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Abstract: An algorithm is derived for a hyperelastic incompressible solid coupled with a Newtonian
fluid. It is based on a Eulerian formulation of the full system in which the main variables are the
velocities. After a fully implicit discretization in time it is possible to eliminate the displacements and
solve a variational equation for the velocities and pressures only. The stability of the method depends
heavily on the use of characteristic-Galerkin discretization of the total derivatives. For comparison
with previous works, the method is tested on a three-dimensional (3D) clamped beam in a pipe filled
with a fluid. Convergence is studied numerically on an axisymmetric case.

Keywords: fluid-structure-interaction; Eulerian formulation; monolithic; finite element;
characteristic-Galerkin; large displacement; energy compatible algorithm.

1. Introduction

Computer simulation of fluid–structure systems in interaction (FSI) is important for aerospace [1],
hemodynamics [2,3], automobile industries [4], etc.

A popular approach to numerically match the velocities and stresses at the fluid–solid interfaces
is the arbitrary Lagrangian Eulerian formulation (ALE) whereby at every time step the fluid equations
are mapped back into the solid domain [5]. Difficulties with the mesh used in the fluid part arise in the
case of large displacements of the solids [6,7].

The immersed boundary method (IBM) proposed by Charles Peskin [2] and analyzed in [8] is
efficient for shells in fluid but is more difficult to implement for thick structures [9]. Particles in
suspension in a fluid have been simulated by IBM-like methods but mostly for hard particles (see for
instance [10,11]).

A third way is the fully Eulerian approach, advocated by Liu et al. [12] and
Dunne-Rannacher [13,14] (see also [15,16]). This approach is well suited to problems with
large displacements.

In [17,18] a similar monolithic numerical method was proposed for the fluid–structure equations
in two dimensions. It was also shown to be energy-stable. For more details on the motivations
behind such a radically different approach to FSI, see [18]. The basic idea is to write the equations in
terms of velocity, pressure, and displacement, as usual but in an Eulerian frame, and then eliminate
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the displacement in the time-discretized equations; the result is a monolithic formulation which is
well-posed at each time step. Furthermore, to obtain energy stability it was suggested in [18] to update
the structure with its own velocity and remesh the fluid domain at every time step.

In this paper we keep the same approach but in 3D. The Cayley–Hamilton theorem was used
in 2D and it is different in 3D. Hence, the equations for a structure in Eulerian variables need to be
derived again. The analysis is performed for hyper-elastic Mooney–Rivlin incompressible material.
The result is not very different except that one coefficient of the constitutive relation is now a nonlinear
function of the deformation tensor.

The article has four sections.

• The fully Eulerian formulation is derived in Section 1.
• In Section 2 the equations are discretized implicitly in time as in [18,19]; then the displacements are

eliminated and a non-linear system for the velocities and pressures remains. Spatial discretization
is obtained by using stable finite element spaces like linear pressures and quadratic velocities on a
tetrahedral mesh.

• In Section 3 it is shown that the energy decays at each time step, which is an indication that the
method is robust.

• Finally, in Section 4, the method is implemented in 2D for axisymmetric systems and in 3D
for general systems. Energy decrease, mass conservation and convergence are analyzed on an
axisymmetric case: an elastic torus in a cylindrical canister filled with a fluid at a Reynolds number
of a few hundred. Then, the method is carefully evaluated on the test case proposed in [20] and
comparisons with previous publications are made.

2. Derivation of the Formulation from the General Laws of Continuum Mechanics

2.1. Notations

The computational domain is denoted Ωt; it is time-dependent and is the union of the fluid part
Ωt

f and solid part Ωt
s. Technically Ωt must be an open set and so we denote by Ωt its closure. The fluid

and solid domains must not overlap: Ωt
f ∩Ωt

s = ∅. Initially, Ω0
f and Ω0

s are prescribed. Let:

• Σt = Ωt
f ∩Ωt

s be the fluid–structure interface, and ∂Ωt be the boundary of Ωt,
• Γ be the part of ∂Ωt where the structure is clamped or the fluid does not slip. It is assumed to be

independent of t.

The following standard notations are used:

• X : Ω0 × (0, T) , 7→ Ωt : X
(

x0, t
)

is the Lagrangian position at t of x0,
• d = X

(
x0, t

)
− x0 is the displacement,

• u(X(x0, t), t) = ∂tX(x0, t) is the Eulerian velocity of the deformation at t and x = X(x0, t),
• Fji = ∂x0

i
Xj is the transposed gradient of the deformation,

• J = detF is the Jacobian of the deformation.

Let ρ f , σ f be the density and stress tensor in the fluid, as for the solid with ρs, σs, respectively. It
is convenient to define a unique density and stress tensor by using the set function indicators 1Ωt

f
and

1Ωt
s
:

• ρ (x, t) = 1Ωt
f
(x, t)ρ f (x, t) + 1Ωt

s
(x, t)ρs (x, t) , the density,

• σ (x, t) = 1Ωt
f
(x, t)σ f (x, t) + 1Ωt

s
(x, t)σs (x, t) , the stress tensor.

For readability, vectors, tensors and matrices are noted in bold, except x and x0. Unless specified
otherwise, all spatial derivatives are with respect to x ∈ Ωt and not with respect to x0 ∈ Ω0. If φ is a
function of x = X

(
x0, t

)
,

∇x0 φ =
[
∂x0

i
φ
]
=
[
∂x0

i
Xj∂xj φ

]
= FT∇φ (1)
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When X is invertible, d and F can be seen as functions of (x, t) instead of (x0, t). They are
related by:

FT = ∇x0X = ∇x0

(
d + x0

)
= ∇x0d + I = FT∇d + I ⇒ F = (I−∇d)−T (2)

Time derivatives are related by:

Dtφ(x, t) :=
d
dt

φ
(

X
(

x0, t
)

, t
)∣∣∣

X(x0, t)=x
= ∂tφ (x, t) + u · ∇φ (x, t) (3)

It is convenient to introduce a notation,

Du = ∇u +∇Tu.

2.2. Conservation Laws

Conservation of momentum and conservation of mass take the same form for the fluid and the
solid. With f (x, t), the volumic force in the system is:

ρDtu = f +∇ · σ,
d
dt

(Jρ) = 0, i.e., Jρ = ρ0

with continuity of u and of σ · n at the fluid–structure interface σt in the absence of external surface
force, like surface tension. There are also unwritten constraints pertaining to the realizability of the
map X. Finally, incompressibility implies J = 1 and so ρ = ρ0 along the Lagrangian trajectories. In
particular, if ρ0 is piecewise constant and equal to ρ f , ρs in the fluid and the solid, at initial time, then it
remains so at later times.

2.3. Constitutive Equations

Three-dimensional hyperelastic incompressible Mooney–Rivilin/neo Hookean materials and
Newtonian incompressible fluids are considered.

• For a Newtonian incompressible fluid, σ f = −p f I + µDu
• For an hyperelastic incompressible material, σs = −psI + ∂F Ψ FT

where Ψ is an Helmholtz potential, like,

Ψ (F) = c1trFTF + c2

(
tr
(FTF)

2 − tr2
FTF

)
. (4)

2.4. The Mooney–Rivlin 3D Stress Tensor

Note that ∂FtrFTF = 2F and ∂Ftr
(FTF)

2 = 4FFTF. Hence,

∂FΨFT = (2c1 − 4c2trB)B + 4c2B2, where B = FFT . (5)

In order to compute the tensors at Eulerian points (x, t) rather than Lagrangian points
(

x0, t
)
,

it is necessary to compute x → F (x, t) or x → d (x, t) in terms of Ψ. By (2)

B−1 = F−TF−1 = (I−∇d) (I−∇d)T = I−Dd +∇d∇Td. (6)

By Cayley–Hamilton theorem in 3D, for an invertible symmetric matrix,

B3 − trBB2 + γB− detBI = 0 with γ =
1
2
(tr2

B − trB2), (7)
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and by incompressibility detB = 1. Multiplying (7) by B−2, and the result by B−1 leads to polynomial
expressions in terms of B−1:

B = trBI− γB−1 + B−2, B2 =
(

tr2
B − γ

)
I + (1− trBγ)B−1 + trBB−2. (8)

With the help of (8), (5) becomes:

∂FΨFT = (2c1 − 4c2trB)B + 4c2B2 = (2c1 − 4c2trB)
(

trBI− γB−1 + detBB−2
)

+ 4c2

[(
tr2

B − γ
)

I + (1− trBγ)B−1 + trBB−2
]

=2c1B−2 + (4c2 − 2c1γ)B−1 + (2c1trB − 4c2γ) I.

Consequently, as a function of d, the 3D Mooney–Rivlin stress tensor is obtained from (6),

∂FΨFT = 2c1

(
Dd−∇d∇Td

)2
+ 2c3

(
Dd−∇d∇Td

)
+ αI, (9)

c3 :=
c1

2

(
tr2

B − trB2 − 4
)
− 4c2 (10)

with a complex expression for α in (10) which is unimportant for the time being because it is absorbed
by the pressure.

This is compared with the 2D model of [19] obtained with the same Ψ:

∂FΨFT =

{
2c1
(
Dd−∇d∇Td

)
+ α′I, 2D model.

2c1
(
Dd−∇d∇Td

)2
+ 2c3(x, t)

(
Dd−∇d∇Td

)
+ αI, 3D model.

with c3 given by (10).

2.5. From 3D to 2D

In the 3D model, c3 varies with trB and trB2 instead of being constant, like c1 in 2D model. The way
to calculate c3 is to compute directly trB and trB2 by (6) which involves a 3 by 3 inverse matrix at each
point of the solid domain.

The 3D model degenerates into a 2D system when the geometry and the data are invariant with
respect to one coordinate, like a translation invariance with respect to z for instance, in a Cartesian
coordinate system, or a rotation invariance in θ, in a cylindrical coordinate system.

Assume invariance with respect to the third coordinate. Then,

F =

(
I−∇2d 0

0 1

)−T

=

(
F̃ 0
0 1

)
with F̃ = (I−∇2d)−T , ∇2d =

(
∂1d1 ∂1d2

∂2d1 ∂2d2

)
.

Consequently tr(FTF)j = tr(F̃T F̃)j + 1, j = 1, 2, (trFTF)
2 = (trF̃T F̃)

2 + 2trF̃T F̃ + 1,

Ψ (F) = c1trFTF + c2(tr(FTF)
2 − tr2

FTF) = (c1 − 2c2)trF̃T F̃ + c2(tr(F̃T F̃)
2 − tr2

F̃T F̃) + constant. (11)

Hence a comparison between the 2D model and the 3D model on a 2D configuration requires
replacing the c1 of the 2D Helmholtz potential by c1 − 2c2 from the 3D Helmholtz potential.

2.6. Variational Formulation

For simplicity, we shall consider only the case of homogeneous boundary conditions on Γ ⊂ ∂Ωt,
i.e., clamped or no-slip, and homogeneous Neumann conditions on ∂Ωt \ Γ.
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So, given Ω0
f , Ω0

s , d, and u at t = 0, we must find
(

u, p, d, Ωt
f , Ωt

s

)
with u|Γ = 0 and,



∫
Ωt

(ρDtu · û− p∇ · û− p̂∇ · u) +
∫

Ωt
f

µ

2
Du : Dû

+
∫

Ωt
s

[
c1

(
Dd−∇d∇Td

)2
+ c3

(
Dd−∇d∇Td

)]
: Dû =

∫
Ωt

f · û,

Dtd = u,

(12)

for all (û, p̂) with û|Γ = 0 and where Ωt
s and Ωt

f are defined by:

dχ

dτ
= u (χ (τ) , τ) , χ (t) ∈ Ωt

r ⇒ χ (τ) ∈ Ωτ
r ∀τ ∈ (0, T) , r = s, f .

3. Numerical Schemes

3.1. Characteristic-Galerkin Derivatives

The characteristic–Galerkin method is applied to (12) to discretize the total derivatives.
Let u : Ωt × (0, T) 7→ R3 be given, Lipschitz in space and continuous in time. Let χt

u,x (τ) be the
solution at time τ < t of:

χ̇ (τ) = u (χ (τ) , τ) with χ (t) = x.

So χ is the particle path in a velocity field u and χt
u,x (τ) is the position of a particle at time τ

which will be at position x at (future) time t. The method of characteristics relies on the concept of
total derivative: for any differentiable function w : Ωt × (0, T) 7→ Rm, m = 1, 2, 3, . . . ,

Dtw (x, t) :=
d

dτ
w (χ (τ) , τ) |τ=t = ∂tw + u · ∇w. (13)

Given a time step δt, the position of a particle at time nδt, which will be at position x at time
(n + 1)δt, is approximated by Yn+1(x):

χ
(n+1)δt
un+1,x (nδt) ≈ Yn+1 (x) := x− un+1 (x) δt.

Then a first-order consistent scheme for the total derivative of w is:

∂tw + u · ∇w = Dtw (x, t) ≈ 1
δt

(
wn+1(x)−wn

(
Yn+1(x)

))
. (14)

Combined with a Galerkin approximation in space the scheme has been analyzed in depth in [21]
in the variational context of the finite element methods.

3.2. A Monolithic Time–Discrete Variational Formulation

Define L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q = 0}.

Proposition 1. The following variational problem is a first order in time-consistent approximation of (12):
Find, Ωn+1, un+1 ∈ H1

0(Ω
n+1), pn+1 ∈ L2

0(Ω
n+1) such that for all û ∈ H1

0(Ω
n+1), p̂ ∈ L2

0(Ω
n+1),
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∫
Ωn+1

(
ρn+1 un+1 − un ◦Yn+1

δt
· û− pn+1∇ · û− p̂∇ · un+1

)
+
∫

Ωn+1
f

µ

2
Dun+1 : Dû

+ δt
∫

Ωn+1
s

[
2c1

(
Dun+1 −∇un+1∇Td̃n −∇d̃n∇Tun+1

) (
Dd̃n −∇d̃n∇Td̃n

)
+ cn

3

(
Dun+1 −∇un+1∇Td̃n −∇d̃n∇Tun+1

)]
: Dû

+
∫

Ωn+1
s

[
c1

(
Dd̃n −∇d̃n∇Td̃n

)2
+ cn

3

(
Dd̃n −∇d̃n∇Td̃n

)]
: Dû =

∫
Ωt

f · û,

dn+1 = dn ◦Yn+1 + δtun+1.

(15)

where d̃n stands for dn(Yn+1).

Some comments

1. Formula (14) has been used to approximate Dtu and Dtd in (12).
2. One may wonder why the scheme is applied to u and not to ρu. Note that ρ = ρ f 1Ωt

f
+ ρs1Ωt

s
is

convected by the velocity u. Hence ρn+1 (x) = ρn ◦Yn+1 (x). This shows that discretizing the
total derivative of u or the total derivative of ρu gives the same scheme:

1
δt

(
wn+1 (x)−w

(
Yn+1 (x)

))
= (∂tw + u · ∇w) |x,tn+1 + O (δt)with w = u or w = ρu. (16)

Proof. With the characteristic Galerkin method, a consistent time discretization of (12) would be such
that at each time step one must:

Find un+1 ∈ H1
0
(
Ωn+1), p ∈ L2

0
(
Ωn+1), Ωn+1 = Ωn+1

f ∪ Ωn+1
s , such that

∀û ∈ H1
0
(
Ωn+1), ∀ p̂ ∈ L2

0
(
Ωn+1); the three relations below hold:

∫
Ωn+1

(
ρn+1 un+1 − un ◦Yn+1

δt
· û− pn+1∇ · û− p̂∇ · u

)
+
∫

Ωn+1
f

µ

2
Dun+1 : Dû

+
∫

Ωn+1
s

[
c1

(
Ddn+1 −∇dn+1∇Tdn+1

)2
+ cn+1

3

(
Ddn+1 −∇dn+1∇Tdn+1

)]
: Dû =

∫
Ωt

f · û,

(17)

dn+1 = d̃n + δtun+1, where d̃n = dn ◦Yn+1 (18)

Ωn+1 =
(
Yn+1

)−1
(Ωn) =

{
x : Yn+1 (x) := x− δtun+1 (x) ∈ Ωn

}
. (19)

A fully implicit monolithic formulation with variables
(
un+1, pn+1) can be derived by substituting

dn+1 in (17) with (18):

∫
Ωn+1

(
ρn+1 un+1 − un ◦Yn+1

δt
· û− pn+1∇ · û− p̂∇ · un+1

)
+
∫

Ωn+1
f

µ

2
Dun+1 : Dû

+
∫

Ωn+1
s

[
c1

(
D
(

d̃n + δtun+1
)
−∇

(
d̃n + δtun+1

)
∇T

(
d̃n + δtun+1

))2

+cn+1
3

(
D
(

d̃n + δtun+1
)
−∇

(
d̃n + δtun+1

)
∇T

(
d̃n + δtun+1

))]
: Dû =

∫
Ωt

f · û.

(20)

System (15) is found by expanding the nonlinear terms in (20), and keeping only the zero order
terms and the terms of order one in δt.
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3.3. Spacial Discretization with Finite Elements

Let T 0
h be a triangulation of the initial domain. Spatial discretization can be done with the most

popular finite element for fluids: the Lagrangian triangular elements of degree 2 for the space Vh
of velocities and displacements and Lagrangian triangular elements of degree 1 for the pressure
space Qh, provided that the pressure is different in the structure and the fluid because the pressure
is discontinuous at the interface σ; therefore Qh is the space of piecewise linear functions on the
triangulations, continuous in Ωn+1

r , r = s, f . Appropriate couples like {Vh, Qh} are chosen to satisfy
the inf-sup condition to avoid checker-board oscillations (see for example [8]). A small penalization
with parameter ε must be added to impose uniqueness of the pressure when L2

0 is replaced by Qh ≈ L2.
This leads us to find un+1

h ∈ V0h, pn+1
h ∈ Qh, Ωn+1, such that for all ûh, p̂h ∈ V0h ×Qh with,

d̃n
h := dn

h ◦Y
n+1, where Yn+1 (x) = x− un+1

h (x) δt,

the following holds:

∫
Ωn+1

(
ρn+1 un+1

h − un
h ◦Y

n+1

δt
· ûh − pn+1

h ∇ · ûh − p̂h∇ · un+1
h + ε∇pn+1

h ∇ p̂h

)
+
∫

Ωn+1
f

µ

2
Dun+1

h : Dûh

+ δt
∫

Ωn+1
s

[
2c1

(
Dun+1

h −∇un+1
h ∇Td̃n

h −∇d̃n
h∇

Tun+1
h

) (
Dd̃n

h −∇d̃n
h∇

Td̃n
h

)
+ cn+1

3

(
Dun+1

h −∇un+1
h ∇Td̃n

h −∇d̃n
h∇

Tun+1
h

)]
: Dûh

+
∫

Ωn+1
s

[
c1

(
Dd̃n

h −∇d̃n
h∇

Td̃n
h

)2
+ cn+1

3

(
Dd̃n

h −∇d̃n
h∇

Td̃n
h

)]
: Dûh =

∫
Ωn+1

f · ûh

Ωn+1 =
(
Yn+1

)−1
(Ωn) =

{
x : Yn+1 (x) ∈ Ωn

}
.

dn+1
h = d̃n

h + δtun+1
h .

(21)

3.4. Solution Algorithm

Equation (21) must be solved iteratively because Ωn+1 is updated by (19). The most natural
method is to freeze some coefficients, c3 included, so as to obtain a well-posed linear problem and
iterate.
To explain the iteration process let us rename, in (19), ρn+1, Ωn+1, Ωn+1

f , Ωn+1
s , Yn+1, cn+1

3 ,

into Ω, Ω f , Ωs, Y, c3.

1. Set ρ = ρn, c3 = cn
3 , Ωr = Ωn

r , r = f , s, u = un
h , Y (x) = x− uδt,

2. Solve system (21). In this study a direct solver is used for the linear system.
3. Set u = un+1

h , Y (x) = x− uδt, Ωr = Y−1 (Ωn
r ) , r = s, f ; update c3 and ρ.

4. If not converged return to step 2.

Remark 1. Ωn+1
s we move the vertices qj in the solid part by its velocity u

(
qj). As d̃n is moved by Y,

it is naturally convected on the new mesh. Similarly, ρ being constant on Ωs, it is well defined on the
new mesh. Finally, c3 being defined in terms of u, it is also well defined on the new mesh.

In the fluid region we generate a new mesh with a Delauney–Voronoi automatic mesh generator
from the new position of the interface σ. There are many other possibilities like solving a Laplace
equation in the fluid part with Dirichlet conditions equal to the velocity of the fluid–solid interface. It
works equally well but what we advocate is, in our experience, more robust, even if it is at the cost of a
possibly greater interpolation error at every step because ũn needs to be projected on the new mesh. A
P2 polynomial interpolation is used.
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Remark 2. An earlier study in [17] showed that 2 iterations are necessary but 3 or more make invisible
improvements; this result is confirmed in 3D by the numerical tests below.

By inspection of (23) below, notice that this iterative algorithm computes the stationary point

of
d
dt

∫
Ω0

s

Ψ
(

I +∇x0dT
)

. As Ψ is convex, it should be a convergent process, but it requires a more

rigorous proof.

4. Stability of the Scheme

4.1. Conservation of Energy

Proposition 2. In the continuous case, it holds that:

d
dt

∫
Ωt

ρ

2
|u|2 + µ f

2

∫
Ωt

f

|Du|2 + d
dt

∫
Ω0

s

Ψ
(

I +∇x0 dT
)
=
∫

Ωt
f · u. (22)

Proof. Choosing û = u, p̂ = −p in Equation (12), then one term becomes (9) :

∫
Ωt

s

[
c1

(
Dd−∇d∇Td

)2
+ c3

(
Dd−∇d∇Td

)]
: ∇u =

∫
Ωt

s

(
∂FΨFT − αI

)
: ∇u. (23)

Now, d
dt Ψ (F) = ∂FΨ (F) : ∂tF and FT∇u = ∇x0u (x0) = ∂t∇x0d (x0) = ∂tFT (x0), so conservation

of the Helmholtz potential Ψ can be derived as follows:∫
Ωt

s

(
∂FΨFT − αI

)
: ∇u =

∫
Ω0

s

∂FΨ : ∇x0u =
∫

Ω0
s

∂FΨ : ∂t∇x0d =
∫

Ω0
s

∂FΨ : ∂tFT

=
∫

Ω0
s

d
dt

Ψ (F) =
d
dt

∫
Ω0

s

Ψ (F) =
d
dt

∫
Ω0

s

Ψ
(

I +∇x0dT
)

.

The other terms in (12) are standard, in particular, with enough regularity on Ωt,

∫
Ωt

(∂tu + u · ∇u) · u =
d
dt

∫
Ωt

|u|2

2
.

Remark 3. When Ψ is convex, some regularity can be gained from this energy conservation which can
lead to existence of solution up to time T which, loosely speaking, in the most optimistic perspective,
is the first time of contact of two boundaries which were not in contact initially (see [22–24] etc.).

4.2. Stability of the Scheme Discretized in Time

Lemma 1.
Fn+1 = Fn + δt∇x0un+1.

Proof. By construction, Xn+1 = (Y1 ◦Y2...Yn+1)−1 = (Yn+1)−1 ◦Xn; therefore dn+1
h = d̃n

h + δtun+1
h

implies that:
∇x0dn+1 = ∇x0dn + δt∇x0un+1.

Theorem 1. When (17) is used and if f = 0 and ρr is constant in each domain Ωn
r , r = s, f ,

∫
Ωn+1

ρn+1

2

∣∣∣un+1
∣∣∣2 + δt

∫
Ωn+1

f

µ

2

∣∣∣Dun+1
∣∣∣2 + ∫

Ω0
s

Ψ
(

Fn+1
)
≤
∫

Ωn

ρn

2
|un|2 +

∫
Ω0

s

Ψ (Fn) (24)
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Proof. The proof is similar to that given in [19] for the 2D case.
With û = un+1, p̂ = −pn+1, and f = 0, (17) becomes:

∫
Ωn+1

(
ρn+1 un+1 − un ◦Yn+1

δt
· un+1

)
+

µ

2

∫
Ωn+1

f

∣∣∣Dun+1
∣∣∣2

+
∫

Ωn+1
s

[
c1

(
Ddn+1 −∇dn+1∇Tdn+1

)2
+ cn+1

3

(
Ddn+1 −∇dn+1∇Tdn+1

)]
: Dun+1 = 0

(25)

We note that ρn
r ◦Yn+1 (x) = ρn+1

r (x), x ∈ Ωn+1
r ; so:∫

Ωn+1
r

(ρn
r un) ◦Yn+1 · un+1 =

∫
Ωn+1

r

(√
ρn

r un
)
◦Yn+1 ·

√
ρn+1

r un+1

Schwartz inequality applied to the right side followed by Young’s inequality leads to:

∫
Ωn+1

r
(ρn

r un) ◦Yn+1 · un+1 ≤
(∫

Ωn+1
r

(√
ρn

r un
)2
◦Yn+1

) 1
2
(∫

Ωn+1
r

ρn+1
r

(
un+1

)2
) 1

2

=

(∫
Ωn

r

(√
ρn

r un
)2
) 1

2
(∫

Ωn+1
r

ρn+1
r

(
un+1

)2
) 1

2
≤ 1

2

∫
Ωn+1

r

ρn+1
r

∣∣∣un+1
∣∣∣2 + 1

2

∫
Ωn

r

ρn
r |un|2

Because (Yn+1)−1(Ωn+1) = Ωn, and det∇Yn+1 = 1, for any f ,∫
Ωn+1

f
(
Yn+1(x)

)
dx =

∫
(Yn+1)−1(Ωn+1)

f (y)det(∇Yn+1)−1 dy =
∫

Ωn
f . (26)

The third integral in (25) can be transformed with Equation (9):

∫
Ωn+1

s

[
c1

(
Ddn+1 −∇dn+1∇Tdn+1

)2
+ cn+1

3

(
Ddn+1 −∇dn+1∇Tdn+1

)]
: Dun+1

=
∫

Ωn+1
s

∂FΨFT
∣∣∣n+1

: ∇un+1 =
1
δt

∫
Ω0

s

∂FΨ
(

Fn+1
)

:
(

Fn+1 − Fn
) (27)

The last equality is due to Lemma 1. Now, by the convexity of Ψ:∫
Ω0

s

∂FΨ
(

Fn+1
)

:
(

Fn+1 − Fn
)
≥
∫

Ω0
s

Ψ
(

Fn+1
)
−
∫

Ω0
s

Ψ (Fn)

Finally,

∫
Ωn+1

ρn+1

2

∣∣∣un+1
∣∣∣2 + δt

∫
Ωn+1

f

µ

2

∣∣∣Dun+1
∣∣∣2 + ∫

Ω0
s

Ψ
(

Fn+1
)
≤
∫

Ωn

ρn

2
|un|2 +

∫
Ω0

s

Ψ (Fn) (28)

4.3. Energy Inequality for the Fully Discrete Scheme

It was argued in [18] that the same proof holds for scheme discretized with P1 triangular elements
for velocity and pressure because then Y transforms a tetrahedron into a tetrahedron and so (27) holds
also in the discrete case. Compatible linear elements are either the P1 − P1 stabilized element or the P1

element for the pressure with P1 also for the velocity but on a mesh where each tetrahedron is divided
in sub-tetrahedra from an inner additional vertex. In the first case the above stability analysis needs to
be modified to include the stabilization term. Numerical tests in 2D showed that the P2 − P1 element
is alright even though energy stability cannot be proved.
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5. Numerical Tests

The first set of tests is meant to evaluate the precision of the method. Due to limited computer
resources (the program is not parallelized), we chose an axisymmetric example so as to work in 2D
with four embedded meshes and study convergence, conservation of mass and energy decay.

The second set concerns a well-documented test case in 3D with experimental comparisons.
Computing time on a Mac-Intel core 2 i7 at 3 GHz ranges from 7sec for mesh1 to 2800sec for mesh7

on the axisymmetric case with two iterations in the solver. For the benchmark 3D case it takes several
hours. The computer program is written in the FreeFem++ language [25] (see also www.freefem.org),
which is an extension of C++.

5.1. An Axisymmetric Torus

A torus of rubber-like material is immersed in a fluid filling a cylindrical canister. Assuming axial
symmetry, the computational domain is a rectangle (0, L)× (0, H) with a disk inside of radius R and
center xc, yc.

The disk is the cross-section of the torus which is an incompressible Mooney–Rivlin material
characterized by c̄1 = c1 − 2c2 and ρs, as explained in Section 2.5. The rectangle is filled with a
Newtonian fluid characterized by its density ρ f and viscosity µ f .

At time zero a centripetal horizontal uniform velocity U0 is imposed on the torus. Consequently,
the torus contracts, and its cross-section, changes to preserve mass, until a position nearest to the axis
of symmetry is reached. Then, it bounces away from its axis to a maximal position and repeats these
oscillations a few times until fluid viscosity dampens the motion.

The tests are done with T = 3, corresponding to 2.3 periods; the parameters are:

R = 0.3, L = 2, H = 1, , xc = 1.1, yc = 0.5, U0 = −4, ρs = 5, ρ f = 1, µ f = 0.01, c̄1 = 40

The problem is solved on four triangulations, called meshi, i = 1, 3, 5, 7; the associated time step
size is δt = T/(50× i). The number of triangles in the meshes are 775, 6522, 17,749 and 35,308.

Figure 1 shows the initial state and some snapshots at times of maximum vertical and horizontal
elongations, and farthest travel to the right.
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  (b)       t=0.12, mesh_5
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(c)         t=0.28, mesh_3

-0.1
0.05
0.2
0.35
0.5
0.65
0.8
0.95
1.1
1.25
1.4
1.55
1.7
1.85
2
2.15
2.3
2.45
2.6
2.75
2.9

 (d)         t=1.45, mesh_1

Figure 1. Deformation of a rubber-like torus in a fluid due to initial centripetal velocity of the torus;
snapshots at t = 0 (a), 0.12 (b), 0.28 (c), 1.45 (d) show also the four meshes, from finest to coarsest. The
torus moves towards its axis (left boundary) and then bounces to the right to a maximum position and
return to its initial position after a few oscillations. Notice the change of area to preserve mass.

www.freefem.org
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Decrease of energy (viscous terms included) and conservation of mass are shown on Figure 2a.
Energy is computed using mesh1 and 1, 2, 3 or 4 iterations for the non-linear solver of Section 3.4;
the results show that 2 iterations for the nonlinear solver is optimal. Energy is also plotted when mesh3

and mesh5 are used (with 2 iterations). In agreement with the theory, energy decays with time even
on a coarse mesh. The decay is due to the numerical dissipation because for the continuous problem
it should be constant, and indeed it is less with finer meshes. Note that an impulsive start is not an
energy-friendly test case.

Conservation of mass is shown on Figure 2b for mesh1, mesh3 and mesh5. It is within 2%.

 41

 42

 43

 44

 45

 46

 0  0.5  1  1.5  2  2.5  3Time

Energy

 

mesh1, j=2,3,4

mesh1, j=1
mesh3, j=2

 mesh5, j=2

(a)

 0.3035

 0.304

 0.3045

 0.305

 0.3055

 0.306

 0.3065

 0.307

 0.3075

 0.308

 0  0.5  1  1.5  2  2.5  3

Mass
mesh_3

mesh_5

mesh_1

Time

(b)

Figure 2. (a): Energy vs. time computed on mesh1 with 1, 2, 3 and 4 iterations in the solver of Section 3.4.
On the same plot energy vs. time is also plotted for mesh3 and mesh5. (b): Mass conservation vs.
time when mesh1, (lower curve), mesh3 and mesh5 are used. Curves 3 and 5 are overlapping.

To study convergence we take the results obtained with mesh7 as a reference “almost exact”
solution. Then, we observe the point on the torus with maximum radius (i.e., farthest to the right).
On Figure 3a the maximum radius is shown versus time for the four meshes; on Figure 3b the pointwise
error for meshi, i = 1, 3, 5. Convergence is observed; we make no claim on the speed of convergence
versus mesh size because mesh7 is probably too coarse to be reliable.

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  0.5  1  1.5  2  2.5  3Time

Radius max
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mesh_3

mesh_5

(a)

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.5  1  1.5  2  2.5  3Time

mesh_1

mesh_3

mesh_5

Error on radius max

(b)

Figure 3. (a): Evolution of the farthest point on the right of the torus versus time computed with meshi,
i = 1 (oscillations), 3 and 5. (b): Mesh7 is used as a reference computations. The errors on the farthest
point on the right in the torus versus time are shown for mesh1 (highest curve, its mean absolute
value is 0.013), mesh3 (lowest curve, its mean absolute value is 0.0023), and mesh5 (flat curve, its mean
absolute value is 4.1× 10−5).
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5.2. Clamped Structure in a Fluid

A set of computations of a beam in vacuum or in fluid has been performed at the request of
Larma’s PhD advisor, Miguel Fernandez [26]. Experimental measurements are available [20] so it
is intended to make them into a well-documented benchmark for the community. The geometry is
always a clamped beam in a container; in all but the first case there is a flow in the container but to
initialize the computation the position of the beam is computed with a stagnant fluid.

The beam in Hessenthaler’s experiment and Larma’s simulation is not incompressible, as the
Poisson ratio is 0.35 instead of 0.5, so we expect discrepencies. The present method can generalized to
compressible material and 2D simulations show similar stability properties but the computer program
is not yet ready for 3D cases.

5.2.1. Free-Fall of a Clamped Structure in Vacuum

The beam size is 9× 1× 1 . The beam is clamped on the right to the yz plane and free to fall under
its own weight. The density ρs is 1, and the gravity is −0.01 along y direction. The Mooney–Rivlin
coefficients are c1 = 5 and c2 = 2.5. Computation stops at T = 100 after 3200 steps with δt = 0.03125.
Results are shown at different times in Figure 4.

(a) (b) (c)

(d) (e) (f)

Figure 4. Free-falling beam in vacuum; snapshots at time (a) t = 10, (b) t = 20, (c) t = 40, (d) t = 70,
(e) t = 80, (f) t = 90.

At the end of computation, the error of volume is less than 1%. A discussion about c3 is found
later in Section 5.3.3.

5.2.2. Free-Fall of a Clamped Beam in a Fluid

Second, we consider a flat beam of size 9× 1× 4 with one side attached to a box which is filled
with a fluid. The box size is 10× 7× 5. Solid density ρs is 1. Fluid density ρ f is 0.5, and viscosity µ f
equals 0.1. The gravity g is −0.5 along the y direction. The Mooney–Rivlin coefficients are c1 = 16.67
and c3 = 8.33

(
tr2

B − trB2 − 4
)
. Computation stops at T = 100 after 200 steps with δt = 0.5.

Computing results are shown in Figure 5; volume error is less than 0.5% at the end.
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(a) (b)

(c) (d)

Figure 5. Free-falling beam in fluid; snapshots at time (a) t = 25, (b) t = 50, (c) t = 75, (d) t = 100.

5.3. The Benchmark

An experiment was designed by Hessenthaler et al. [20] to calibrate the computer simulations of
Larma [26].

The geometry is a cylindrical chamber with a length of 200 mm, diameter 76.2 mm and axis
parallel to x = y = 0. Two inlet circular wholes are on the left z = 0 wall, one with center at
(0 ,−27.15, 0) , the other at (0, 27.15, 0), both of diameter 21.9 mm; the inlet pipes are 20 mm long. A
silicon filament clamped on the z = 0 plane is 2 mm thick, 11 mm wide, and 65 mm long; its center
is located at (0, 0, 0). The computational domain is discretized into 104 vertices and adapted to the
silicone filament to decrease error during its motion. Geometric schematic is shown in Figure 6.

As in [20], the density of the silicone filament is ρs = 1.0583× 10−3 g/mm3. The incompressible
Mooney–Rivlin hyperelastic coefficients are determined by curve-fitting to uni-axial tensile-load
displacement test data. In [26] two coefficients are introduced: ĉ1 = 103, 533.82/2 Pa and
ĉ2 = 8891.65/4 Pa. The Poisson ratio is ν = 0.315 in [26] and c1 = ĉ1

2(1+ν)
, c2 = ĉ2

2(1+ν)
. There will be a

difference because incompressibility implies ν = 0.5. Gravity g is −9810 mm/s2 along the y-direction.
Two numerical tests are made, a steady phase I, and a transient phase II.
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Figure 6. Geometric schematic. Blue: fluid domain; white: solid domain.

5.3.1. Phase I

In the fluid ρ f = 1.1633× 10−3 g/mm−3 and µ f = 1.25× 10−2 Pa·s. A Poiseuille profile flow is
applied to the upper and lower pipes with peak velocity of 630 mm/s and 615 mm/s, respectively. The
position of center line of the beam along the z direction is recorded as a function of time in Figure 7
and compared with experimental data.

(a) (b)

Figure 7. Computational results for phase I (a) position of center line of the beam along z direction
(results and experiments overlap), (b) velocity norms about the symmetry plane.

In absence of flow, due to buoyancy forces, the silicone filament reaches an hydrostatic equilibrium
with maximum displacement d0

M, at the tip on the right, approximately equal to 29.50 mm in [20] and
31.04 mm in [26]. To compute this displacement we have taken T = 1 and 1000 steps with δt = 0.001.

Then d0 is taken as initial condition to Phase I as the inflows are turned on; the maximum
displacements are now approximately 16.41 mm in [20] and 15.99 mm in [26] . To compute this
state we have taken T = 2, 2000 steps with δt = 0.001. Our results, shown in Figure 7, overlap the
experimental data.
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5.3.2. Phase II

Finally a transient computation is performed. The fluid properties are ρ f = 1.1640× 10−3 g/mm−3

and µ = 1.337× 10−2 Pa·s.
The Poiseuille profile flow applied on the upper pipe has a transient peak velocity v̂k (t),

k ∈ [x, y, z] shown in Figure 8 and corresponds to a smooth interpolation from Table 1. No flow
is applied to the lower inflow pipe.

Computation stops at T = 5 after 1600 steps with δt = 0.003125. The maximum velocity norm
of the solid is less than 30 mm/s; the error introduced by the computation is less than 0.1 mm.
Deflection of the center line of the silicone filament is recorded versus time and a comparison between
numerical results and experimental data is shown in Figure 9 at six different times. These results
display a fair—yet not satisfactory—agreement between the simulations and the experimental data.
The difference is perhaps due to improper determination of the coefficients of the hyperelastic model,
because bending at the end of silicone filament could be observed only when the magnitude of c2

is large enough. Another possible explanation is the wrong Poisson ratio, namely an effect due
to incompressibility.

Figure 8. Experimental curves of the peak inflow of inflow velocities used for the boundary condition
in the computations.

Table 1. For phase II, curve–fitting coefficients of inlet peak velocity for v̂k (t) = σ3
i=1niti/σ4

j=0bjtj with
v̂k = 0 for t ∈ I\Ik. Note that the flow in y direction is applied only in the upper inlet.

v̂ n1 n2 n3 d0 b1 b2 b3 b4 Îk

v̂x −11.37 −28.99 7.73 1.38 0.24 3.59 −3.14 1 [0, 4.07]
v̂y 14.95 11.88 −2.17 2.06 −2.0 4.95 −3.50 1 [0, 5.51]
v̂z 367.10 363.40 −62.24 1.21 −0.38 3.76 −3.19 1 [0, 5.27]
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(a) (b) (c)

(d) (e) (f)

Figure 9. Deflection of the silicone filament in phase II (a) t = 0.721, (b) t = 1.153, (c) t = 1.585,
(d) t = 2.017, (e) t = 2.449, (f) t = 2.881.

5.3.3. Variation of Coefficient c3

The coefficient c3 in (10) varies with the structural rheology through trB and trB2 . We wish to
analyze the non-linearity of c3 = c1

2
(
tr2

B − trB2 − 4
)
− 2c2 during the simulation.

Maximum and minimum magnitude of c3 and relative volume error with respect to time are
plotted in Figure 10a, and the corresponding maximum magnitude of displacement d is shown in
Figure 10b.

(a) (b)

Figure 10. Phase II results (a) maximum and minimum magnitude of 2c3 and relative volume error
multiplied by 1000, (b) maximum magnitude of displacement d.

It is interesting to point out that c3 is not very sensitive to the displacement gradients in this
simulation as shown in Figure 11: c3 remains fairly constant during the computation, even though
d does not. These results seem reasonable since deflection over the whole silicone filament is fairly
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uniform. However, we do not rule out that strong deformations could cause a stability problem in the
algorithm; this will be investigated in the future.

(a) (b) (c)

(d) (e) (f)

Figure 11. Deflection d = (d1, d2, d3) and a2 = 2c3 of the silicone filament in phase II at (a) t = 0.721,
(b) t = 1.153, (c) t = 1.585, (d) t = 2.017, (e) t = 2.449, (f) t = 2.881.

6. Conclusions

In this study, a fully Eulerian fluid–structure formulation has been presented. An implicit
unconditionally stable monolithic finite element scheme based on characteristic–Galerkin discretization
has been proposed and studied. At each time step a non-linear system must be solved; however
semi-linearization leads to well-posed linear monolithic systems for the velocities and pressures.

What was found in [17,18] for 2D systems could be generalized in 3D with similar stability based
on analytical proof that the energy of the discrete system cannot increase.

The numerical method has been implemented with FreeFem++ [25], and validation tests have
been presented. For an axisymmetric case, conservation of mass and energy were shown as well as
convergence on a sequence of embedded meshes.

The effect of nonlinearity of c3—the major difference with the 2D case—is studied in Section 5.3.3
with validation tests.

In the near future we intend to parallelize the computer program and use it for larger systems, in
particular for hemodynamics.
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