J. Alonso and A. Stepanova, T-DNA Mutagenesis in Arabidopsis, Methods Mol Biol Clifton, vol.501, issue.236, pp.177-188177, 2003.
DOI : 10.1385/1-59259-413-1:177

U. Anschütz, D. Becker, and S. Shabala, Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment, Journal of Plant Physiology, vol.171, issue.9, p.504, 2014.
DOI : 10.1016/j.jplph.2014.01.009

B. Bargmann, A. Laxalt, B. Riet, C. Testerink, E. Merquiol et al., Reassessing the role of phospholipase D 507 in the Arabidopsis wounding response, Plant Cell Environ, vol.32, pp.743-757, 2009.

B. Bargmann and T. Munnik, The role of phospholipase D in plant stress responses, Current Opinion in Plant Biology, vol.9, issue.5, p.510, 2006.
DOI : 10.1016/j.pbi.2006.07.011

B. Rejeb, K. Abdelly, C. Savouré, and A. , How reactive oxygen species and proline face stress together, Plant Physiology and Biochemistry, vol.80, pp.278-284, 2014.
DOI : 10.1016/j.plaphy.2014.04.007

C. Abdelly and A. Savouré, Hydrogen peroxide produced by NADPH oxidases increases proline 515 accumulation during salt or mannitol stress in Arabidopsis thaliana, New Phytol, vol.208, pp.1138-114813550, 2015.

W. Beyer and I. Fridovich, Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions, Analytical Biochemistry, vol.161, issue.2, pp.559-566, 1987.
DOI : 10.1016/0003-2697(87)90489-1

M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-54, 1976.
DOI : 10.1016/0003-2697(76)90527-3

D. Munnik and T. , Multiple PLDs required for high salinity and water deficit tolerance in 524 plants, Plant Cell Physiol, vol.50, pp.78-89, 2009.

M. Chen, S. Lung, Z. Du, and M. Chye, Engineering plants to tolerate abiotic stresses, Biocatalysis and Agricultural Biotechnology, vol.3, issue.1, p.526, 2013.
DOI : 10.1016/j.bcab.2013.09.010

S. Deal, Flame Photometric Determination of Sodium and Potassium, Analytical Chemistry, vol.26, issue.3, pp.598-531, 1954.
DOI : 10.1021/ac60087a063

U. Deinlein, A. Stephan, T. Horie, W. Luo, G. Xu et al., Plant salt-tolerance mechanisms, Trends in Plant Science, vol.19, issue.6, pp.371-379, 2014.
DOI : 10.1016/j.tplants.2014.02.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041829

H. Ellouzi, B. Hamed, K. Cela, J. Munné-bosch, S. Abdelly et al., Early effects of salt stress on 535, 2011.

T. Munnik, T. Vernoux, and C. Testerink, Halotropism is a response of plant roots to avoid a saline 542 environment, Curr Biol, vol.23, pp.2044-2050, 2013.

C. Abdelly, Comparative salt tolerance analysis between Arabidopsis thaliana and 548, 2008.

S. Gill and N. Tuteja, Reactive oxygen species and antioxidant machinery in abiotic stress 551, 2010.
DOI : 10.1016/j.plaphy.2010.08.016

E. Hewitt, The composition of the nutrient solution. Sand Water Cult Methods Used Study 553, 1966.

J. Hong, Y. Takeshi, Y. Kondou, D. Schachtman, M. Matsui et al., Identification and Characterization of Transcription Factors Regulating Arabidopsis HAK5, Plant and Cell Physiology, vol.54, issue.9, pp.1478-556, 2013.
DOI : 10.1093/pcp/pct094

Y. Hong, X. Pan, R. Welti, and X. Wang, Phospholipase D??3 Is Involved in the Hyperosmotic Response in Arabidopsis, THE PLANT CELL ONLINE, vol.20, issue.3, pp.803-816, 2008.
DOI : 10.1105/tpc.107.056390

Y. Hong, W. Zhang, and X. Wang, Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity, Plant, Cell & Environment, vol.134, issue.4, pp.627-635, 2010.
DOI : 10.4161/cc.7.20.6881

Q. Hou, G. Ufer, and D. Bartels, Lipid signalling in plant responses to abiotic stress, Plant, Cell & Environment, vol.17, issue.134296, p.562, 2016.
DOI : 10.1105/tpc.105.031377

R. Hunt, Basic Growth analysis: Plant growth analysis for beginners, p.564, 1990.
DOI : 10.1007/978-94-010-9117-6

M. Julkowska and C. Testerink, Tuning plant signaling and growth to survive salt, Trends in Plant Science, vol.20, issue.9, p.565, 2015.
DOI : 10.1016/j.tplants.2015.06.008

G. Li and H. Xue, Arabidopsis PLD??2 Regulates Vesicle Trafficking and Is Required for Auxin Response, THE PLANT CELL ONLINE, vol.19, issue.1, pp.281-295, 2007.
DOI : 10.1105/tpc.106.041426

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820954

M. Li, Y. Hong, and X. Wang, Phospholipase D-and phosphatidic acid-mediated signaling in 569 plants, Biochim Biophys Acta -Mol Cell Biol Lipids, vol.1791, 2009.
DOI : 10.1016/j.bbalip.2009.02.017

M. Li, C. Qin, R. Welti, and X. Wang, Double knockouts of phospholipases Dzeta1 and Dzeta2, p.572, 2006.

H. Magome, S. Yamaguchi, A. Hanada, Y. Kamiya, and K. Oda, The DDF1 transcriptional activator 582 upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in 583, 2008.

F. Mcloughlin and C. Testerink, Phosphatidic acid, a versatile water-stress signal in roots, Frontiers in Plant Science, vol.4, p.585, 2013.
DOI : 10.3389/fpls.2013.00525

G. Miller, N. Suzuki, S. Ciftci-yilmaz, and R. Mittler, Reactive oxygen species homeostasis and signalling during drought and salinity stresses, Plant, Cell & Environment, vol.136, issue.4, pp.453-467, 2010.
DOI : 10.1042/bst0240472

R. Mittler, ROS Are Good, Trends in Plant Science, vol.22, issue.1, pp.11-19, 2016.
DOI : 10.1016/j.tplants.2016.08.002

URL : http://doi.org/10.1016/j.tplants.2016.08.002

F. Mollinedo, Lipid raft involvement in yeast cell growth and death, Frontiers in Oncology, vol.2, pp.140-593, 2012.
DOI : 10.3389/fonc.2012.00140

URL : http://doi.org/10.3389/fonc.2012.00140

R. Munns and M. Tester, Mechanisms of Salinity Tolerance, Annual Review of Plant Biology, vol.59, issue.1, pp.651-681, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092911

T. Murashige and F. Skoog, A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures, Physiologia Plantarum, vol.7, issue.3, pp.473-497, 1962.
DOI : 10.1146/annurev.pp.02.060151.001311

C. Muzi, L. Camoni, S. Visconti, and P. Aducci, Cold stress affects H+-ATPase and phospholipase D activity in Arabidopsis, Plant Physiology and Biochemistry, vol.108, pp.328-336, 2016.
DOI : 10.1016/j.plaphy.2016.07.027

C. Abdelly and A. Savouré, Calcium signaling via phospholipase C is essential for proline 604 accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis, Plant Physiol, vol.605, issue.144, pp.503-515, 2007.

C. Qin and X. Wang, The Arabidopsis phospholipase D family Characterization of a calcium- 612 independent and phosphatidylcholine-selective PLDzeta1 with distinct regulatory domains, 2002.

J. Rangani, A. Parida, A. Panda, and A. Kumari, Coordinated changes in antioxidative enzymes 615 protect the photosynthetic machinery from salinity induced oxidative damage and confer salt 616 tolerance in an extreme halophyte Salvadora persica L, Front Plant Sci, vol.7, 2016.

J. Sambrook, E. Fritsch, and T. Maniatis, Molecular cloning, 1989.

A. Singh, A. Pandey, V. Baran-wal, S. Kapoor, and G. Pandey, Comprehensive expression analysis 621 of rice phospholipase D gene family during abiotic stress and development, Plant Signal Behav, vol.7, pp.622-847, 2012.

X. Wang, Regulatory Functions of Phospholipase D and Phosphatidic Acid in Plant Growth, Development, and Stress Responses, PLANT PHYSIOLOGY, vol.139, issue.2, pp.566-573, 2005.
DOI : 10.1104/pp.105.068809

L. Yu, J. Nie, C. Cao, J. Y. Yan, M. Wang et al., Phosphatidic 635 acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana, New Phytol, vol.636, pp.188762-773, 2010.

J. Zhu, Salt and drought stress signal transduction in plants, Annu. Rev. Plant. Biol, vol.53, pp.642-247, 2002.

J. Zhu, Genetic Analysis of Plant Salt Tolerance Using Arabidopsis: Fig. 1., Plant Physiology, vol.124, issue.3, pp.941-949, 2000.
DOI : 10.1104/pp.124.3.941