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Abstract We investigate a model problem for optimal resource management. The
problem is a stochastic control problem of mean-field type. We compare an Hamilton-
Jacobi-Bellman fixed point algorithm to a Steepest Descent method issued from cal-
culus of variations.

For mean-field type control problems, stochastic dynamic programming requires
adaptation. The problem is reformulated as a distributed control problem by using
the Fokker-Planck equation for the probability distribution of the stochastic process;
then, an extended Bellman’s principle is derived by a different argument than the one
used by P.L. Lions. Both algorithms are compared numerically.
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1 Introduction

Stochastic control has been studied extensively over the past five decades [1,2,3,4,
5], and yet there is a renewed interest in economy and finance due to mean-field
games [6,7,8,9]. Mean-field games give rise to mean-field type stochastic control
problems [10] which involve not only the Markov process of the state of the system,
some statistics of the process like means and variance, in the cost function or in the
stochastic differential equation (SDE). For these problems, optimality conditions are
derived either by stochastic calculus of variation [11] or by stochastic dynamic pro-
gramming [12,13] and justified in the quadratic case by classical arguments [14,15],
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but not so classical one in the general case for the fundamental reason that Bellman’s
principle does not apply in its original form [12,16].

Several authors have generalized Dynamic Programming using Wasserstein dis-
tance to define derivatives with respect to measures. Others have studied the existence
of a conceptual HJB equation [16,17]. These results certainly overlap and precede our
analysis but our point of view is different : it is pragmatic, so we sacrifice mathemat-
ical rigor to explicit expressions, and numerical, as we wish to compare solutions
obtained by HJB to standard optimal control by calculus of variations. We have not
tried to specify regularity of data for existence and differentiability of solutions. The
results are stated formally only but with an intuitive feeling that they could be justi-
fied later with appropriate assumptions as in e.g. [18,19] if the behavior at infinity of
the solution of the HJB equation is known, which is a major riddle.

Before proceeding further, note that a direct simulation of the problem with the
stochastic differential equation approximated by Monte-Carlo is too costly and not
competitive with the methods that we pursue below. Indeed, the cost function of the
optimization problem involves means of stochastic quantities and Monte-Carlo meth-
ods would require large numbers of evaluations of the SDE, embedded in forward-
backward time loops. Faced with the same problem, Garnier et al. [7] and Chan et al.
[20] came to the same conclusion.

In this article, pursuing a preliminary study published in [21], we apply the dy-
namic programming argument to the value functional as in [22], but instead of using
the probability measure of the stochastic process, we use its probability density func-
tion (PDF). Hence, though less general, the mathematical argument will be simpler.
Of course this is at the cost of several regularity assumptions, such as the existence
of a regular PDF at all times. However, our analysis here is strongly motivated by the
numerical solutions of these control problems, and hence assuming regularity is not
a real practical limitation.

Once the problem is reformulated with the Fokker-Planck equation [1,23], it be-
comes a somewhat standard exercise to find the optimality necessary conditions by a
calculus of variations. So this article begins likewise in Section 3. Then, in Section
4, a similar result is obtained by using dynamic programming, and the connection
with the previous approach and with stochastic dynamic programming is established.
In Section 5 a problem introduced in [24] involving profit-optimizing oil producers
is defined and studied for existence and optimality, and two algorithms are proposed
together with a semi-analytical method based on a Riccati solution. The paper ends
with a numerical Section which implements the three methods and compare them.

2 The Problem

Consider a stochastic differential system of d-equations

dXt = u(Xt , t)dt +σ(Xt , t,u(Xt , t))dWt , t ∈ [0,T ], (1)

where u takes values in Rd , σ in Rd×k and Wt is a k-vector of independent Brownian
motions. Assumptions for which a strong solution is known to exist once the distri-
bution of X0 is known to be in L2∩L∞ are given in [25] (see also [26], Proposition 4
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which applies when σσT is uniformly positive definite:

u ∈ L2(]0,T [,L2
loc(Rd)

)d
,

u
1+ |x|

∈ L1(]0,T [,L1 +L∞(Rd)
)d
,

∇ ·u ∈ L1(]0,T [,L∞(Rd)
)
,

(2)

and with σ̃(x, t) := σ(x, t,u(x, t)):

σ̃ ∈ L∞
(
]0,T [,L∞

loc(Rd)
)d×k

,
σ̃

1+ |x|
∈ L2(]0,T [,L2 +L∞(Rd)

)d×k (3)

Then the PDF of Xt satisfies

ρ ∈ L∞
(
]0,T [,L2(Rd)∩L∞(Rd)

)
∩L2(]0,T [,H1(Rd)

)
, σ

T
∇ρ ∈ L2(]0,T [,L2(Rd)

)
and is the unique solution of the Fokker-Planck equation,

∂tρ +∇ · (uρ)−∇
2 :
( 1

2 σσ
T

ρ
)
= 0, ρ|t=0 = ρ0(x), (4)

Conversely, with (2)(3), there is a unique solution to (4) which is the PDF of a
Markov process which satisfies (1).

Remark 2.1 The assumption σσT > 0 can be replaced by assuming the conditions (2)
for u− 1

2 ∇ · (σ̃ σ̃T ) rather than u, but it implies some regularity on the second deriva-
tives of u.

Consider the stochastic optimization problem

min
u∈Ud

J(u) := J0(u) (5)

subject to (1) with ρ0 given, and

Jτ(u) :=
∫ T

τ

E[H̃(Xt , t,u(Xt , t),ρ(Xt , t),E[h̃(Xt , t,u(Xt , t))])]dt +E[G(XT ,E[g(XT )])]

(6)

where h̃, g, H̃, G are C1 functions taking values in Rr,Rs,R and R, respectively.
Assume also that H̃ and G are bounded from below and

Ud = {u verifies (2) : u(x, t) ∈ Vd ∀x, t} for some Vd ⊂ Rd .

As a first approach to solve such problems, Andersson et al. [11] proposed to use a
Stochastic Calculus of Variations; the necessary optimality conditions is a forward-
backward stochastic differential system, which is numerically very hard because the
backward volatility for the adjoint equation is one of the unknowns [11,27].

A second approach is to use Stochastic Dynamic Programming (SDP), but an
important adaptation needs to be made. Usually SDP uses the remaining cost function

V (τ,x) = min
u∈Ud

Jτ(u) subject to (1), with Xτ = x.
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The Bellman equation is derived by saying that ut , t > τ is a solution only if, together
with (1) and Xτ = x,

V (τ,x) = minu∈Ud E
[ ∫ τ+δτ

τ

H̃(Xt , t,u(Xt , t),ρ(Xt , t),E[h̃(Xt , t,u(Xt , t))])dt

+V (τ +δτ,Xτ+δτ)
]
.

However, the above is not true unless h̃ = 0, g = 0; as in [22], one has to work with

V (τ;ρτ(·)) = min
u∈Ud

Jτ(u) subject to (1), with ρτ given,

where V is a pointwise function of τ ∈ [0,T ] and has functional dependence on ρτ(·),
i.e., depends on {x 7→ ρτ(x), ∀x ∈ Rd}.

A third approach is to work with the deterministic version of the problem. With
sufficient regularity (see [28] for weaker assumptions), with the Fokker-Planck partial
differential equation for ρ(x, t) := ρt(x); the problem is equivalent to the deterministic
distributed control problem,

min
u∈Ud

J =
∫ T

0

∫
Rd

H̃(x, t,u(x, t),ρ(x, t),χ(t))ρ(x, t)dxdt +
∫
Rd

G(x,ξ )ρ(x,T )dx,

where χ(t) :=
∫
Rd

h̃(x, t,u(x, t),ρ(x, t))ρ(x, t)dx, ξ :=
∫
Rd

g(x)ρ(x,T )dx

and ∂tρ +∇ · (uρ)−∇
2 : (µρ) = 0, ρ|t=0 = ρ0(x), (7)

where µi j =
1
2 ∑k σikσ jk and ∇2 is the d × d matrix operator of element ∂i j. The

notation A : B stands for ∑
d
i, j=1 Ai jBi j and ∇ ·u stands for ∑

d
i=1 ∂iui.

Remark 2.2 Note that the problem is equivalent to the Stochastic control problem
only if ρ0 is in P, the set of positive real-valued functions with measure 1. However,
the deterministic control problem still makes sense even if it is not the case and ρ ∈
L2([0,T ],H1(Rd)) only. We will use this in the proof of Proposition 4.3.

Remark 2.3 Existence of solutions for (6) or (7) requires more assumptions on H̃, h̃,G
and g to make sure that J is lower semi-continuous with respect to u in a norm such
as L2

(
[0,T ],H1(Rd)

)
which implies (2) and Ud closed. However since there is no

term containing a gradient of u in J, a Tikhonov regularization seems to be needed
for these problems to be well posed.

3 Calculus of Variations

Deriving optimality conditions by calculus of variations is fairly standard, as we shall
show in this section.

Proposition 3.1 A control u is optimal for (7) only if for ∀t ∈]0,T [ , ∀v ∈ Vd ,∫
Rd

(
H̃ ′u + h̃′u

∫
Rd

H̃ ′χ ρdx+∇ρ
∗−µ

′
u : ∇

2
ρ
∗
)
(v−u)ρdx≥ 0 (8)
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with ∂tρ
∗+u∇ρ

∗+µ : ∇
2
ρ
∗ =−

[
H̃ ′ρ ρ + H̃ +(h̃′ρ ρ + h̃)

∫
Rd

H̃ ′χ ρdx
]
, (9)

ρ
∗
|T = g

∫
Rd

G′
ξ

ρ|T dx+G,

where H̃ ′u, H̃
′
ρ , H̃

′
χ , h̃
′
u, h̃
′
ρ and G′

ξ
are partial derivative in the classical sense.

Proof Recall that (7) is in Q =]−∞,+∞[d×]0,T ]. The Fokker-Planck equation (7)
being set in P, it contains the “boundary condition” ∀t ∈]0,T ], lim|x|→∞ ρ(x, t) = 0.

Consider an admissible variation λδu, i.e. u+λδu ∈Ud for all λ ∈ [0,1]. Such
a variation induces a variation λδρ of ρ given by

∂tδρ +∇ · (uδρ +ρδu+λδuδρ)−∇
2 : (µδρ +µ

′
uδu(ρ +λδρ)) = 0, (10)

with δρ|t=0 = 0 and where µ ′u is evaluated at x, t,u+ θδu for some θ ∈ [0,λ ]. We
assume that there is enough regularity for the solution of the Fokker-Planck equation
in (7) to depend continuously on the data u,µ . Then (10) at λ = 0 defines δρ . Also,
up to higher order terms,

δ χ =
∫
Rd
[(h̃′uδu+ h̃′ρ δρ)ρ + h̃δρ], δξ =

∫
Rd
[gδρ|T ]

δJ =
∫

Q
[(H̃ ′uδu+ H̃ ′ρ δρ + H̃ ′χ δ χ)ρ + H̃δρ]+

∫
Rd
[G′

ξ
δξ ρ|T +Gδρ|T ]

=
∫

Q

[
(H̃ ′u + h̃′u

∫
Rd
[H̃ ′χ ρ])ρδu

]
+
∫

Q

[
(H̃ ′ρ ρ + H̃ +(h̃′ρ ρ + h̃)

∫
Rd
[H̃ ′χ ρ])δρ

]
+
∫
Rd
[(
∫
Rd
[G′

ξ
ρ|T ]g+G)δρ|T ].

Define an adjoint state ρ∗ by (9). Then (9) multiplied by δρ and integrated on Q gives∫
Q

δρ

[
H̃ ′ρ ρ + H̃ +(h̃′ρ ρ + h̃)

∫
Rd
[H̃ ′χ ρ]

]
=−

∫
Q

δρ
[
∂tρ
∗+u∇ρ

∗+µ : ∇
2
ρ
∗]

=
∫

Q

[
ρ
∗(∂tδρ +∇ · (uδρ)−∇

2 : (µδρ))
]
−
∫
Rd

ρ
∗
δρ

∣∣∣T
0

=−
∫

Q
[ρ∗∇ · (ρδu−∇ · (µ ′uδuρ))]−

∫
Rd
[(g
∫
Rd
[G′

ξ
ρ|T ]+G)δρ|T ].

Hence δJ =
∫

Q

[
(H̃ ′u + h̃′u

∫
Rd
[H̃ ′χ ρ])ρδu

]
−
∫

Q
[ρ∗∇ · (ρδu−∇ · (µ ′uδuρ))]

=
∫

Q

[(
H̃ ′u + h̃′u

∫
Rd
[H̃ ′χ ρ]+∇ρ

∗−∇
2
ρ
∗ : µ

′
u

)
ρδu

]
.

The rest follows by saying that u is a minimum. ut

Remark 3.1 The “boundary conditions at infinity” on ρ∗ in (9) are problematic.The
PDE is to be understood in weak form in the dual of P, i.e., for all ν ∈ P :∫

Q
[ν(∂tρ

∗+u∇ρ
∗)−∇ν · (µ∇ρ

∗)] =−
∫

Q

[
ν
[
H̃ ′ρ ρ + H̃ +(h̃′ρ ρ + h̃)

∫
Rd

H̃ ′χ ρdx
]]
.

(11)
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Then, the decay of ν at infinity will balance the potential growth of ρ∗, and the inte-
grations by parts in the proof above will have no terms at infinity in ‖x‖. However, the
uniqueness of ρ∗ is not guaranteed. We could have avoided the problem by working
in [−L,L]d × [0,T ] rather than Rd × [0,T ] and imposing ρ∗ = 0 on the boundary of
[−L,L]d , but then the solution depends strongly on L; this problem will be rediscussed
in the numerical section (Section 5).

4 Dynamic Programming

For notational clarity consider the more general case, where H,G are functionals of
ρt(·). Let ρ be solution of (7) initialized at τ by ρτ(·) and let J and V be defined as :

J(τ;ρτ ,u) :=
∫ T

τ

∫
Rd

H(x, t,u(x, t);ρt)ρt(x)dxdt +
∫
Rd

G(x;ρ|T )ρ|T dx,

V (τ;ρτ) := min
u∈Ud

J(τ;ρτ ,u). (12)

By the Markovian property, ρt(x) := ρ(x, t), for t > τ , is also the PDF of Xt given by
(1) knowing its PDF ρτ at τ .

Remark 4.1 In this section, H is a pointwise function of u(x, t) ∈ Rd , but the theory
can be extended to the case where H is a functional of u(·, ·) : Rd×R→ Rd .

Assuming that J is bounded from below, V is finite and we prove the following
version of Bellman’s principle of optimality :

Proposition 4.1 If the problem is regular, then for any τ ∈ [0,T ] and any ρτ ∈ P, we
have :

V (τ;ρτ) = min
u∈Ud

{∫ τ+δτ

τ

∫
Rd

H(x, t,u(x, t);ρt)ρt(x)dxdt +V (τ +δτ;ρτ+δτ)
}
,

subject to ρt , given by (7) on [τ,τ +δτ], initialized by ρτ at time τ .

Proof Denote the infimum of the right-hand side by V (τ;ρτ). For any ε > 0, there
exists u ∈Ud such that, if ρt is the solution of (7) with control u :

V (τ;ρτ)+ ε > J(τ;ρτ ,u) =
∫ T

τ

∫
Rd

H(x, t,u(x, t);ρt)ρtdxdt

+
∫
Rd

G(x;ρ|T )ρ|T dx =
∫

τ+δτ

τ

∫
Rd

Hρt +
∫ T

τ+δτ

∫
Rd

Hρt

+
∫
Rd

Gρ|T ≥
∫

τ+δτ

τ

∫
Rd

Hρt +V (τ +δτ;ρτ+δτ)≥V (τ;ρτ).

Conversely, given u ∈ Ud and ε > 0, there exists a control ũ ∈ Ud , which coincides
with u on Rd× [τ,τ +δτ], such that:

J(τ +δτ; ρ̃τ+δτ , ũ)≤V (τ +δτ; ρ̃τ+δτ)+ ε,



Dynamic Programming for Mean-Field Type Control 7

where ρ̃t is the solution of (7) at t with control ũ starting with ρτ at time τ . Hence :

V (τ;ρτ) =V (τ; ρ̃τ)≤ J(τ; ρ̃τ , ũ)

=
∫

τ+δτ

τ

∫
Rd

H(x, t,u(x, t); ρ̃t)ρ̃t(x)dxdt + J(τ +δτ; ρ̃τ+δτ , ũ)

≤
∫

τ+δτ

τ

∫
Rd

H(x, t,u(x, t); ρ̃t)ρ̃t(x)dxdt +V (τ +δτ; ρ̃τ+δτ)+ ε.

To conclude, let ε → 0 and take the infimum over u ∈Ud . ut

From now on, we assume that H and V are Fréchet differentiable with respect to ρ .

Remark 4.2 The correct mathematical tool for this differentiability is the Wasserstein
distance and the differentiability with respect to the probability measure rather than
to its density (see e.g. [13,22]). Our approach is more pragmatic.

We denote the Fréchet derivatives by H ′ρ(x,τ;ρ) and V ′ρ(τ;ρ). Thus, and similarly
for V , H ′ρ(x,τ;ρ) denotes the linear application L2 7→ R such that :

H(x,τ;ρ +ν) = H(x,τ;ρ)+H ′ρ(x,τ;ρ) ·ν +o(||ν ||2), ∀ν ∈ L2,

where L2 := L2(Rd). Moreover, we denote with a prime the Riesz representative of
the Fréchet derivative with respect to ρ . For instance, V ′ : [0,T ]×L2→ L2 is defined
by : ∫

Rd
V ′(τ;ρ)(x)ν(x)dx :=V ′ρ(τ;ρ) ·ν ∀ν ∈ L2.

Proposition 4.2 (HJB minimum principle). Assuming that V ′ is smooth enough, the
following holds :

0 = min
v∈Vd

∫
Rd

[
H(x,τ,v;ρτ)+H ′ρ(x,τ,v;ρτ) ·ρτ

+∂τV ′(τ;ρτ)+ v ·∇V ′(τ;ρτ)+µ : ∇
2V ′(τ;ρτ)

]
ρτ dx. (13)

Note: As usual, ∇ is with respect to x.

Proof A first order approximation of the time derivative in the Fokker-Planck equa-
tion gives

δτ ρ := ρτ+δτ −ρτ = δτ
[
∇

2 : (µτ ρτ)−∇ · (uτ ρ)
]
+o(δτ). (14)

As V is assumed to be smooth, we have :

V (τ +δτ;ρτ+δτ) =V (τ;ρτ)+∂τV (τ;ρτ)δτ +V ′ρ(τ;ρτ) ·δτ ρ +o(δτ). (15)

Using (15) and the mean value theorem for the time integral, Bellman’s principle
yields , up to o(δτ),

V (τ;ρτ) = min
u∈Ud

{
δτ

∫
Rd

Hρτ dx+V (τ;ρτ)+∂τV (τ;ρτ)δτ +V ′ρ(τ;ρτ) ·δτ ρ

}
. (16)
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The terms V (τ;ρτ) cancel; divided by δτ and combined with (14) and letting δτ→ 0,
(16) gives

0 = min
u∈Ud

{∫
Rd

Hρτ dx+∂τV (τ;ρτ)+V ′ρ(τ;ρτ) ·
[
∇

2 : (µτ ρτ)−∇ · (uτ ρ)
]}

. (17)

To finalize the proof we need the following proposition to relate V to V ′ρ .

Proposition 4.3 Given τ ∈ [0,T ] and an initial ρτ ∈ P, let û ∈Ud and ρ̂ denote an
optimal control and the corresponding solution of (7), then:∫

Rd
V ′(τ;ρτ)ρτ dx =V (τ;ρτ)+

∫ T

τ

∫
Rd

(
H ′ρ(x, t, û; ρ̂t) · ρ̂t

)
ρ̂tdxdt

+
∫
Rd

(
G′ρ(x; ρ̂T ) · ρ̂T

)
ρ̂T dx. (18)

Proof Note that the Fokker-Planck equation implies the existence of a semi-group
operator G such that, for all τ ≤ t, ρt = G(t− τ) ∗ρτ . Let (ût)t∈[0,T ] be the optimal
control and (ρ̂t)t∈[0,T ] the corresponding solution of (7) and (12). Then :

V (τ; ρ̂τ) =
∫ T

τ

∫
Rd

H(x, t, û;G(t− τ)∗ ρ̂τ)G(t− τ)∗ ρ̂τ dxdt (19)

+
∫
Rd

G(x; ρ̂|T )ρ̂|T dx.

By the optimality of û and ρ̂ , this can be Fréchet-differentiated with respect to ρ by
computing , for a given ν ∈ L2, limλ→0

1
λ

[
V (τ; ρ̂τ +λν)−V (τ; ρ̂τ)

]
. The result is :

V ′ρ(τ; ρ̂τ) ·ν =
∫ T

τ

∫
Rd

H(x, t, û;G(t− τ)∗ ρ̂τ)G(t− τ)∗ν

+
∫
Rd

G(x; ρ̂|T )G(T − τ)∗νdx

+
∫ T

τ

∫
Rd

(
H ′ρ(x, t, û;G(t− τ)∗ ρ̂τ) · [G(t− τ)∗ν ]

)
G(t− τ)∗ ρ̂τ

+
∫
Rd

(
G′ρ(x;G(T − τ)∗ ρ̂τ) · [G(T − τ)∗ν ]

)
G(T − τ)∗ ρ̂τ .

Taking ν = ρ̂τ leads to (18).
One may object however that such choice for ν is not admissible because being a

variation of ρτ it has to have zero measure, but we discussed this in Remark 2.2. ut

End of proof of Proposition 4.2 Differentiating (18) with respect to τ leads to

∂τV (τ;ρτ) =
∫
Rd

∂τV ′(τ;ρτ)ρτ dx+
∫
Rd

(
H ′ρ(x,τ, ûτ ;ρτ) ·ρτ

)
ρτ dx,

where ûτ is the optimal control at time τ . Now, let us use (17), rewritten as

0 = min
uτ

{∫
Rd

(
H(x,τ,uτ(x);ρτ)+H ′ρ(x,τ,uτ(x);ρτ) ·ρτ

)
ρτ dx

+
∫
Rd

(
∂τV ′(τ;ρτ)ρτ +V ′(τ;ρτ)

[
∇

2 : (µτ ρτ)−∇ · (uτ ρτ)
])

dx
}
.

Integrating by parts the last two terms leads to (13). ut
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Remark 4.3 Note that (18) and (12) imply :

∫
Rd

V ′|T ρ̂T dx =V (T, ρ̂T ) =
∫
Rd

(
G+g

∫
Rd

∂ξ Gρ̂T dx
)
ρ̂T dx. (20)

Remark 4.4 By taking ρτ = δ (x− x0), the Dirac mass at x0, the usual HJB principle
is found if h≡ g≡ 0.

Proposition 4.4 (Hamilton-Jacobi-Bellman equation) Denote an optimal control û.
When Vd = Rd , (13) in Proposition 4.2 gives

∫
Rd
(H +H ′ · ρ̂τ +∂τV ′+ µ̂ : ∇

2
xV ′+ û ·∇xV ′)ρ̂τ dx = 0 (21)

and ∇uH +∇uH ′ · ρ̂τ +∇xV ′+∇uµ : ∇
2V ′ = 0, (22)

where the second equation is in fact the first order optimality condition in (13).

Remark 4.5 When the Hamiltonian depends on the distribution ρt only through the
local value ρt(x) and the average of a fixed function, we can make explicit the link
with the calculus of variations (see Section 3). More precisely, let us assume that

H = H̃(x, t,u,ρt(x),χ(t)) with χ(t) =
∫
Rd

h(x, t,u(x, t),ρt(x))ρt(x)dx; recall that in

this case, ∂ρ H and ∂ρ h denote derivative with respect to a real parameter. Then, for
any ν ∈ L2 :

H ′ρ(x,τ,u;ρτ) ·ν = ν∂ρ H̃ +
(∫

Rd
∂χ H̃νdx

)
h+
(∫

Rd
∂χ H̃ρτ dx

)
ν∂ρ h. (23)

In particular, for ν = ρτ we have :

H ′ρ(x,τ,u;ρτ) ·ρτ = ρτ ∂ρ H̃ +
(∫

Rd
∂χ H̃ρτ dx

)
(h+ρτ ∂ρ h). (24)

Then, for the optimal û and ρ̂ , (21) yields

∂τV ′+ µ̂ : ∇
2
xV ′+ û ·∇xV ′ =−

[
H̃ + ρ̂∂ρ H̃ +(h+ ρ̂∂ρ h)

∫
Rd

∂χ H̃ρ̂dx
]
. (25)

The link with Section 3 is established : (9) and (25) coincide with V ′ = ρ∗.

Remark 4.6 Note that the adjoint equation, (25), is set in Rd× [0,T ] with a right-hand
side which is unbounded as x→±∞. Existence of solutions is doable in the finite case
Ω × [0,T ] with Ω a bounded open set and V |∂Ω = 0, but is a riddle otherwise. It is
also a source of numerical difficulties because, as Rd is approximated by ]−L,L[d ,
numerical boundary conditions compatible with the (unknown) behavior at infinity
of V ′ need to be provided.
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5 An Academic Example: Production of an Exhaustible Resource

Following [24], we consider a continuum of producers exploiting an oil field. Each
producer’s goal is to maximize his profit, knowing the price of oil; however, this price
is influenced by the quantity of oil available on the market, which is the sum of all
that the producers have decided to extract at a given time. Hence, while each producer
does not affect the price of oil, because each producer solves the same optimization
problem, in the end the global problem must take into account the market price as
a function of oil availability. For a better understanding of the relation between the
individual game and the global game, the reader is referred to [10].

5.1 Notations

Let X0 be the initial oil reserve and Xt be the quantity of oil left in the field at time t,
as seen by a producer. It is modeled by

dXt =−atdt +σXtdWt , X0 given by its PDF, (26)

where atdt is the quantity extracted by the producer in the time interval [t, t +dt], (so
at is the extraction rate), and W is a standard real valued Brownian motion reflecting
the incertitude of the producer about the remaining reserve; σ > 0 is a volatility pa-
rameter, assumed constant. We suppose that at := a(Xt , t) is a deterministic function
of t and Xt , meaning by this that the producers apply a feedback law to control their
production.

We denote by C the cost of oil extraction, which is function of a and assumed to be
C(a) :=αa+βa2, for some positive constants α and β . The price of oil is assumed to
be pt := κe−bt(E(at))

−c, with positive κ,b and c. This contains the macro-economic
assumption that pt is a decreasing function of the mean production because scarcity
of oil increases its price and conversely. It also says that in the future oil will be
cheaper because it will be slowly replaced by renewable energy.

Note that by construction Xt takes only positive values and ought to be bounded
by, say L, the maximum estimate of the reservoir content. However, nothing in the
model enforces these constraints.

5.2 Model

Each producer optimizes his integrated profit up to time T , discounted by the interest
rate r; however he wishes also to drain the oil field, i.e., achieve XT = 0. Thus his
goal is to maximize over a(·, ·)≥ 0 the functional :

J(a) :=E
[∫ T

0
(ptat −C(at))e−rtdt

]
− γE[|XT |η ], subject to (26); (27)

γ and η are penalization parameters.
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Replacing p and C by their expressions gives

J(a) = E
[∫ T

0
(κe−bt(E[at ])

−cat −αat −β (at)
2)e−rtdt

]
− γE[|XT |η ].

Obviously, J being the mean of a function of E[at ], it is a mean-field type stochastic
control problem.

5.3 Remarks on the Existence of Solutions

Denoting at := E[at ], J is:

J(a) =
∫ T

0
(κe−bt(at)

1−c−αat −βE[a2
t ])e

−rtdt− γE[|XT |η ].

Since E[a2
t ]≥ a2

t , J is bounded from above,

J(a)≤
∫ T

0
(κe−bt(at)

1−c−αat −βa2
t )e
−rtdt.

Assume that c < 1. Then, the maximum of the right-hand side is attained when a is
such that, a(1− c)e−bt(at)

−c = α +2βat , ∀t. Hence the maximum value

J ≤
∫ T

0
(cα +(1+ c)βat)

ate−rt

1− c
dt

provides an upper bound for J, so long as at is upper bounded on [0,T ]. Furthermore
when the problem is converted into a deterministic optimal control problem with the
Fokker-Planck equation, it is seen that the function is upper semi-continuous; so a
maximum exists.

A counter example: Assume c > 1. For simplicity, suppose that a(t) = |τ − t| for
some τ ∈]0,T [. Then,

∫ T
0 a1−c

t dt = +∞; hence the problem is not well posed, an
obvious consequence of the fact that the model makes the price infinite too fast if
nobody extract oil.

Linear feedback: If we search for a in the class of linear feedbacks a(x, t) = w(t)x
where w is a deterministic function of time only, then (26) has an analytical solution

Xt = X0 exp
(
−
∫ t

0
w(τ)dτ− σ2

2
t +σ(Wt −W0)

)
, (28)

and the first and second moments of at are

E[at ] = E[X0]w̃t , E[a2
t ] = E[X2

0 ]w̃
2
t eσ2t , with w̃t := w(t)e−

∫ t
0 w(τ)dτ .

Then, for η = 2, the problem reduces to maximizing over w̃t ≥ 0

J(w̃t) =
∫ T

0

(
κe−btE[X0]

1−cw̃1−c
t −αE[X0]w̃t −βE[X2

0 ]w̃
2
t eσ2t)e−rtdt

− γE[X2
0 ]e

σ2T−2
∫ T

0 w(τ)dτ . (29)



12 Mathieu Laurière, Olivier Pironneau∗ Communicated by Nizar Touzi

5.4 Dynamic Programming in Absence of Constraint

To connect to Section 2 let us work with u = −a, the reserve depletion rate. For the
time being, we shall ignore the constraints L≥Xt ≥ 0 and u≤ 0; so Vd =R. Moreover
we shall work with η = 2 and comment on η > 2 at the end.

Recall that ρ(·, t), the PDF of Xt , is given by the Fokker-Planck equation :

∂tρ−
σ2

2
∂xx
(
x2

ρ
)
+∂x

(
ρu
)
= 0 (x, t) ∈ R×]0,T ], (30)

with initial condition : ρ|t=0 = ρ0 given. Now ut :=
∫
R utρtdx = E[−at ] and

J̃(τ;ρτ ,u) :=
∫ T

τ

∫
R

(
κe−bt(−ut)

−cut −αut +βu2
t

)
e−rt

ρtdxdt (31)

+
∫
R

γ|x|η ρ(x,T )dx subject to (30) with ρ|t=τ = ρτ . (32)

The goal is now to minimize J̃ with respect to u. Define also

V (τ;ρτ) := min
u

J̃(τ;ρτ ,u).

Application of the Results of Section 2. In this example we have : Vd = R and

H(x, t;ut ,ρt) = (κe−bt
χ
−c
t u(x, t)−αu(x, t)+βu(x, t)2)e−rt ,

χt =−
∫
R

utρtdx, hence h(x, t,u,ρ) =−u(x, t) and G(x,χT ) = G(x) = γ|x|η .

By Proposition 4.2 and Remark 4.5, we have V ′|T = γ|x|η , and V ′ satisfies

∂tV ′+
σ2x2

2
∂xxV ′+u∂xV ′ =−

[
H +ρ∂ρ H +(h+ρ∂ρ h)

∫
R

∂χ Hρdx
]

(33)

=−
(

κ(1− c)e−bt(−u)−cu−αu+βu2
)

e−rt. (34)

because ∂ρ H = ∂ρ h = 0 and ∂χ H = cκe−bt χ−c−1u. Moreover, by (22),

−∂xV ′ =
(

κ(1− c)e−bt(−u)−c−α +2βu
)

e−rt , (35)

giving:

u(x, t) =
1

2β

[
α− ert

∂xV ′−κ(1− c)e−bt(−u)−c
]
. (36)

Now, using (35) to eliminate ∂xV ′ in (34) leads to

∂tV ′+
σ2x2

2
∂xxV ′ = βe−rtu2. (37)

Finally, using (36) in (37) and the definition of (−u)t yields :

∂tV ′+
σ2x2

2
∂xxV ′ =

e−rt

4β

(
α− ert

∂xV ′−κ(1− c)e−bt(−u)−c
)2

. (38)

Note that this equation for V ′ depends only on u and not on u. Nevertheless (36)–(38)
is a rather complex partial-integro-differential system.
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A Fixed-Point Algorithm. We can now sketch a numerical method to solve the prob-
lem:

Algorithm 1.
Choose ω ∈ (0,1). initialize u0, set i = 0.

1. Compute ρi by solving (30) ;
2. Compute ui =

∫
R uiρi ;

3. Compute V ′i by (38);
4. Compute ũi+1 by (36) and set ui+1 = ui +ω(ũi+1−ui);

If not converged, set i = i+1 and go back to step 1.

Although it seems to work numerically in many situations, as we shall see below,
nothing is known on the convergence of this fixed-point type algorithm; three points
need to be clarified:

1. Equation (30) is nonlinear and existence of solution is unclear.
2. A relevant stopping criteria for Algorithm 1 is yet to be found.
3. Even if the Fokker-Planck equation (30) is set on R+×]0,T [ instead of Q as dis-

cussed below in the numerical section (Section 5), there are difficulties. Because
the second order term vanishes at x = 0, a weak formulation ought to be in the
weighted Sobolev space and would be to find ρ , with

ρ ∈H = {ν ∈ L2(R+) : x∂xν ∈ L2(R+)} such that ∀ν ∈H∫
R+

[
ν∂tρdx+(xσ

2−u)ρ∂xν + x2
σ

2
∂xρ∂xν

]
dx = 0, for almost all t. (39)

Theorem 2.2 in [29] asserts existence and uniqueness of ρ , provided that there
exists uM such that u(x, t) < xuM, ∀t. However, this oil-resource model doesn’t
impose u(0, t) = 0, and consequently there is a singularity at that point.

5.5 Calculus of Variations on the Deterministic Control Problem

To find the optimality conditions for (31), let us introduce an adjoint ρ∗ satisfying

∂tρ
∗+

σ2x2

2
∂xxρ

∗+u∂xρ
∗ = e−rt(α−βu−κ(1− c)e−bt(−u)−c)u. (40)

in R× [0,T [ and ρ∗|T = γ|x|η . Then,

δJ =−
∫

Q

(
e−rt(α−2βu−κ(1− c)e−bt(−u)−c)−∂xρ

∗
)

ρδudxdt +o(‖δu‖).
(41)

In other words

GraduJ =−
(

e−rt(α−2βu−κ(1− c)e−bt(−u)−c)−∂xρ
∗
)

ρ. (42)
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Algorithm. We apply the steepest descent method with varying step size:

Algorithm 2.
Initialize a0 and i = 0; choose 0 < ε � 1;
DO

1. Compute ρi by (30) with ρi|t=0 given;
2. Compute ui =

∫
R uiρidx ;

3. Compute ρ∗i by (40);
4. Compute GraduJ by (42) ;
5. Compute a feasible descent step µi ∈ R by Armijo rule [30]
6. Set ui+1 := ui−µiGraduJ, i = i+1;

WHILE (‖GraduJ‖> ε);

For a convergence analysis, here the situation is somewhat better: both the state
and the adjoint equations (30), (40) are linear and the only problem is the asymptotic
behavior of u. Note also that one could use a conjugate-gradient algorithm at little
additional computational cost.

After discretization by a variation method such as finite element methods, conver-
gence to a local minima could probably be established by the techniques of control
theory (see e.g. [30]) because the problem is finite dimensional and the gradient of
the cost function is exact [29]. However, convergence of the solution of the discrete
problem to the solution of the continuous problem is open and even more difficult
than existence.

5.6 The Riccati Equation when η = 2

Even though the problem is not linear-quadratic, when η = 2 we can still look for V ′

solution of (38) in the form V ′(x, t) = Ptx2 + ztx+ st . where Pt ,zt ,st are functions of
time only.

Identification of all terms proportional to x2 in (37) gives,

Ṗt +σ
2Pt =

ert

4β
P2

t , PT = γ.

For clarity, let Qt = ertPt and µ = σ2− r. Then, the above is:

Q̇t +µQt −
Q2

t

4βert = 0, QT = γerT ⇒ Q̇t

Qt
+

Q̇t

4βert µ−Qt
=−µ.

As long as 4βert µ−Qt > 0 it leads to

Qt

Qt −4βert µ
=

γe(T−t)µ

γ−4β µ
⇒ Pt =

4β µγe(T−t)µ

γe(T−t)µ − γ +4β µ
. (43)

Then, u is found by (36). In particular ∂xu = − 1
8β

∂xxV ′ = − 1
4β

Pt . However, the
Fokker-Planck equation must be solved numerically to compute u.

Note that γ < 4β µ implies 4βert µ−Qt > 0 and also Pt > 0.
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Remark 5.1 By identification of the terms of order 1 and 0 in x, equations for z and s
are found:

ż =− 1
β
(α−δ (1− c)e−bt(−u)−2c)2ertP2

t , zT = 0,

ṡ =−e−rt

β
(α−δ (1− c)e−bt(−u)−c− ertzt)

2, sT = 0.

Remark 5.2 Note that ut = 2xPt +zt is not a linear feedback function as in (28) above.

Remark 5.3 This explicit feedback solution is smooth and adapted to the stochastic
process (26), so it should be a solution of (27) if it exists (recall that (27) is not
convex). Furthermore it has a behavior at infinity which is compatible with (2).

5.7 Numerical Implementation

To implement Algorithms 1 & 2, we need to localize the PDE. As x < 0 makes no
sense for this application, we shall work on QL = [0,L]× [0,T ] instead of R× [0,T ];
a stopping time for the event Xt = 0 would be better, but too costly. At x = L, we set
ρ(L, t) = 0,∀t, which makes sense when L is large.

Assigning boundary conditions to (38) and (40) is problematic. Our numerical
tests show that the computations depend strongly on L when it is not done correctly.
When η = 2, we know that V ′ and ρ∗ have asymptotically the same behavior as Ptx2,
giving 1

2 σ2x2∂xV ′ = σ2x3Pt = σ2xV ′, a relation which can be used as a boundary
condition in the weak form of the equation (and similarly for ρ∗): find ρ ∈ H1(QL)
with V ′T given and

∫
QL

[
−ν∂tV ′+

σ2

2
∂x(νx2)∂xV ′

]
dxdt +

∫ T

0
σ

2LV ′(L, t)ν(L, t)dt

+
∫

QL

e−rt

4β

(
α− ert

∂xV ′−κ(1− c)e−bt(−u)−c
)2

νdxdt = 0, (44)

for all ν ∈ H1(QL) with νT = 0.
To solve this non-linear PDE we use the fact that it is embedded into an itera-

tive loop in Algorithm 1, and semi-linearise it by evaluating the square term in the
last integral as a product of the same, where one factor is evaluated at the previous
iteration.

To discretise it we have used a space-time finite element method of degree 1 over
triangles covering QL. Admittedly it is an unusual method! However, it is somewhat
similar to a central difference method and it is feasible because the problem is one
dimensional in space and because it allows exact conservativity and exact duality with
respect to time and space in the integrations by parts. It handles also automatically
the storage of ρ,u,V,u at all times and solve the backward (and forward) equation at
all time steps by a single linear system. The linear systems are solved with the library
MUMPS as implemented in freefem++ [31].
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5.8 Results with Algorithm 1

We used 50 points to discrete (0,L), L = 10 and 50 time steps for [0,T ], T = 5. The
following values have been used: α = 1, β = 1, γ = 0.5, κ = 1, b = 0.1, r = 0.05,
σ = 0.5 and c= 0.5. The initial condition ρ0 is a Gaussian curve centred at x = 5 with
volatility 1. We initialized u by u0 = −α/(2β ). A local minimum ue is known from
the Riccati equation; the error ‖u−ue‖ is used as a stopping criteria in Algorithm 1.
We chose ω = 0.5.

Fig. 1 Optimal x, t→ u(x, t) and the Riccati so-
lution slightly below Fig. 2 PDF of resource Xt : x, t→ ρ(x, t)

Results with Algorithm 1. Figure 1 shows the optimal control as a function of (x, t).
For each t the control is linear in x, as predicted by the Riccati equation; the quadratic
part of the Riccati solution of Section 5.6 is also plotted, and a small difference is
seen on the plot (two surfaces close to each other are displayed). Figure 2 shows the
evolution in time of the PDF ρ for all x> 0 of the resource distribution Xt . At time 0 it
is a Gaussian distribution centered at x = 5; at time T the distribution is concentrated
around x = 0.5, so most producers have pumped 90% of the oil available to them.

Table 1 Algorithm 1. Convergence history: H1-error,
∫
(∂xu−∂xue)

2dxdt versus iteration number k

k 1 2 3 4 5 6 7 8 9 10
Error 1035 661.2 8.605 44.7 3.27 0.755 0.335 0.045 0.015 0.003

All above is obtained with L = 10, but there is almost no difference with L = 40.
Figures3, 4 present the evolution of production (−ut ) and price pt = κe−bt(−ut)

−c.
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5.9 Results with Algorithm 2

The performance of descent methods were disappointing. It generated many different
solutions depending on the initial value for u. If u0 = ue, then the algorithm decreases
the cost functions by introducing small oscillations, a strategy which is clearly mesh
dependent. If u0 = −0.5, then the solution of Figure 5 is found after 10 iterations of

Table 2 Algorithm 2. Convergence history: Values of J and ‖GraduJ‖ versus iteration number k

k 0 1 2 3 .. 9
J 0.7715 0.2834 0.2494 0.1626 0.0417

‖GradJ‖ 0.003395 0.001602 0.000700 0.000813 0.000794

steepest descent. The convergence history is given in Table 2. The results are shown
on Figure 6. Note the oscillations of ρ near t = T .

Fig. 5 Another solution u Fig. 6 The corresponding ρ
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5.10 The case η 6= 2

The following parameters are now changed : η = 3 and u0 is initialized by the Riccati
solution. Algorithm 1 converges in a few iterations to a solution, but ω = 0.05 is re-
quired for convergence. Algorithm 2 gives a different solution. Both adjoint states are
shown on Figure 7. When η = 4, Algorithm 1 diverges, while Algorithm 2 converges

Fig. 7 The case η = 3; ρ∗ computed with Algorithm 1 (left) and ρ∗ computed with Algorithm 2 (center).
The two algorithms computed different solutions when initialized with the Riccati solution. Right: solution
u computed with Algorithm 2 when η = 4.

to the solution shown on Figure 7.

5.11 Linear Feedback Solution

Using automatic differentiation of computer programs by operator overloading in
C++ and initializing a steepest descent method with the linear part of the Riccati solu-
tion of Section 5.6 and the same parameters as above, we obtained the w(t) displayed
on Figure 8, very close to the Riccati solution. To understand why the Riccati solution
may not be the best solution we plotted λ → Jd(λ ) := J(wd

t +λht), λ ∈]−0.5,+0.5[,
where ht is an approximate wt −∇J(wd

t ). Figure 8 shows that there are three local
minima and two local maxima, and wd

t is only a local minimum.

Fig. 8 A solution computed by a steepest descent method to maximize (29) showing the feedback coef-
ficient w versus time (left figure), compared with the feedback coefficient of the Riccati solution (solid
line). The plot in the center shows Jd

λ
as a function of λ ∈]− 0.5,+0.5[; the Riccati solution is at λ = 0.

At λ =±0.12 lies absolute minima of Jd(.), but it can be seen only by zooming in the central figure (right
plot). Observe that the absolute minimum is very shallow and hard to find; it appears also to be mesh
dependent.

6 Conclusions

Stochastic mean-field type control is numerically hard. Even a simple academic toy
problem gives difficulties. The first difficulty which this paper had to deal with is
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the extension of the HJB dynamic programming approach. The second difficulty is
related to the well-posedness of the HJB or adjoint equation because it is set in an
infinite domain in space. The third difficulty is the lack of proof of convergence of
the two algorithms suggested here, an HJB-based fixed point and a steepest descent
based on calculus of variations. When it converges the fixed point method is preferred
but there is no known way to guarantee convergence even to a local minimum; as for
the steepest descent we found it somewhat hard to use, mainly because it generates ir-
regular oscillating solutions; some bounds on the derivatives of u need to be added in
penalised form in the criteria. Numerically both algorithms are cursed by the asymp-
totic behaviour of the solution of the adjoint state at infinity. So, when possible, the
Riccati semi-analytical feedback solution is the best. Finally, but this applies only to
this toy problem, the pure feedback solution is nearly optimal, easy to compute and
stable. Note also that this semi-analytical solution is a validation test, since it has
been recovered by both algorithms.

Acknowledgements The authors are grateful to Yves Achdou, Alain Bensoussan and Olivier Guéant for
useful discussions.

References

1. Fleming W.H., Soner H.M. Controlled Markov Processes and Viscosity Solutions. Stochastic Mod-
elling and Applied Probability series vol 25, Springer 2006.

2. Kushner H.J. : Stochastic Stability and Control. Academic Press, New York (1967)
3. Øksendal B., Sulem A. : Applied Stochastic Control of Jump Diffusions. Springer (2005)
4. Touzi N. : Optimal Stochastic Control, Stochastic Target Problems and Backward SDE. Field Inst.

Monographs 29, Springer (2013)
5. Yong J., Zhou X. Y. : Stochastic Control. Applications of Math. series vol 43. Springer (1999)
6. Carmona R., Fouque J.-P., Sun L.-H. : Mean-field games and systemic risk. Communications in Math-

ematical Sciences, Vol. 13(4), p. 911-933 (2015)
7. Garnier J., Papanicolaou G., Yang T.-W. : Large Deviations for a Mean-Field Model of Systemic Risk,

SIAM J. Finan. Math., 4(1), 151-184 (2013)
8. Lasry J.M., Lions P.L. : Mean-Field Games. Japan. J. Math. 2, 229-260 (2007)
9. Shen M., Turinici G. : Liquidity Generated By Heterogeneous Beliefs and Costly Estimations. Vol. 7,

No 2, pp. 349-361 (June 2012).
10. Carmona R., Delarue F., Lachapelle A. : Control of Mc-Kean-Vlasov mean field games. Math. Financ.

Econ, 7, 131-166 (2013).
11. Andersson D., Djehiche B. : A Maximum Principle for SDEs of Mean-Field Type. Dyn. Games Appl.,

3:537-552 (2013)
12. Bensoussan A., Frehse J., Yam S.C.P. : The Master Equation in Mean-Field Theory. The Master

Equation in Mean-Field Theory. Journal des Mathematiques Pures et Appliquees, Vol. 103, No. 6, p.
1441-1474 (2015).

13. Carmona R., Delarue F. : The master equation for large population equilibriums. Stochastic Analysis
and Applications 2014, Editors : D. Crisan, B. Hambly, T. Zariphopoulou. Springer (2014).

14. Bensoussan A., Frehse J. : Control and Nash Games with Mean-Field Effect. Chinese Annal Math.
Series B. 34B(2), 161-192 (2013)

15. Bensoussan A., Frehse J., Yam S.C.P. : Mean-field Games and Mean-field Type Control. Springer
Briefs in Math. 2014.

16. Kolokoltsov V., Troeva M., Yang W. : On the Rate of Convergence for the Mean-Field Approximation
of Controlled Diffusions with Large Number of Players. Dynamic Games and Applications June 2014,
Volume 4, Issue 2, pp 208-230.

17. Kolokoltsov V., Yang W. : Existence of solutions to path-dependent kinetic equations and related
forward-backward systems. Open Journal of Optimization Vol 2, pp. 39-44, (2013)



20 Mathieu Laurière, Olivier Pironneau∗ Communicated by Nizar Touzi

18. Achdou Y., Laurière M. : On the system of partial differential equations arising in mean field type
control, DCDS A (September 2015).

19. Gangbo W., Swiech A. : Optimal Transport and Large Number of Particles. Discret. Cont. Dynam.
Syst.– A 34 1397 – 1441 (2014)

20. Chan P., Sircar R. : Bertrand & Cournot Mean-field Games, to appear in Applied Mathematics &
Optimization (2015).

21. Laurière M., Pironneau O. : Dynamic Programming for Mean-Field Type Control. C.R. Acad. Sci.
Serie I, Vol 352 - N0 9 p707-713 (sept. 2014)

22. Lions P.L. : Mean-Field Games. Cours au Collège de France (2007-2008) http://www.college-de-
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