Demba Boubacar

Frédéric Sall

Emmanuel Peschanski

Chailloux

Analyse de Bytecode par Raffinement

La technique du raffinement permet la dérivation de programmes corrects par construction à partir des spécifications. Dans cet article nous proposons une application de cette technique formelle à l'analyse des programmes pour un langage de bas niveau de type bytecode. Il s'agit plus précisément de s'appuyer sur l'assistant de preuve Coq pour formaliser un analyseur de bytecode, et prouver sa correction.

Introduction

Dans cet article, nous nous intéressons à la preuve formelle de correction d'une analyse de programmes dans le système Coq [START_REF] Team | The Coq proof assistant reference manual Version 8.5. TypiCal Project[END_REF]. Certains concepts manipulés en analyse de programmes (sémantique, domaine abstrait, invariant, garde, pré/post condition, ...) n'étant pas toujours présents dans le formalisme natif des assistants de preuve, un encodage de ces concepts peut s'avérer nécessaire. Dans le cas d'un plongement profond (deep embedding), l'introduction de nouvelles structures de données permet de représenter les concepts requis. On trouve dans [START_REF] Bertot | Structural Abstract Interpretation : A Formal Study Using Coq[END_REF] un plongement profond de la théorie de l'interprétation abstraite [START_REF] Cousot | Abstract interpretation : a unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] qui permet de construire une analyse statique certifiée dans le système Coq. Dans le cas d'un plongement léger (shallow embedding), on s'efforce de se limiter au formalisme disponible pour exprimer les concepts requis. Comparé au plongement profond, un plongement léger est moins expressif mais permet de réduire les niveaux d'indirection qui complexifient le raisonnement. Le raffinement [START_REF] Wirth | Program development by stepwise refinement[END_REF][START_REF] He | Data refinement refined resume[END_REF][START_REF] Gardiner | Data refinement of predicate transformers[END_REF]4] est une démarche d'abstraction qui a été bien étudiée, et qui semble se prêter à un plongement léger dans un formalisme issu de la théorie des types. On trouve dans [START_REF] Boulmé | Intuitionistic refinement calculus[END_REF] et [START_REF] Joao | Embedding the refinement calculus in coq[END_REF] des exemples de plongements légers du raffinement permettant la dérivation de programmes corrects par construction dans le système Coq.

Raffinement de données et analyse de programmes

Soit T = (πs, os 1 , os 2 , ..., os n) une signature comprenant la signature πs d'un constructeur qui permet de créer un objet de type T , et les signatures os i d'opérations qui agissent sur les objets de type T . Soient deux types abstraits de données A = (πa, oa 1 , oa 2 , ..., oa n) et C = (πc, oc 1 , oc 2 , ..., oc n) ayant la même signature T . Dans un souci de simplification nous nous limiterons aux opérations séquentielles et déterministes (πa, oa i , πc et oc i sont des fonctions). On dit que C raffine A si pour tout programme P [T] paramétré par leur signature commune, on a tout comportement observable de P [C] est un comportement observable de P [A] et P [C] termine 1 à chaque fois que P [A] termine. Pour prouver que C raffine A, il faut établir une correspondance entre leurs espaces d'état respectifs. Cette correspondance peut être spécifiée par un invariant de liaison I(a, c) qui formalise le lien logique qui existe entre un état abstrait a et un état concret c [START_REF] Hoare | Proof of correctness of data representations[END_REF].

Cas des opérations gardées. Dans le domaine des systèmes réactifs, les opérations sont liées à des évènements. L'applicabilité des opérations est généralement spécifiée par une garde : condition nécessaire à la survenue de l'évènement associé (ce dernier est réputé impossible dès lors que la garde correspondante est fausse, donc dans ce cas l'opération laisse l'état inchangé). On notera par Go i la garde associée à l'opération o i . Dans un tel contexte, pour prouver que C raffine A en s'appuyant sur l'invariant de liaison I, il suffit de réunir les conditions suivantes :

• Etablissement de l'invariant : I(πa(...), πc(...))

• Maintien de l'invariant : ∀ i a c, I(a, c) ∧ Goc i (c) ⇒ I(oa i (a), oc i (c))

• Renforcement des gardes : ∀ i a c, I(a, c)

∧ Goc i (c) ⇒ Goa i (a)
Il s'agit des obligations de preuve permettant de valider le raffinement de données dans les systèmes réactifs [START_REF] Back | Refinement calculus, part ii : Parallel and reactive programs[END_REF] en général, et entre machines Event-B [START_REF] ∧ P Oa I (a) ⇒ I | Modeling in Event-B : system and software engineering[END_REF] en particulier.

Cas des opérations partielles. Dans le cadre classique de la programmation séquentielle le domaine d'une opération est spécifié par une précondition : condition suffisante à une exécution sans erreur de l'opération (une violation de la précondition mène à un résultat indéfini). On notera par P o i la précondition associée à l'opération o i . Prouver que C raffine A dans ce cadre requiert les conditions suivantes :

• Etablissement de l'invariant : I(πa(...), πc(...))

• Maintien de l'invariant : ∀ i a c, I(a, c) ∧ P oa i (a) ⇒ I(oa i (a), oc i (c))

• Affaiblissement des préconditions : ∀ i a c, I(a, c) ∧ P oa i (a) ⇒ P oc i (c) Il s'agit des obligations de preuve permettant de valider le raffinement entre modèles Z [START_REF] Spivey | The Z notation[END_REF] ou B classique [START_REF] Abrial | The B-book : assigning programs to meanings[END_REF].

ne boucle pas indéfiniment, et s'arrête normalement (pas d'erreur à l'exécution)

Du raffinement de données à l'analyse de programmes. Comme l'illustre la figure ci-dessous, les obligations de preuve énoncées précédemment, assurent qu'à toute trace d'exécution Ainsi en fusionnant les obligations de preuve des deux cas précédents, et en apportant une légère modification à l'obligation de maintien de l'invariant (pour tenir compte de la partialité des opérations), on obtient les conditions suffisantes pour prouver que C raffine A dans un contexte où les opérations peuvent être partielles et gardées :

τ c = (c 1 , c 2 , ..., c n) de P [C] est associée une trace de même cardinalité τ a = (a 1 , a 2 , ..., a n) de P [A] telle que ∀ j • I(a j , c j). i a 1 a 2 ... a j a k ... c 1 c 2 ... c j c k ... π a
• Etablissement de l'invariant : I(πa(...), πc(...))

• Maintien de l'invariant : ∀ i a c, I(a, c) ∧ Goc i (c) ∧ P oa i (a) ⇒ I(oa i (a), oc i (c))

• Renforcement des gardes : ∀ i a c, I(a, c) ∧ Goc i (c) ⇒ Goa i (a)

• Affaiblissement des préconditions : ∀ i a c, Goc i (c) ∧ P oa i (a) ∧ I(a, c) ⇒ P oc i (c) AbstractState représente l'environnement d'exécution du futur analyseur. Le champ nonnull est une liste des références symboliques (abstraites) pour lesquelles les références concrètes correspondantes ont été identifiées comme différentes de null. Cette liste pourra être mise à jour à la création d'une nouvelle référence ou suite à un test de nullité, l'analyseur pourra ainsi s'assurer de la non nullité d'une référence en testant sa présence dans cette liste. La démarche de raffinement est proche de l'interprétation abstraite. En particulier la condition de correction d'un interprète abstrait est une condition de raffinement vis-à-vis de l'invariant de liaison I(a, c) ≡ c ∈ γ(a), où γ est une fonction de concrétisation [START_REF] Spiwack | Abstract interpretation as anti-refinement[END_REF]. Cependant, les définitions fonctionnelles sont contraintes dans le formalisme de Coq (notamment pour assurer la totalité). Lorsque ces contraintes sont trop fortes, il est possible de recourir aux prédicats inductifs qui sont plus expressifs, ou à une axiomatisation de γ [START_REF] Bertot | Structural Abstract Interpretation : A Formal Study Using Coq[END_REF], mais cela nécessite un plongement profond. En revanche, la définition d'un invariant de liaison, de nature essentiellement logique, est assez naturelle dans un formalisme basé sur la théorie des types.

Conclusion

Nous avons proposé une application de la démarche de raffinement à la preuve de correction d'une analyse de programmes. Une fois la correction prouvée, une implémentation exécutable de l'analyseur consiste à parcourir l'espace d'état abstrait en appliquant AbstractExec à l'état abstrait initial, puis à tous les états atteignables par application de cette fonction. A chaque fois qu'un nouvel état est généré, on s'assure que ce dernier est sûr en évaluant les préconditions des instructions qui peuvent être exécutées dans cet état. Si l'état n'est pas sûr la vérification échoue et l'algorithme s'arrête. Si l'algorithme termine sans rencontrer d'état ne satisfaisant pas les critères de sûreté, alors la vérification a réussi. A moins qu'il soit possible d'exhiber une mesure décroissante, la convergence de cet algorithme n'est pas garantie, par conséquent il faut se donner un nombre maximum d'itérations. L'aspect de la convergence reste donc à approfondir. Il serait également intéressant de pouvoir procéder à une extraction certifiée de code à partir de la sémantique de l'analyseur. Enfin, il est nécessaire de garder à l'esprit le risque d'explosion de l'espace d'état durant la conception de la sémantique abstraite.

L'approche présentée dans cet article est actuellement appliquée dans le cadre d'une étude de cas qui vise une analyse de bytecode capable de détecter des erreurs de programmation liées à l'aliasing [START_REF] Hogg | The Geneva Convention on the Treatment of Object Aliasing[END_REF] dans les programmes objet. On s'intéresse à l'échappement des références qui peut constituer une violation de l'encapsulation et ainsi aboutir à des problèmes d'intégrité de données. Pour éviter ces situations, on restreint le domaine de l'instruction setfield au cas où la référence cible est présente dans la pile d'appels. Actuellement, le développement 4 Coq compte environ 4200 lignes de script, et une centaine de preuves. Sur le plan pratique, la démarche de raffinement donne un cadre formel de réflexion. Le recours à un plongement léger dans un style opérationnel permet de simplifier les preuves. En particulier, cela permet de tirer avantage des tactiques de simplification, et les concepts manipulés sont assez proches de leurs descriptions formelles, ce qui aide à maîtriser la complexité.

 Invariant de liaison. La définition de l'invariant de liaison va consister à fournir une fonction qui construit un prédicat reliant un état abstrait a à un état concret c. Dans l'exemple ci-dessous, l'invariant de liaison stipule que dans les deux contextes d'exécution la pile des opérandes contient le même nombre d'éléments, et que si une référence a été identifiée dans l'abstraction comme n'étant pas null, alors son vis-à-vis dans le contexte d'exécution concret n'est effectivement pas null. Definition Invariant (a : AbstractState) (c : ConcreteState) : Prop := length (stk a) = length (stk c) ∧ ∀ va vc, In (va,vc) (combine 3 (stk a) (stk c)) ∧ In va (nonnull s) → vc = null Sémantiques des instructions. Pour spécifier le fonctionnement opérationnel de chaque instruction, on définira les fonctions Guard, Pre et Exec préfixées de Concrete ou Abstract selon la sémantique concernée. Dans la continuité des exemples précédents, l'extrait ci-dessous illustre une définition des sémantiques concrète et abstraite d'instructions bytecode. Les paramètres i, c et a sont respectivement de type Instr, ConcreteState et AbstractState. Les fonctions sont définies par filtrage de l'argument i. ConcreteGuard et AbstractGuard spécifient les gardes pour chaque instruction. ConcretePre et AbstractPre spécifient les préconditions associées à chaque instruction.

 Donc, lorsque C raffine A, pour tout programme P , et tout état concret c j atteignable2 par P [C], il existe un état abstrait a j atteignable par P [A] tel que I(a j , c Nous utiliserons des gardes pour représenter les propriétés supposées établies, et des préconditions pour représenter les propriétés à établir. Il nous faut donc considérer le raffinement dans le cas des opérations partielles et gardées.Raffinement des opérations partielles et gardées. Lorsqu'on associe à une opération à la fois une garde et une précondition, nous l'interpréterons comme suit :(1) l'opération est définie si Go i ⇒ P o i , (2) si l'opération s'exécute c'est que Go est vrai au début de l'exécution, (3) l'opération est indéfinie si Go i ∧ ¬P o i . Cette interprétation est tirée de[START_REF] Miarka | Guards, preconditions, and refinement in Z[END_REF], où des conditions suffisantes de raffinement sont aussi proposées. Cependant le traitement est limité au raffinement algorithmique (sans changement de représentation des données).Pour étudier la situation dans le contexte du raffinement de données, plac ¸ons nous d'abord dans le cas des opérations gardées, et observons ensuite ce qui se passe lorsque les opérations sont rendues partielles. Supposons que C raffine A et considérons un programme P . Soit une trace τ a = (..., a j , a k , ...) admissible par P [A] en correspondance avec une trace τ c = (..., c j , c k , ...) admissible par P [C]. Si maintenant on rend les oc i partielles en supprimant c j de leur domaine (pour ce faire il suffit d'associer les préconditions appropriées à ces opérations), la trace τ

	oa w	oa x	oa y	oa z
	I	I	I	I
	π			
	c			
	oc w	oc x	oc y	oc z

j) est vrai. Cette correspondance entre les états atteignables de P [C] et ceux de P [A] peut être exploitée à des fins de vérification. En particulier, si tous les états atteignables a de P [A] sont tels que P oa i (a) est vrai à chaque fois que oa i est exécutée dans l'état a, alors la condition d'affaiblissement des préconditions nous garantit que tous les états atteignables c de P [C] sont tels que P oc i (c) est vrai à chaque fois que oc i est exécutée dans l'état c. Il s'agit d'une propriété intéressante car elle garantit qu'aucune opération ne sera jamais activée en dehors de son domaine de définition. La relation de raffinement entre A et C permet de déduire cette propriété de sûreté pour P [C] à partir du moment où on a réussi à établir cette même propriété pour P [A]. En d'autres termes, si C raffine A, alors analyser P [A] permet de conclure à propos de P [C].

Pour concevoir une analyse, il peut être intéressant de s'appuyer sur des propriétés supposées établies (grâce par exemple à une autre analyse). Prenons l'exemple du langage de bytecode de la JVM, et de l'instruction getfield f qui permet de charger le champ f d'un objet à partir d'une référence. Durant l'exécution d'un programme bien formé, à chaque fois que l'instruction getfield est sur le point d'être exécutée, nous pouvons compter sur le fait que la référence de l'objet est présente en tête de la pile car la JVM effectue une analyse permettant de s'en assurer. Ceci peut être exprimé plus formellement en considérant que cette instruction admet la garde suivante : length (stk c) ≥ 1, où c représente un état concret et stk est un accesseur qui retourne la pile des opérandes. Par contre, nous ne pouvons pas toujours compter sur le fait que cette référence est différente de null, alors que dans ce cas l'opération n'est pas définie (elle provoque une erreur d'exécution). On considérera donc que cette instruction requiert la précondition suivante : top (stk c) = null. i 2. un état φ est atteignable par P ssi il existe une trace τ = (..., φ, ...) admissible par P c n'est plus admissible par P [C]. La relation de raffinement peut perdurer tant que d'autres traces correspondent encore à τ a . Mais quand τ c est la seule trace en correspondance avec τ a , C ne raffine plus A. Cette situation est celle que permet d'éviter l'obligation d'affaiblissement des préconditions dans le cas des opérations partielles.

 Une analyse de programme pour le langage de bytecode peut alors être spécifiée sous la forme d'une sémantique abstraite S a ayant la même signature que S c et décrivant de manière opérationnelle le fonctionnement de l'analyseur. Si S c raffine S a alors l'analyse est correcte dans le sens où, les propriétés de sûreté établies pour P [S a] sont valables pour P [S c]. On peut donc en déduire la démarche suivante pour prouver la correction d'une analyse de programmes étant donnée la sémantique concrète S c du langage de programmation : il suffit (1) de formaliser S c et S a , (2) de formaliser l'invariant de liaison qui relie les deux sémantiques, et (3) de satisfaire aux obligations de preuve énoncées plus haut afin d'établir que S c raffine S a . Syntaxe et environnements d'exécution. Pour formaliser les sémantiques, nous commenc ¸ons par spécifier la syntaxe des instructions du langage, ensuite on décrit les environnements d'exécution concret et abstrait, ainsi que les environnements d'exécution initiaux. Par exemple, dans l'extrait ci-dessous on s'intéresse au langage de bytecode de la JVM et à la détection des dé-référencements de pointeurs null. On déclare donc le type Instr dont chacun des constructeurs représente une instruction du langage. On déclare ensuite les types ConcreteState et AbstractState qui représentent respectivement les environnements d'exécution concret et abstrait. On définit enfin ConcreteInit et AbstractInit qui représentent respectivement les environnements initiaux concret et abstrait. Inductive Instr := new | aload v | astore v | getfield f | setfield f | ifnonnull | ... Definition ConcreteInit := mkCS [] (fun ...).

	Environnement concret	Environnement abstrait
	Record ConcreteState := mkCS {	Record AbstractState := mkAS {
	stk : list Ref ;	stk : list AbstractRef ;
	heap : Ref → Field → Ref	nonnull : list AbstractRef
	}.	}.
		Definition AbstractInit := mkAS [] [].

3. Formalisation et preuve d'une analyse de bytecode en Coq

Soit un programme P constitué d'une liste d'instructions bytecode. Soit S c la sémantique opérationnelle associée au langage de bytecode en question. On peut considérer que P est paramétré par le jeu d'instructions du langage (la signature de S c).

Nous proposons de privilégier un plongement léger, et d'appliquer la démarche de raffinement à la preuve de correction d'une analyse de programmes pour un langage de bas niveau de type bytecode. Dans la section 2, nous présentons le raffinement de données en faisant ressortir sa relation avec l'analyse de programmes. La section 3 présente les étapes d'un plongement léger dans le système Coq d'une analyse de bytecode, et décrit l'encodage des obligations de preuve (à satisfaire) permettant de valider la correction de l'analyseur. La section 4 présente quelques travaux connexes et la section 5 conclut cet article.

combine : (list A) → (list C) → list (A×C) (combine [va1; va2; ...; van] [vc1; vc2; ...; vcn]) = [(va1, vc1); (va2, vc2); ...; (van, vcn)]

Sources Coq sur https://github.com/bsall/afadl-2017

ConcreteExec et AbstractExec sont partielles (d'où le type option dans leur déclaration), elles retournent None lorsque la garde ou la précondition est fausse, dans le cas contraire elles calculent une mise à jour de l'environnement d'exécution correspondant. Obligations de preuve. Afin de prouver la correction de l'analyse, nous devons maintenant énoncer les obligations de preuve nous permettant de conclure que la sémantique concrète raffine la sémantique abstraite :

Il nous reste ensuite à établir la validité des lemmes énoncés ci-dessus en nous appuyant sur les tactiques disponibles dans le système Coq. Une fois cette étape effectuée, notre analyse est correcte vis-à-vis du langage cible tel que spécifié par la sémantique concrète.