success of deep convolutional neural network (DCNN) in computer5

vision. From the AlexNet [5] to the state-of-the-art deep Residual Networks [6],

the DCNN has much outperformed the traditional hand-crafted feature-based

machine learning methods, and now being even better than the human experts

on the largest classification competition ImageNet Large Scale Visual Recogni-

tion Competition (ILSVRC) [7, 6]. Moreover, deep models trained on ImageNet10

can also be applied effectively to different target domain or different tasks by

transfer learning [8]. As a result, state-of-the-art results on standard bench-

marks are nowadays obtained with deep features as input. Recent studies show

that fine-tuning and data-augmentation can further boost the performance of

the transferred models [9].15

Although deep models are leading the state-of-the-art of computer vision,

current DCNN architectures have limited capabilities in capturing local informa-

tion in clutter images. However, for the real-world images, local information is

critical for identifying the existence of the target object in a clutter environment.

Recently, attempts have been made to overcome this limitation by encoding lo-20

cal information by following the design of Bag-of-words (BoW): [10, 11] propose

BoW models with deep features as local region activations and [12] developed

BoW layers. Despite the encoding contains information locally, the entire im-

age is encoded into the final representation, which may include the irrelevant

information. Such clutter information decreases the discriminative power of the25

model. In this case, expensive annotations such as bounding boxes are often

used to localize the target object. Clutter information is subsequently filtered

out by omitting the information outside the bounding boxes.

One promising option is to develop weakly supervised learning (WSL) model.

Weakly supervised learning (WSL) is a general learning problem which attempts30
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at making accurate predictions from coarse annotations. For instance, using

only image label for segmentation or using the preference relationships between

examples for dimensionality reduction problem [13]. In this paper, we focus on

applying WSL methods on object classification improved by weakly supervised

region selection. Our model learns to remove the clutter background information35

by selecting the relevant regions without explicit localization information.

Multiple Instance Learning (MIL) [14] is one of the main paradigms for

training WSL models. Following this paradigm, an image is described as a bag

containing a certain number of instances. Under the hypothesis of MIL, a bag is

positive if there is at least one positive instance in the bag, while a bag is negative40

if all the instances in the bag are negative. Deformable part model (DPM) [15]

is a well-known instantiation of MIL, which achieves excellent performance for

object detection.

(a) french toast (b) pancakes (c) grilled salmon

Figure 1: Illustration of our model. Multi-scale latent regions are generated in a sliding-

window scheme, e.g. green (resp. blue) large scale (resp. small scale) regions. Our model

can automatically select multiple semantically meaningful regions, e.g. those containing the

target object class of different scales, from global image labels, e.g. french toast. To improve

the quality of the region selection, G-LSVM supports regions with gaze information (shown

as the heatmap), e.g. high density of gaze of positive example for training. (Best viewed in

color)

However, selecting relevant regions from images with only image-level an-

notations is a very challenging task. Intuitively, human gaze is a promising45

extra information for guiding the search of local semantic information. We
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consider here gaze features recorded by an eye-tracker device, which presents

two useful properties. One is that gaze features, when collected from people

asked to identify a semantic category in an image, contain useful information

about the position of the target objects or relevant regions for classification.50

Another appealing property of gaze features is that they are cheap to collect,

especially compared to traditional annotation such as bounding box, typically

1s vs 26s [16]. Human gaze carries certain amount of object localization infor-

mation, but compared with traditional bounding-box annotations, it is weaker

for high noise rate and sparse distribution.55

Towards a more robust classification model, combining multiple features is

a promising choice [17, 18]. In this paper, we propose a new weakly super-

vised learning model which attempts at incorporating gaze feature collected

by an eye-tracker to improve classification performance. Our model, named as

G(aze)-LSVM, generalizes latent SVM [15] by exploiting human gaze for local-60

izing objects. Fig. 1 illustrates the rationale of our model for exploiting local

information. Latent regions correspond to a set of sub-regions in the image

generated by a sliding window scheme. By assigning a scale (size) of the sliding

window for each single-scale model, e.g. green (resp. blue) large scale (resp.

small scale) regions, we then combine a multi-scale model by adapting the object65

bank representation [19].

G-LSVM is able to automatically select semantically meaningful regions,

e.g. those containing the target object class of different scales, from global

image labels, e.g. french toast or pancakes or grilled salmon. To improve the

quality of the region selection, G-LSVM supports regions with gaze information,70

e.g. high density of gaze for positive example. Our model is then optimized by

reducing a loss function incorporating gaze penalization using the Concave-

Convex Procedure (CCCP) [20]. The optimization procedure ensures that our

model only needs gaze for training rather for test.

A preliminary version of our model was described in the conference pa-75

per [21]. We extend this work at several levels. Firstly, our contributions re-

garding the WSL model are two-fold: we take into account gaze features for
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negative images (Section 3.3) whereas only positive images are used in [21],

and also extend the region selection policy from a single region to several re-

gions for performing prediction (Section 3.4), leading to a generalization of top80

k latent SVM model [22]. Beyond model extension, we also provide a much

more thorough experimental analysis for validating the proposed contributions.

Last but not least, we publicly release a new food-related dataset with gaze an-

notation: Gaze-based UPMC Food dataset (UPMC-G20), which will be useful

for the community to evaluate gaze models in food oriented applications.85

This paper is organized as follows. In section 2, we review gaze analysis

and weakly supervised learning methods for computer vision . In section 3 we

formally introduce our weakly supervised learning image classification models.

In section 4, we introduce the optimization procedure. In section 5, we present

our experimental results to validate our models. Specifically, in section 5.2.3,90

we introduce our new food-related gaze dataset UPMC-G20 in detail. The

conclusion is provided in section 6.

2. Related works

2.1. Eye-tracking gaze

Gaze features are appealing since they can reflect the salient parts of the95

image [23, 24]. People usually use gaze as an extra information channel for

solving computer vision problems, such as action recognition [25, 26], object

detection [27, 24], saliency prediction [28, 29] and segmentation [30, 16]. In

video analysis, since subjects tend to watch at the moving objects, gaze are also

widely used to localize important objects [31, 32, 33, 34].100

Another appealing property of gaze is that generating gaze by the human

is at almost zero-cost. Collecting gaze is more user-friendly and less time-

consuming than collecting traditional annotations: it takes about 1 second to

collect gaze for one image [16], comparing to 26s for drawing a bounding box [35]

and 15-60 min for labeling the segmentation mask for an image [36].105
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To acquire gaze annotations for different applications, people design various

collection protocols [37, 16, 38, 27]. The collection protocols can be grouped

into two categories: task-driven and free-viewing. Task-driven means the anno-

tators are given a specific semantic to look at, e.g. a dog. Free-viewing means

the annotators view the image freely without specific purpose. As an exam-110

ple of free-viewing, Lopez et al. [37] expose simultaneously two images on the

screen for evaluating the annotator’s visual preference. The aim of this protocol

is to collect the gaze features of left and right image for classifying the visual

preference. Papadopoulos et al. [16] use an instantiation task-driven protocol.

Specifically, this protocol first group image categories into visual-similar pairs.115

Then the annotation interface exposes to the annotator one image from a se-

lected pair. The annotator should make a decision on the category of the image.

The advantage of this protocol is that it does not need the target-absent im-

age to avoid guess, which further reduces unnecessary labeling time. Similarly,

Mathe et al. [38] annotate two concepts: actions and context. One image is120

exposed to the annotator. Then the annotator is told to find all the actions

in the image. Since then, gaze in one image are related to all categories. Gi-

lani et al. [39] use a similar protocol as [38]. But additionally, they have an

extra free-viewing protocol for comparing the internal connection with the task-

driven protocol. In this paper, we propose a new dataset, UPMC-G20, with125

gaze annotation using a similar task-driven protocol as in [16]. This dataset is

based on the large-scale food-related dataset UPMC Food-101 [40]. The detail

of UPMC-G20 is described in section 5.2.3.

2.2. Weakly supervised learning

Multiple Instance Learning (MIL) [14] is one of the main paradigms for train-130

ing WSL models. Under the assumption of MIL, a bag is positive if there is

at least one positive instance in the bag, while a bag is negative if all the in-

stances in the bag are negative. Several attempts have been devoted to applying

MIL for object detection[15, 41, 42], scene recognition [43, 44] and dictionary

learning [45, 46]. As an instantiation of MI-SVM [47], the latent Support Vec-135
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tor Machine (LSVM) [15] introduces a theoretically sound formalism for WSL.

One challenge with LSVM is due to the introduction of latent variables, which

makes the resulting optimization problem non-convex. When using sliding win-

dow approaches for generating the candidate regions, the size of the latent space

becomes enormous. To overcome this issue, incremental exploration strategies140

have been proposed in [48, 49]. Finally, recent works focus on enriching the

prediction function, by using several (top) instance scores instead of using a

single max [22], or by incorporating negative evidence [50, 51, 52].

A growing interest is incorporating gaze information into WSL models.

Mathe et al. [53, 54] proposes using reinforcement learning to find a latent145

space sampling policy from gaze. This method is efficient at the cost of predic-

tion accuracy. Karthikeyan et al. [27] proposes to train a face and text detector

from only gaze information. Although this work does not use image features, it

still requires bounding boxes to segment out face and text regions. Shcherbatyi

et al. [55] integrates gaze into Deformable Part Model for selecting one relevant150

object location. Their model require gaze annotations for test. Shapovalova

et al. [32] and Wang et al. [21] focus on WSL recognition by penalizing region

selection with gaze. However, the gaze information is not sufficiently exploited

because only positive examples are penalized with gaze. In this paper, com-

paring to the previous works, our model is generalized to capture the gaze155

information related to both positive and negative examples. Our model only

needs gaze for training rather for test. Since then, our model combines the gaze

feature and image feature, but does not use bounding box as input. We also find

that the generalization to top k region selection strategy much benefits from the

gaze information.160

3. G-LSVM: weakly supervised gaze latent SVM

3.1. Latent SVM

We consider the problem of learning with weak supervision in a binary clas-

sification context based on the Latent SVM model [15].
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The prediction function f : X → Y takes as input an image x, and outputs a165

binary y ∈ {+1,−1}. Each image x is associated with latent variables z ∈ Z(x),

which corresponds to a set of sub-regions. For each region z in image x, we

extract a visual feature vector Φ(x, z) ∈ Rd, e.g. deep features. Our model is

linear with respect to Φ, i.e. each region z is assigned the score 〈w,Φ(x, z)〉,
where w is learned from data. The problem is weakly supervised since the170

region-specific labels are unknown during training. Our prediction takes the

maximum score over the latent variables:

fw(x) = max
z∈Z(x)

〈w,Φ(x, z)〉. (1)

A standard classification metric is the 0/1 loss, which means the loss equals

0/1 if the classification is correct/false. However, 0/1 loss is difficult to optimize.

As in LSVM, we use the hinge loss as a conventional upper-bound of 0/1 loss.

As a result, a classical-SVM like loss is proposed for LSVM:

LLSVM (w) =
1

2
‖w‖2 +

n∑

i=1

max(0, 1− yifw(xi)), (2)

where yi is the true label of image xi, ŷi = sgn (fw(xi)) is the label predicted by

our model, hinge loss is defined as ∆c(ŷi, yi) = max(0, 1− yifw(xi)) and 1
2‖w‖2

is the standard max margin regularization term.175

3.2. Positive Gaze Latent SVM

This model generalizes latent SVM [15] by biasing the selection of latent

regions based on the gaze information during the training scheme. The training

objective of G+LSVM is as follows:

LG+(w) =
1

2
‖w‖2 +

n∑

i=1

∆c(ŷi, yi) + γ · δg(ẑi, xi, yi), (3)

where zi is the region with the maximum total duration of fixations, ẑi =

arg max
z∈Z(xi)

〈w,Φ(xi, z)〉 interpreted as the relevant region selected by our model.

For each training example, Eq. (3) includes a classification hinge loss and a gaze

loss δg, with a scalar trade-off parameter γ ≥ 0.180

9
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The novelty in our training scheme is the introduction of a gaze loss δg

defined as:

δg(ẑi, xi, yi) =





1− g(xi,ẑi)
g+(xi)

if yi = 1

0 if yi = −1,
(4)

where g(xi, z) is the density of fixations in the region z for image xi, g+(xi)

is the maximum density of fixations among all the regions of image xi. Fig. 2

illustrates the proposed gaze loss. In this example, when the color of heatmap

is closer to red, the density of gaze is higher. The region contains the maximum

density of gaze is shown as zi (shown as the green rectangle). The gaze loss of185

zi is thus defined as 0. The red region z1 contains a smaller density of gaze with

respect to the blue region z2, leading to a larger gaze loss.

Figure 2: The rationale of the definition of gaze loss. When the color of heatmap is closer to

red, the density of gaze is higher. The region contains the maximum density of gaze is shown

as zi (shown as the green rectangle). The gaze loss of zi is thus defined as 0. The red region

z1 contains a smaller density of gaze with respect to the blue region z2, leading to a larger

gaze loss.

The intuition of training G+LSVM is straightforward. Our training objec-

tive in Eq. (3) is biased by the gaze loss δg, so that G+LSVM learns a different

model parameter w which tends to minimize gaze loss compared to LSVM. The190

final decision of our model is to learn a unique w by compromising between

classification loss and gaze loss. In other words, G+LSVM tries to solve the

task of classification and localization simultaneously, thus the relevant region is

10
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presumed to contain the object of interest, which leads to a better classification

result.195

Note that given a model parameter w, the relevant region ẑ only depends

on image feature as LSVM, without any gaze information (eq. 1). The benefit

of this modeling strategy is that G+LSVM only uses gaze loss for training,

not for the test. This idea is inspired from learning using Privileged Informa-

tion (LUPI) [56, 57]. The problem addressed by LUPI is that the privileged200

information is available only at the training stage and is not available at the

test stage. By including privileged information into training we obtain a better

model, which commits lower generalization error thanks to the localization infor-

mation for human gaze. This modeling strategy is also practical because models

trained with gaze can be applied without gaze annotations. This strategy is also205

applicable to the following models in section 3.3 and 3.4.

3.3. Positive Negative Latent SVM

One drawback of G+LSVM is the absence of gaze information in negative

image. However, a straightforward application of positive gaze loss on the neg-

ative image may not work. The reason is that for the positive image, the model210

should tend to localize where the foreground object is. For the negative image,

however, the model should tend to localize where the background is [50]. That’s

because the overlapping instances between positive and negative example are

likely to be the background. According to the task-driven protocol, image se-

mantic is related with gaze distribution. Indicated by the gaze, the region with215

lower density of gaze is more likely to be background. Since then, we should

heavily penalize the object region of negative image. This intuition leads to a

generalization of G+LSVM, called G±LSVM. In G±LSVM we defined a nega-

tive gaze loss, which prefers the region where there is less objectness. Contrary

to positive image, if a region of negative image contains more gaze, it is force220

not to be the relevant region of the negative image.
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Based on this assumption, we propose a negative gaze loss defined as follows:

δg(ẑi, xi, yi) =





1− g(xi,ẑi)
g+(xi)

if yi = 1

g(x,ẑi)−g−(xi)
g+(xi)−g−(xi)+ε

if yi = −1
(5)

where g−(xi) is the minimum number of gaze among all regions of image xi,

ε is set to be 10−6. We subtract the term g−(xi) from the numerator and

denominator only to normalize the minimum negative gaze loss to be 0.

We introduce independent parameters γ+ and γ− for trading positive gaze

loss and negative gaze loss. Assembling all together we get the objective function

of G±LSVM:

LG+
−

(w) =
1

2
‖w‖2 +

n∑

i=1

∆c(ŷi, yi) + (〚yi = 1〛γ+ + 〚yi = −1〛γ−) · δg(ẑi, xi, yi)

(6)

3.4. Top k instance model225

Taking only the maximum scored region as the representative is rigid because

one region may be to small to fit an object. To soften the constraint, [22]

proposes the definition of soft bags of top k instances. In soft bags, example

is represented by the average feature of the top k instances. This method is

proved to be robust to the noise in the examples and generalized better than230

LSVM.

An useful property of top k related to gaze information is its smooth func-

tionality for sparse gaze limitation. This limitation is due to the truth that gaze

on an image often focus on a small part of the image. For a given example,

the gaze loss term has no difference on regions with the same gaze loss. Selec-235

tion among these regions is random in previous single instance models. This

randomness can be eliminated by taking them all via top k strategy.

Fig. 3 illustrates the rationale of our final model. Remind that the goal is to

select semantically meaningful regions, e.g. those containing the target object

class (eggs benedict region or its sub-regions in Fig. 3a). By assuming that gaze240

features are related to regions relevant for the recognition task, gaze and object

are matched for positive example. For negative example, top k G±LSVM further

12
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(a) french toast, positive example (b) eggs benedict, negative example

Figure 3: Illustration of top k G±LSVM model. Human gaze density is represented by the

heat map. In our models, positive example emphasize the latent regions with high gaze density

(inside the solid boxes), while negative example emphasizes the regions with low gaze density

(outside the dashed boxes). Different colors of regions indicate different scales. For one scale,

our model takes multiple highest scored regions as the relevant regions. (Best viewed in color)

supports regions with low density of gaze, by assuming that no gaze features

are related to classify negative images. Extending the model to top k instances

latent SVM can further improve the quality of region selection and reduce the245

effect of the sparseness of gaze.

The objective function of top k G±LSVM is as follows:

LkG+
−

(w) =
1

2
‖w‖2 +

n∑

i=1

∆c(ŷi, yi) + (〚yi = 1〛γ+ + 〚yi = −1〛γ−) · δg(ẑi, xi, yi)

(7)

where

∆c(ŷi, yi) = max(0, 1− yifw(xi))

δg(ẑi, xi, yi) =
1

k

k∑

j=1

δg(ẑij , xi, yi)

ẑi = arg max
z∈Z(xi)

〈w,Φ(xi, z)〉,

where z is a vector of latent variables, Z(xi) the hypothesis space {0, 1}k \ {0}.
Φ(xi, z) = 1

k

∑k
j=1 Φ(xi, zij).
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4. G-LSVM Optimization

In the section 3 we have revised the baseline LSVM, G+LSVM, and proposed250

three variations, G±LSVM, top k G+LSVM, top k G±LSVM. Each of the five

models has a different objective function to optimize. However, notice that

when k = 1, top k models reduce to the single instance model. Furthermore,

when γ− = 0, the objective function of G±LSVM (Eq. 6) reduces to G+LSVM

(eq. 3), and when γ+ = 0, G+LSVM reduces to LSVM (eq. 2). For the reason255

above, without losing the generality, we only explain how to optimize the most

generalized top k G±LSVM objective function Eq. 7 in this section.

Eq. 7 is a sum of hinge loss (classification loss) and gaze loss. We first derive

a concave-convex upper bound of Eq. 7 by following steps:

1) Classification loss part: For negative example, yi = −1. The second260

term 1 − yifw(xi) in its classification loss is convex because it is a sum of a

constant and a maximum over a set of convex functions. As a result, the sum of

the classification loss of all negative examples are convex. For positive example,

since yi = 1, it is not convex. We propose to optimize by decomposing the hinge

loss of positive example into a difference of two convex functions by applying265

the following theorem:

max(0, u− v) = max(u, v)− v, (8)

where u, v are two convex functions. The non-convex classification loss of every

positive example is thus decomposed as:

max(0, 1− fw(x)) = max(1, fw(x))− fw(x). (9)

The maximum of a set of linear functions is convex, so Eq. 9 is a difference

of two convex functions.

2) Gaze loss part: δg(ẑi, xi, yi) is difficult to optimize, because the depen-

dency on w is complex and non-smooth. To overcome this issue, we derive a

14
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convex upper-bound ∆g, inspired from margin-rescaling [58]:

δg(ẑ, xi, yi) ≤ δg(ẑ, xi, yi) + w · Φ(xi, ẑ)−w · Φ(xi, zi)

≤ max
z∈Z(xi)

[δg(z, xi, yi) + w · Φ(xi, z)]−w · Φ(xi, zi)

:= ∆g(ẑ, xi, yi)

(10)

where maxz∈Z(xi)[δg(z, xi, yi) + w · Φ(xi, z)] is a max over linear functions,

so it is convex. The second term w ·Φ(xi, zi) is linear. As a result, the difference270

of the two terms is convex.

Aggregating Eq. 9 and Eq. 10 together, the concave-convex upper bound of

the objective function of top k G±LSVM is eq. 11:

LkG+
−

(w) ≤ LkG+
−

(w) =
1

2
‖w‖2 + C

[
1

nn

nn∑

in=1

max(0, 1 + fw(xin))

︸ ︷︷ ︸
cn(w)

+

1

np

np∑

ip=1

max(1, fw(xip))

︸ ︷︷ ︸
cp1(w)

− 1

np

np∑

ip=1

fw(xip)+

︸ ︷︷ ︸
cp2(w)

n∑

i=1

(
〚yi = 1〛

γ+
np

+ 〚yi = −1〛
γ−
nn

)
·∆g(ẑ, xi, yi)

︸ ︷︷ ︸
g(w)

]

(11)

where np, nn are respectively number of positive examples and negative exam-

ples. The losses of positive example and negative example are also balanced275

according to their quantity.

For brevity, we rewrite Eq. 11 as u(w)− v(w), where:

u(w) =
1

2
‖w‖2 + C(cp1(w) + cn(w) + g(w)). (12)

v(w) = Ccp2(w). (13)

We then optimize u(w)− v(w) by CCCP (algo.1). The CCCP algorithm is

guaranteed to decrease the objective function at every iteration and to converge
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to a local minimum or saddle point [20]. In Algo 1, the line 3 involves linearizing280

the concave part −v(w). We calculate the supergradient vt of −v(w) at the

point wt, where vt = −∑np

ip=1 Φ(xi, ẑi). At line 4, the problem becomes convex,

we can use any convex optimization tool for solving this problem.

Algorithm 1: Concave-Convex Procedure
Output: w∗

1 Set t = 0, stopping criterion ε and initialize w by w0, u(w) and v(w) are

defined as Eq. 12 and Eq. 13.

2 repeat

3 Find hyperplane vt to linearize −v(w):

−v(w) ≤ −v(wt) + (w −wt) · vt,
4 Solve wt+1 = argminwu(w) + w · vt,
5 Set t = t+1,

6 until [u(wt)− v(wt)]− [u(wt−1)− v(wt−1))] < ε;

5. Experiments

5.1. Weakly supervised classification setting285

In our models, the first step is generating the latent regions. Latent region

set corresponds to square image regions extracted with a multi-scale sliding

window strategy. Region size vary from 90% to 30% of the whole image area.

For a given scale, a window slides from the upper-left to the bottom-right of the

image with a step size 10% in both directions. As a result, for each image, the290

size of sub-region space varies among {4, 9, 16, 25, 36, 49, 64}. Each

region is described by the deep features extracted from the FC7 layer of the

pre-trained imagenet-vgg-m-2048 deep model1, which are subsequently L2-

normalized and add a bias term. In this setting, the size of feature and model

parameter are fixed as 2049.295

1http://www.vlfeat.org/matconvnet/pretrained/
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For training the multi-scale model, we adapt the object bank representa-

tion [19] for our setting. For a given category, we first train the models in-

dependently for all 8 scales (including the full image scale). We then form an

8-dimensional vector for each image by the classification scores and train a linear

SVM with C = 10 as the multi-scale model. Finally, the multi-scale classifica-300

tion score of all categories are averaged to give an mAP to show the overall

performance of our models.

5.2. Datasets

We validate our ideas on three datasets, PASCAL VOC Action dataset anno-

tated with gaze (short for Action) [38], PASCAL VOC Object dataset annotated305

with gaze (short for POET) [16] and our dataset UPMC-G20. Action contains

4588 images, covering 10 categories. POET contains 6131 images, covering 10

categories out of 20 categories of PASCAL VOC Object dataset. The origin

of these images is the train+val split of PASCAL VOC dataset. Two sam-

ple images of POET and Action are shown with gaze annotations in Fig. 4.310

UPMC-G20 contains 2000 images, covering 20 food categories. The detail of

UPMC-G20 is described in section 5.2.3.

5.2.1. Acquisition protocols of POET and Action

The gaze annotations over these datasets are all collected in task-control

manners with slight variations.315

1. POET uses the category specific protocol, which means that each subject

has a specific category of object, e.g. cat, to look at. Images in POET may

have multiple categories. These multiple classes images are annotated with

more than one set of annotations. In out tests, for a positive image, we use

the corresponding set of annotations, for a negative image, we calculate the320

fixation duration for each region of each category, then take the maximum

fixation duration across the categories as the fixation duration of this

region.
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2. Action uses the category group protocol, which means the subject is re-

quired to find a specific group of categories, i.e. actions or context. In325

other words, if a subject is required to find actions, the subject should

find all possible actions in the image. The setting of Action is weaker

than POET because annotations are only related with a person, not a

specific action.

Figure 4: Gaze annotations. left : sample image of POET dataset, right : sample image of

Action dataset. Different colors indicate different observers.

5.2.2. Qualitative analysis of gaze information330

We provide a detailed analysis of the gaze data consistency with respect to

ground truth bounding boxes on Action and POET. Currently, UPMC-G20 does

not have bounding box, so we do not provide the results. We compute statistics

for the proportion of gaze falling into or outside of the bounding boxes and

compare it to the proportion of image pixels (Fig. 5). Statistically, for action335

dataset, 68.8% of the gaze fall into the ground-truth bounding-box, while the

score of pixels is only 30.6%. Similarly, the scores of object dataset are 77.3% vs.

36.9%. This preliminary study provides a quantitative validation that human

gaze are highly related to object localization, and convey relevant features for

classification.340

5.2.3. UPMC-G20 food gaze dataset

UPMC-G20 content. UPMC-G20 is a food-related gaze annotated dataset based

on a multi-modal large scale food dataset UPMC-food 101 [40]. We select 20
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Figure 5: Proportions of gaze and pixel numbers in (outside) the ground-truth bounding

boxes.

food categories from UPMC-food 101, resulting in 2,000 images. The images

selected do not contain text, because it’s verified that texts attract attention345

most [59]. For each image, about 15 fixations across 3 subjects (in average)

with a total duration of 2.5 seconds are collected. In total, we have collected

31104 fixations. The categories selected are apple-pie/bread-pudding, beef-

carpaccio/beet-salad, chocolate-cake/chocolate-mousse, donuts/beignets, eggs-

benedict/croque-madame, gnocchi/shrimp-and-grits, grilled-salmon/pork-chop,350

lasagna/ravioli, pancakes/french-toast, spaghetti-bolognese/pad-thai.

Samples of images and gaze annotations are shown in the Fig. 6. For full

visualization of UPMC-G20, we refer our reader to this page of our dataset:

http://webia.lip6.fr/~wangxin/upmcg20/.

Apparatus. Our eye-tracker is a non-invasive Tobii X2-30 with a double eyes355

gaze sampling rate 30Hz. Eye-tracker is fixed under a 12.6” laptop screen with

resolution 1366 × 768. The subject sits at a distance of about 60cm to the

screen. The test environment is quiet and of suitable temperature for not in-

troducing physiological error. The experiment was conducted with the software

Tobii Studio (V3.4.5) [60]. Before annotating, for each subject, dominant eye,360

gender, age are recorded. Before every experiment, Tobii X2-30 is calibrated
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Figure 6: Sample images of apple pie (left column) and bread pudding(right column) in

UPMC-G20.

and validated with a standard nine-point procedure to ensure the coordinate

of the gaze recorded matches where the subject is looking at. They are taught

the procedure of annotation with a clear explanation and validate a simulation

test before the formal experiment. Subject record his classification answer by365

clicking the corresponding option on the screen after viewing an image using

a mouse. Comparing to pressing a button to indicate the category as in [16],

using the mouse is useful because mousing moving leads to eye moving after

every image. The subject then break the possible steady fixating strategy.

UPMC-G20 collection protocol. Our collection protocol is shown in Fig. 7. It370

is inspired by the two-alternative forced choice object discrimination [16]. This

protocol is simple to the annotators and can save the time because no irrelevant

images for distracting the attention are shown.

The protocol is composed of steps:

1. randomly selecting an image from a pair of categories and exposing for375

2.5 seconds, recording the gaze data.
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2. making the subject answering a multiple choice question of which the

category the image belongs to is shown using a mouse.

3. After exposing every 20 images, a page indicates the progress of the task

is shown to heal the anxiety of annotators.380

4. After exposing a whole set of images, annotator gets an adequate rest then

recalibrate for the next set of images.

Figure 7: Food gaze collection protocol

5.2.4. Gaze Data

Each gaze is classified into fixation, saccade, or unclassified gaze. For Ac-

tion and POET, the classification results are already given in the dataset. For385

UPMC-G20, I-VT filter [61] is used to classified the gaze. Gaze is then rep-

resented by fixation in the form of a triplet (x, y, duration). (x, y) is the co-

ordinate of fixation, duration is the duration time of this fixation. Fixation

duration is important since higher exposure time of a fixation reflects a deeper

understanding of the local content of the image [62]. The total valid fixation390

time duration of each subject on each image is normalized to a fixed value. By

considering the gaze consistency across subjects, for each region, the fixation

duration is summed for all subjects. Gaze loss is calculated for each region using

the re-weighted summed fixation.

5.2.5. Dataset split395

In order to compare with the state-of-the-art methods, we follow the stan-

dard split of train, val, test set as indicated in PASCAL VOC 2012 develop-
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ment kit [63]. Since POET contains only 10 out of 20 categories of Pascal VOC

2012 Object, we add back the images of the absent categories in the train+val

set for training, without gaze information. Finally, our model can be evaluated400

following the standard protocol. For Action, since by default standard test set

requires to identify every person in an image with a bounding box, we con-

ventionally train our model on the training set and test on the validation set.

Except for the comparison with the state-of-the-art methods, our experiments

are performed by 5 random folds test on the train+val set of POET, Action,405

and the whole dataset of UPMC-G20.

5.3. Comparison with the state-of-the-art

In our model, we set k-G±LSVM with the parameters C = 104, γ+ = 0.2,

γ− = 0.05 for each scale. In a heuristic manner, for top k models, we set

k = 2, 4, 6, 8 for scale 90% to 60%, and k = 10 for scale 50% to 30%. A410

multi-scale model is trained as indicated in section 5.1. In all experiments, we

use the standard metric mean Average Precision (mAP) as for PASCAL VOC

classification.

In Table 1 we show the global score of different methods on the three datasets

and the annotations they use. For POET dataset, Deep Fishing [64] and Z&F415

network [65] are two deep network based methods which only use image label

for training. NUS-SCM [66] is an SVM-based method and Oquab [67] is a fine-

tuned deep network. They both use training bounding box as the additional

annotation. Our method outperforms the four methods with only our weak

supervision signals. For Action dataset, we compare with Action part [68] and420

RMP [69]. The action part is a deep version of poselets and capture parts of the

human body under a distinct set of poses, while RMP considers deformation of

discriminative parts. They both propose a model with simple annotations (e.g.

image label and training bounding box) and a model with rich annotations (e.g.

test bounding box and part annotation. Our model is better than them if they425

do not use rich annotations. In Table 2 we show the per category performance

on the test set of POET. Our model largely outperforms other methods on boat,
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cat and diningtable categories.

5.4. Ablation studies

In this section, we compare LSVM, G+LSVM, G±LSVM and their top k430

variations. We present the scale-wise classification experiments in Fig. 8. In our

model, scale measures the size of the sliding window with respect to the size

of the image. In a heuristic manner, for top k models, we set k = 2, 4, 6, 8 for

scale 90%− 60%, and k = 10 for scale 50%− 30%. For most scales, the model

performance is better than wSVM (scale=100 in Fig. 8). This result proves435

the effectiveness of weakly supervised learning: local information is critical for

image classification.

We can also observe that adding gaze into the model improve the perfor-

mance for all scales. The improvement can be explained by two reasons. One

is that G+LSVM emphasizes small scales. That is what we expect: for large440

scales, nearly all regions of positive images are informative, whereas at smaller

scales, the model has to focus on relevant localized features. The other is that

G±LSVM can also emphasize large scales. Paired T-tests show that G±LSVM
is better than LSVM with a larger significance than for G+LSVM, especially

for large scale. This phenomenon may have a dual explanation with respect445

to G+LSVM: not all regions of negative images are non-informative. As a re-

sult, for large scale, the ground truth region zi of negative example has a larger

probability to be unique. While for small scales, zi is selected randomly among

all low gaze density regions, which may lead to a less optimal result. When

k increases, for small scale, this problem no longer dominates the performance450

because the set of ground truth regions for negative images is informative with

less randomness. We think that is the reason why we constate a substantial

performance enhancement at small scales for top G±LSVM.

Table. 3 gives the performance at the smallest scale 30%. At scale 30%,

k-G±LSVM (k-G+LSVM) outperform k-LSVM by a margin of 1.8%(1.1%),455

1.2%(0.5%), 2.3%(1.2%) for respectively Action, POET and UPMC-G20. Paired

T-tests show that k-G±LSVM (k-G+LSVM) is more significant than LSVM
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for a risk less than 0.2%(1.0%), 1.0%(2.0%), 0.2%(0.5%) for respectively Ac-

tion, POET, UPMC-G20. These statistical results show that k-G±LSVM is

better than k-G+LSVM with significance at small scale. Top k models much460

outperform single instance models. Interestingly, as we expected, the gain of k-

G±LSVM with respect to k-G+LSVM is much larger than the gain of G±LSVM
with respect to G+LSVM.

Action POET label train BB test BB part gaze

Deep Fishing [64] - 79.9
√

Z&F [65] - 81.2
√

RMP [69] 65.1 -
√

NUS-SCM [66] - 84.3
√ √

Oquab [67] - 84.5
√ √

Action part [68] 64.6 -
√ √

RMP [69] 71.4 -
√ √ √

Action part [68] 71.0 -
√ √ √ √

k-G±LSVM (ours) 69.6 85.9
√ √

G+LSVM [21] 66.8 82.6
√ √

wSVM 59.1 79.8
√

Table 1: Comparison with the state-of-the-art methods on the test set of Pascal VOC 2012

Object, and the validation set of Action. Our model outperforms other methods even when

they use global label + training bounding box. We also achieve comparable results with

respect to the models using accurate annotations such as test bounding box and/or human

part annotation.

5.5. Study of hyper-parameters

We investigate the impact of the three hyper-parameters in our model: trade-465

off parameters γ+, γ− and k. The impact of the parameter γ+ of G+LSVM

is shown in Fig. 9 for small scale 50%, with k set to be 1. The performances

in Fig. 9 are shown on average for all categories. For all three datasets, mAP

reaches the peak when γ+ is in the interval [0.1, 0.3]. Note that when γ+ gets

too high, mAP gets even lower than not adding gaze (Fig. 9). Fix γ− to be the470
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(a) Action dataset

(b) POET dataset

(c) UPMC-G20 dataset

Figure 8: mAP(%) at different scales. In our model, scale measures the size of the sliding

window with respect to the size of the image. Our model outperforms the whole image for

most scales using top k instances. Also, k-G±LSVM significantly outperforms other G-LSVM

variations at all scales.
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POET mAP plane bike boat cat cow table dog horse motor sofa

Deep Fishing [64] 79.9 95.0 76.6 82.9 88.6 65.4 69.8 86.5 82.1 85.1 57.0

Z&F [65] 81.2 96.0 77.1 85.5 91.2 74.4 67.7 87.8 86.0 85.1 61.1

NUS-SCM [66] 84.3 97.3 84.2 85.3 89.3 77.8 75.1 83.0 87.5 90.1 73.4

Oquab [67] 84.5 94.6 82.9 84.1 90.7 86.8 69.0 92.1 93.4 88.6 62.3

k-G±LSVM (ours) 85.9 97.2 83.9 90.1 94.7 77.4 77.3 92.3 87.3 89.9 68.9

G-LSVM [21] 82.6 96.5 80.2 87.7 92.4 71.1 74.1 89.6 84.3 87.5 62.7

wSVM 79.8 95.4 79.6 86.7 92.2 59.6 69.9 90.0 86.7 79.3 58.4

Table 2: mAP(%) per category on the test set of PASCAL VOC 2012 Object.

Action POET UPMC-G20

k-G±LSVM 66.0± 0.9 88.1± 1.2 78.3± 1.0

k-G+LSVM 65.3± 1.0 87.4± 1.0 77.1± 1.1

k-LSVM 64.2± 0.8 86.9± 1.1 76.0± 1.2

G±LSVM 62.4± 0.9 85.3± 1.1 73.0.± 0.8

G+LSVM 62.1± 0.8 85.2± 1.0 72.9± 0.9

LSVM 58.2± 1.0 84.2± 1.1 71.6± 1.0

Table 3: mAP(%) of scale 30% on Action, POET and UPMC-G20 datasets. Here we set

k = 10.

best value obtained by cross-validation, for γ− , the effective value is found to

be a relatively small value between [0.05, 0.1]. This result is reasonable because

our objective is classification with gaze information as auxiliary information, so

the gaze loss should tend to have a smaller weight than the classification loss.

The performance of k model varies in the similar trend.475

We show in Fig. 9 that our model outperforms k model significantly for all

k value at scale 30%. We set γ+ of G±LSVM and G+LSVM to 0.2, γ− of

G±LSVM to 0.05. From Fig. 9, we also find that by increasing k, gaze latent

SVM always outperforms latent SVM. This result signifies that gaze helps better

select the regions even when the number of candidate regions largely increases.480

Heuristically, for selecting k, the small scales prefer a larger k. That’s because,

for small scale, more regions are semantic for positive images and can smooth
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(a) Action dataset (b) Action dataset

(c) POET dataset (d) POET dataset

(e) UPMC-G20 dataset (f) UPMC-G20 dataset

Figure 9: The sensitivity of hyper-parameters γ+ and k. left : At scale 50%, the performance

with respect to γ+ (γ−) is found to reach the peak value in the interval [0.1, 0.3] ([0.05, 0.1]).

right : At scale 30%, generally, the larger k is, the better the performance is.
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the selection of ground-truth regions of negative examples.

5.6. Localization results

The relevant regions proposed by our models are interpretable. We show485

in Fig. 10 the predicted regions for the model k-G±LSVM at scale 30%, where

k = 10. We present the first three high scored regions for visual clarity.

Results for training images are shown in the first row: we show that k-

G±LSVM selects areas with more (fewer) gaze for positive (negative) images.

Results for test images are shown in the second row, of which gaze features490

are not available. k-G±LSVM extracts regions which are highly semantic for

positive images and extract background for negative images. For example, we

find that running model has a good result on the positive image. Also for the

negative image, the running model fires at the regions which have a similar

visual semantic to the road and trees. Interestingly, these regions often appear495

as the background in the running images. As these regions have a relatively low

density of gaze, our model emphasizes the importance of these regions.

6. Conclusion

In this paper, we introduce G(aze)-LSVM, a weakly supervised learning

multi-scale model using sub-region strategy incorporating human gaze for image500

classification. Our model exploits gaze for guiding the selection of region which

is relevant with the image semantic. Furthermore, we find that generalizing

the model to the selection of k maximum scored regions can also benefit from

the gaze information. Our model leverage human gaze features for training,

while the test is gaze free. Experimental results show that our model achieves505

competitive results with respect to the state-of-the-arts methods on Pascal VOC

Action and Object. We also publicly release a medium-sized food dataset with

gaze annotation, UPMC-G20, covering 20 categories and 2000 images.
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(a) positive training image (b) negative training image

(c) positive test image (d) negative test image

Figure 10: Localization results achieved by running model. (a)(b): training results, (c)(d):

test results.

References

References

[1] E. Learned-Miller, G. B. Huang, A. RoyChowdhury, H. Li, G. Hua, Labeled

faces in the wild: A survey, Advances in Face Detection and Facial Image

Analysis (2016) 189–248.515

[2] J. Zhou, Y. Cao, X. Wang, P. Li, W. Xu, Deep recurrent models with

fast-forward connections for neural machine translation, Transactions of

the Association for Computational Linguistics (TACL) 4 (2016) 371–383.

[3] G. Saon, T. Sercu, S. J. Rennie, H. J. Kuo, The IBM 2016 English con-

versational telephone speech recognition system, in: Interspeech, 2016, pp.520

7–11.

[4] Silver David, Huang Aja, et.al, Mastering the game of Go with deep neural

networks and tree search, Nature 529 (7587) (2016) 484–489.

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[5] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with

deep convolutional neural networks, in: Advances in Neural Information525

Processing Systems (NIPS), 2012, pp. 1097–1105.

[6] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-

nition, in: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016, pp. 770–778.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A Large-530

Scale Hierarchical Image Database, in: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.

[8] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features

in deep neural networks?, in: Advances in Neural Information Processing

Systems (NIPS), 2014, pp. 3320–3328.535

[9] K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil

in the details: Delving deep into convolutional nets, in: British Machine

Vision Conference (BMVC), 2014.

[10] K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convo-

lutional networks for visual recognition, IEEE Trans. Pattern Anal. Mach.540

Intell. 37 (9) (2015) 1904–1916.

[11] Y. Gong, L. Wang, R. Guo, S. Lazebnik, Multi-scale orderless pooling of

deep convolutional activation features, in: European Conference on Com-

puter Vision (ECCV), 2014, pp. 392–407.

[12] R. Arandjelovic, P. Gronát, A. Torii, T. Pajdla, J. Sivic, Netvlad: CNN545

architecture for weakly supervised place recognition, in: IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 5297–

5307.

[13] C. Xu, D. Tao, C. Xu, Y. Rui, Large-margin weakly supervised dimension-

ality reduction, in: International Conference on Machine Learning, 2014,550

pp. II–865–II–873.

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[14] T. G. Dietterich, R. H. Lathrop, T. Lozano-Pérez, Solving the multiple

instance problem with axis-parallel rectangles, Artificial Intelligence 89

(1997) 31–71.

[15] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, D. Ramanan, Object555

detection with discriminatively trained part-based models, IEEE Trans.

Pattern Anal. Mach. Intell. 32 (9) (2010) 1627–1645.

[16] D. P. Papadopoulos, A. D. F. Clarke, F. Keller, V. Ferrari, Training object

class detectors from eye tracking data, in: European Conference on Com-

puter Vision (ECCV), 2014, pp. 361–376.560

[17] Y. Luo, Y. Wen, D. Tao, J. Gui, C. Xu, Large margin multi-modal multi-

task feature extraction for image classification, IEEE Trans. Image Pro-

cessing 25 (1) (2016) 414–427.

[18] Y. Luo, D. Tao, C. Xu, C. Xu, H. Liu, Y. Wen, Multiview vector-valued

manifold regularization for multilabel image classification, IEEE Transac-565

tions on Neural Networks and Learning Systems 24 (5) (2013) 709–722.

[19] L. jia Li, H. Su, L. Fei-fei, E. P. Xing, Object bank: A high-level image

representation for scene classification & semantic feature sparsification, in:

Advances in Neural Information Processing Systems, 2010, pp. 1378–1386.

[20] A. L. Yuille, A. Rangarajan, The concave-convex procedure (CCCP), in:570

NIPS, 2001, pp. 1033–1040.

[21] X. Wang, N. Thome, M. Cord, Gaze latent support vector machine for im-

age classification, in: IEEE International Conference on Image Processing

(ICIP), 2016, pp. 236–240.

[22] W. Li, N. Vasconcelos, Multiple instance learning for soft bags via top in-575

stances, in: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015, pp. 4277–4285.

31



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[23] S. Ramanathan, V. Yanulevskaya, N. Sebe, Can computers learn from hu-

mans to see better?: inferring scene semantics from viewers’ eye movements,

in: International Conference on Multimedia, 2011, pp. 33–42.580

[24] K. Yun, Y. Peng, D. Samaras, G. J. Zelinsky, T. L. Berg, Studying rela-

tionships between human gaze, description, and computer vision, in: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2013,

pp. 739–746.

[25] S. Mathe, C. Sminchisescu, Actions in the eye: Dynamic gaze datasets and585

learnt saliency models for visual recognition, IEEE Trans. Pattern Anal.

Mach. Intell. 37 (7) (2015) 1408–1424.

[26] G. Ge, K. Yun, D. Samaras, G. J. Zelinsky, Action classification in still im-

ages using human eye movements, in: 2015 IEEE Conference on Computer

Vision and Pattern Recognition Workshops, 2015, pp. 16–23.590

[27] S. Karthikeyan, V. Jagadeesh, R. Shenoy, M. Ecksteinz, B. S. Manjunath,

From where and how to what we see, in: International Conference on Com-

puter Vision, 2013, pp. 625–632.

[28] J. Pan, E. Sayrol, X. Giró i Nieto, K. McGuinness, N. E. O’Connor, Shal-

low and deep convolutional networks for saliency prediction, in: IEEE Con-595

ference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.

598–606.

[29] S. S. S. Kruthiventi, V. Gudisa, J. H. Dholakiya, R. V. Babu, Saliency

unified: A deep architecture for simultaneous eye fixation prediction and

salient object segmentation, in: IEEE Conference on Computer Vision and600

Pattern Recognition, 2016, pp. 5781–5790.

[30] T. Walber, A. Scherp, S. Staab, Can you see it? two novel eye-tracking-

based measures for assigning tags to image regions, in: Advances in Multi-

media Modeling, International Conference, 2013, pp. 36–46.

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[31] S. Karthikeyan, T. Ngo, M. P. Eckstein, B. S. Manjunath, Eye tracking605

assisted extraction of attentionally important objects from videos, in: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015,

pp. 3241–3250.

[32] N. Shapovalova, M. Raptis, L. Sigal, G. Mori, Action is in the eye of the

beholder: Eye-gaze driven model for spatio-temporal action localization, in:610

Advances in Neural Information Processing Systems, 2013, pp. 2409–2417.

[33] D. Damen, T. Leelasawassuk, W. Mayol-Cuevas, You-do, i-learn: Ego-

centric unsupervised discovery of objects and their modes of interaction

towards video-based guidance, Computer Vision and Image Understanding

149 (2016) 98 – 112.615

[34] J. Xu, L. Mukherjee, Y. Li, J. Warner, J. M. Rehg, V. Singh, Gaze-

enabled egocentric video summarization via constrained submodular max-

imization, in: IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2015, pp. 2235–2244.

[35] Hao Su and Jia Deng and Li Fei-Fei, Crowdsourcing Annotations for Visual620

Object Detection, in: AAAI Workshop, 2012, pp. 1–6.

[36] Pushmeet Kohli and L’ubor Ladický and Philip H.S. Torr, Robust Higher

Order Potentials for Enforcing Label Consistency, Int. J. Comput. Vision

82 (3) (2009) 302–324.

[37] S. Lopez, A. Revel, D. Lingrand, F. Precioso, One gaze is worth ten thou-625

sand (key-)words, in: IEEE International Conference on Image Processing

(ICIP), 2015, pp. 3150–3154.

[38] S. Mathe, C. Sminchisescu, Action from still image dataset and inverse

optimal control to learn task specific visual scanpaths, in: Advances in

Neural Information Processing Systems, 2013, pp. 1923–1931.630

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[39] S. O. Gilani, R. Subramanian, Y. Yan, D. Melcher, N. Sebe, S. Winkler,

PET: an eye-tracking dataset for animal-centric pascal object classes, in:

IEEE International Conference on Multimedia and Expo, 2015, pp. 1–6.

[40] X. Wang, D. Kumar, N. Thome, M. Cord, F. Precioso, Recipe recognition

with large multimodal food dataset, in: IEEE International Conference on635

Multimedia & Expo Workshops, 2015, pp. 1–6.

[41] X. Wang, Z. Zhu, C. Yao, X. Bai, Relaxed multiple-instance SVM with

application to object discovery, in: International Conference on Computer

Vision (ICCV), 2015, pp. 1224–1232.

[42] W. Shen, X. Bai, Z. Hu, Z. Zhang, Multiple instance subspace learning640

via partial random projection tree for local reflection symmetry in natural

images, Pattern Recognition 52 (2016) 306–316.

[43] M. Juneja, A. Vedaldi, C. V. Jawahar, A. Zisserman, Blocks that shout:

Distinctive parts for scene classification, in: IEEE Conference on Computer

Vision and Pattern Recognition, 2013, pp. 923–930.645

[44] J. Sun, J. Ponce, Learning discriminative part detectors for image clas-

sification and cosegmentation, in: International Conference on Computer

Vision (ICCV), 2013, pp. 3400–3407.

[45] X. Wang, B. Wang, X. Bai, W. Liu, Z. Tu, Max-margin multiple-instance

dictionary learning, in: International Conference on Machine Learning,650

2013, pp. 846–854.

[46] A. Shrivastava, V. M. Patel, J. K. Pillai, R. Chellappa, Generalized dic-

tionaries for multiple instance learning, Int. J. Comput. Vision 114 (2-3)

(2015) 288–305.

[47] S. Andrews, I. Tsochantaridis, T. Hofmann, Support vector machines for655

multiple-instance learning, in: Advances in Neural Information Processing

Systems (NIPS), 2002, pp. 561–568.

34



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[48] T. Durand, N. Thome, M. Cord, D. Picard, Incremental learning of la-

tent structural SVM for weakly supervised image classification, in: IEEE

International Conference on Image Processing, 2014, pp. 4246–4250.660

[49] H. Bilen, V. P. Namboodiri, L. J. V. Gool, Object and action classification

with latent window parameters, Int. J. Comput. Vision 106 (3) (2014) 237–

251.

[50] H. Azizpour, M. Arefiyan, S. N. Parizi, S. Carlsson, Spotlight the negatives:

A generalized discriminative latent model, in: British Machine Vision Con-665

ference, 2015, pp. 1–11.

[51] T. Durand, N. Thome, M. Cord, MANTRA: minimum maximum latent

structural SVM for image classification and ranking, in: International Con-

ference on Computer Vision, 2015, pp. 2713–2721.

[52] T. Durand, N. Thome, M. Cord, WELDON: weakly supervised learning670

of deep convolutional neural networks, in: IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 4743–4752.

[53] S. Mathe, C. Sminchisescu, Multiple instance reinforcement learning for

efficient weakly-supervised detection in images, CoRR abs/1412.0100.

[54] S. Mathe, A. Pirinen, C. Sminchisescu, Reinforcement learning for visual675

object detection, in: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) , 2016, pp. 2894–2902.

[55] I. Shcherbatyi, A. Bulling, M. Fritz, GazeDPM: Early integration of gaze

information in deformable part models, CoRR abs/1505.05753.

[56] V. Vapnik, R. Izmailov, Learning using privileged information: Similarity680

control and knowledge transfer, J. Mach. Learn. Res 16 (2015) 2023–2049.

[57] S. You, C. Xu, Y. Wang, C. Xu, D. Tao, Privileged multi-label learning,

in: International Joint Conference on Artificial Intelligence (IJCAI), 2017.

35



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[58] T. Joachims, T. Finley, C. J. Yu, Cutting-plane training of structural svms,

Machine Learning 77 (1) (2009) 27–59.685

[59] M. P. Hsueh-Cheng Wang, The attraction of visual attention to texts in

real-world scenes, Journal of Vision 12 (2012) 1–17.

[60] T. AB, Tobii Studio User’s Manual Version 3.4.5 (2016).

[61] A. Olsen, The Tobii I-VT Fixation Filter (2012).

[62] L. Fei-Fei, A. Iyer, C. Koch, P. Perona, What do we perceive in a glance of690

a real-world scene?, Journal of Vision 7 (2007) 1–29.

[63] M. Everingham, S. M. A. Eslami, L. J. V. Gool, C. K. I. Williams, J. M.

Winn, A. Zisserman, The Pascal visual object classes challenge: A retro-

spective, International Journal of Computer Vision 111 (1) (2015) 98–136.

[64] A. Gordo, A. Gaidon, F. Perronnin, Deep fishing: Gradient features from695

deep nets, in: British Machine Vision Conference, 2015, pp. 1–12.

[65] M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional net-

works, in: European Conference on Computer Vision, 2014, pp. 818–833.

[66] Z. Song, Q. Chen, Z. Huang, Y. Hua, S. Yan, Contextualizing object de-

tection and classification, in: IEEE Conference on Computer Vision and700

Pattern Recognition (CVPR), 2011, pp. 1585–1592.

[67] M. Oquab, L. Bottou, I. Laptev, J. Sivic, Learning and transferring mid-

level image representations using convolutional neural networks, in: IEEE

CVPR, 2014, pp. 1717–1724.

[68] G. Gkioxari, R. Girshick, J. Malik, Actions and attributes from wholes and705

parts, in: IEEE International Conference on Computer Vision (ICCV),

2015, pp. 2470–2478.

[69] M. Hoai, Regularized max pooling for image categorization., in: British

Machine Vision Conference (BMVC), 2014, pp. 1–12.

36



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Xin Wang is a Ph.D. candidate in the Computer Science department LIP6,710

at UPMC Sorbonne Universities, Paris. He is under the supervision of Nico-

las Thome and Matthieu Cord. He received an M.Sc. in Computer Science

from the University of Paris-Sud, France in 2014 and a B.Sc. in Optoelectron-

ics from the Huazhong University of Science and Technology (HUST), China

in 2012. His research interests include Computer Vision, Machine Learning,715

Pattern Recognition and Eye-tracking.

Nicolas Thome is an associate professor at UPMC-Paris 6. He received the

Ph.D. degree in computer science from the University of Lyon, France in 2007. In

2008, he was a postdoctoral associate at INRETS in Villeneuve d’Ascq, France.

His research interests include computer vision and machine learning, including720

applications for semantic understanding of multimedia data. He is involved in

several French (ANR), European and international (Singapore, Brazil) research

projects. He is being coordinator of an ANR project on interactive image re-

trieval in 2013-2017.

Matthieu Cord received the Ph.D. degree in computer science from the725

UCP, France, before working in the ESAT lab at KUL University, Belgium, and

in the ETIS lab, France as Assistant Professor. He joined the Computer Science

department LIP6, at UPMC Sorbonne Universities, Paris, in 2006 as full Pro-

fessor. In 2009, he was nominated at the IUF (French Research Institute) for

a 5 years delegation position. His research interests include Computer Vision,730

Image Processing, and Pattern Recognition. He developed several systems for

content-based image and video retrieval, focusing on interactive learning-based

approaches. He is also interested in Machine Learning for Multimedia pro-

cessing, Digital preservation, and Web archiving. Prof. Cord has published a

hundred scientific publications and participated in several international projects735

(European FP6 and FP7, Singapore, Brazil) on these topics. He is a member

of the IEEE.

37


