J. Martins, Wing design via numerical optimization. SIAG OPT Views News 2015, pp.2-7

C. S. Peskin, The immersed boundary method. Acta Numer, pp.479-517, 2002.

P. Hauret, Numerical Methods for the Dynamic Analysis of Two-Scale Incompressible Nonlinear Structures, 2004.

J. Hron and S. Turek, A monolithic FEM solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking Egmond aan Zee, The Netherlands Extended ALE Method for fluid-structure interaction problems with large structural displacements, Proceedings of the European Conference on Computational Fluid Dynamics, pp.5-8, 2006.

J. Liu, A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near contact of structures, Journal of Computational Physics, vol.304, pp.380-423, 2016.
DOI : 10.1016/j.jcp.2015.10.015

D. Boffi, N. Cavallini, and L. Gastaldi, The Finite Element Immersed Boundary Method with Distributed Lagrange Multiplier, SIAM Journal on Numerical Analysis, vol.53, issue.6, pp.2584-2604, 2015.
DOI : 10.1137/140978399

URL : http://arxiv.org/abs/1407.5184

Y. Wang, P. K. Jimack, and M. A. Walkley, A one-field monolithic fictitious domain method for fluid???structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.317, pp.317-1146, 2017.
DOI : 10.1016/j.cma.2017.01.023

URL : http://arxiv.org/abs/1612.01586

B. Maury and R. Glowinski, Fluid-particle flow: a symmetric formulation, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.324, issue.9, pp.1079-1084, 1997.
DOI : 10.1016/S0764-4442(97)87890-1

R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Périaux, A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.
DOI : 10.1006/jcph.2000.6542

C. Liu and N. J. Walkington, An Eulerian Description of Fluids Containing Visco-Elastic Particles, Archive for Rational Mechanics and Analysis, vol.159, issue.3, pp.229-252, 2001.
DOI : 10.1007/s002050100158

R. Rannacher and T. Richter, An Adaptive Finite Element Method for Fluid-Structure Interaction Problems Based on a Fully Eulerian Formulation, In Fluid Structure Interaction II, pp.159-191, 2011.
DOI : 10.1007/978-3-642-14206-2_7

T. Dunne and R. Rannacher, Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on an Eulerian Variational Formulation, In Fluid-Structure Interaction, pp.110-145, 2006.
DOI : 10.1007/3-540-34596-5_6

T. Richter, A Fully Eulerian formulation for fluid???structure-interaction problems, Journal of Computational Physics, vol.233, pp.227-240, 2013.
DOI : 10.1016/j.jcp.2012.08.047

T. Wick, Fully Eulerian fluid???structure interaction for time-dependent problems, Computer Methods in Applied Mechanics and Engineering, vol.255, pp.14-26, 2013.
DOI : 10.1016/j.cma.2012.11.009

O. Pironneau, Numerical Study of a Monolithic Fluid-Structure Formulation In Variational Analysis and Aerospace Engineering Number 116 in Springer Optimization and Its Applications, pp.401-420, 2016.

F. Hecht and O. Pironneau, An energy stable monolithic Eulerian fluid-structure finite element method, International Journal for Numerical Methods in Fluids, vol.116, issue.C, 2017.
DOI : 10.1016/S0045-7825(94)80025-1

O. Pironneau, An energy preserving monolithic eulerian fluid-structure numerical scheme

A. Hessenthaler, N. R. Gaddum, O. Holub, R. Sinkus, O. Röhrle et al., Experiment for validation of fluid-structure interaction models and algorithms, International Journal for Numerical Methods in Biomedical Engineering, vol.25, 2016.
DOI : 10.1002/nbm.1706

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numerische Mathematik, vol.March, issue.3, pp.309-332, 1982.
DOI : 10.1007/BF01396435

M. Boulakia, Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid, Comptes Rendus Mathematique, vol.336, issue.12, pp.985-990, 2003.
DOI : 10.1016/S1631-073X(03)00235-8

D. Coutand and S. Shkoller, Motion of an Elastic Solid inside an Incompressible Viscous Fluid, Archive for Rational Mechanics and Analysis, vol.52, issue.1, pp.25-102, 2005.
DOI : 10.1016/S0764-4442(98)85025-8

J. P. Raymond and M. Vanninathan, A fluid???structure model coupling the Navier???Stokes equations and the Lam?? system, Journal de Math??matiques Pures et Appliqu??es, vol.102, issue.3, pp.546-596
DOI : 10.1016/j.matpur.2013.12.004

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.251-266
DOI : 10.1515/jnum-2012-0013

URL : https://hal.archives-ouvertes.fr/hal-01476313

M. L. Larma and V. Paris, Coupling Schemes and Unfitted Mesh Methods for Fluid-Structure Interaction This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http, Licensee MDPI, 2016.