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(In honor of the scientific heritage of Jacques-Louis Lions)

Abstract There is a need for very fast option pricers when the financial objects are mod-
eled by complex systems of stochastic differential equations. Here the authors investigate
option pricers based on mixed Monte-Carlo partial differential solvers for stochastic volatil-
ity models such as Heston’s. It is found that orders of magnitude in speed are gained on
full Monte-Carlo algorithms by solving all equations but one by a Monte-Carlo method,
and pricing the underlying asset by a partial differential equation with random coefficients,
derived by Itô calculus. This strategy is investigated for vanilla options, barrier options
and American options with stochastic volatilities and jumps optionally.

Keywords Monte-Carlo, Partial differential equations, Heston model, Financial
mathematics, Option pricing
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1 Introduction

Since the pioneering work has been achieved by Phelim Boyle [6], Monte-Carlo (or MC for
short) methods introduced and shaped financial mathematics as barely any other method can
compare. They are often appreciated for their flexibility and applicability in high dimensions,
although they bear as well a number of drawbacks: error terms are probabilistic and a high level
of accuracy can be computationally burdensome to achieve. In low dimensions, deterministic
methods as quadrature and quadrature based methods are strong competitors. They allow
deterministic error estimations and give precise results.

We propose several methods for pricing basket options in a Black-Scholes framework. The
methods are based on a combination of Monte-Carlo, quadrature and partial differential equa-
tions (or PDE for short) methods. The key idea was studied by two of the authors a few years
ago in [14], and it tries to uncouple the underlying system of stochastic differential equations
(or SDE for short), and then applies the last-mentioned methods appropriately.

In Section 2, we begin with a numerical assessment on the use of Monte-Carlo methods
to generate boundary conditions for stochastic volatility models, but this is a side remark
independent of what follows.
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The way of mixing MC and PDE for stochastic volatility models is formulated in Section
3. A numerical evaluation of the method is made by using closed form solutions to the PDE.
In Sections 6 and 4, the method is extended to the case of American options and to the case
where the underlying asset is modeled with jump-diffusion processes.

In Section 5, a method reducing the number of samples is given based on the smooth
dependence of the option price on the volatility.

Finally, in Section 7, the strategy is extended to multidimensional problems like basket
options, and numerical results are also given.

2 Monte-Carlo Algorithm to Generate Boundary Conditions for the
PDE

The diffusion process that we have chosen for our examples is the Heston stochastic volatility
model (see [12]). Under a risk neutral probability, the risky asset St and the volatility σt follow
the diffusion process

dSt = St(rdt + σtdW 1
t ), (2.1)

dvt = k(θ − vt)dt + δ
√

vtdW 2
t , (2.2)

and the put option price is given by

Pt = e−r(T−t)
E[(K − ST )+|St, vt], (2.3)

where vt = σ2
t , E(dW 1

t · dW 2
t ) = ρdt, E( · ) is the expectation with respect to the risk neutral

measure, and r is the interest rate on a risk less commodity.

The pair (W 1, W 2) is a two-dimensional correlated Brownian motion, with the correlation
between the two components being equal to ρ. As it is usually observed in equity option
markets, options with low strikes have an implied volatility higher than that of options at the
money or with high strikes, and it is known as the smile. This phenomenon can be reproduced
in the model by choosing a negative value of ρ.

The time is discretized into N steps of length δt. Denoting by T the maturity of the option,
we have T = Nδt. Full Monte-Carlo simulation (see [10]) consists in a time loop starting at
S0, v0 = σ2

0 of

vi+1 = vi + k(θ − vi)δt + σi

√
δtN2

0,1δ with σi =
√

vi, (2.4)

Si+1 = Si(1 + rδt + σi

√
δt(N1

0,1ρ + N2
0,1

√
1 − ρ2)), (2.5)

where N j
0,1 (j = 1, 2) are realizations of two independent normal Gaussian variables. Then set

P0 = e−rT

M

∑
(K − Sm

N )+, where {Sm
N }M

m=1 are M realizations of SN .

The method is slow, and at least 300000 samples are necessary for a precision of 0.1%.
Of course acceleration methods exist (quasi-Monte-Carlo, multi-level Monte-Carlo etc.), but
alternatively, we can use the PDE derived by Itô calculus for u below and set P0 = u(S0, v0, T ).

If the return to volatility is 0 (i.e., zero risk premium on the volatility (see [1])), then
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u(S, y, τ) is given by

∂τu − yS2

2
∂SSu − ρλSy∂Syu − λ2y

2
∂yyu − rS∂Su − k(θ − y)∂yu + ru = 0,

u(S, y, 0) = (K − S)+.

(2.6)

Now instead of integrating (2.6) on R
+ × R

+ × (0, T ), let us integrate it on Ω × (0, T ), Ω ⊂
R

+ × R
+, and add Dirichlet conditions on ∂Ω computed with MC by solving (2.4)–(2.5).

Notice that this domain reduction does not change the numerical complexity of the problem.
Indeed to reach a precision ε with the PDE, one needs at least O(ε−3) operations to compute
the option at all points of a grid of size ε with a time step of size ε. Monte-Carlo needs O(ε−2)
per point S0, v0, and there are O(ε−1) points on the artificial boundary, when the number of
discretization points in the full domain is O(ε−2). However, the computation shown in Figure
1 validates the methodology, and it may be attractive to use it to obtain more precision on a
small domain.

(a) The computational domain is (0, ymax)×(0, vmax) with Neumann condition at v = vmax.

(b) The computational domain is the half circle shown on (a); the Dirichlet boundary

condition on the circle is obtained by a spline approximation (shown at the bottom) of the

solution to Heston’s model solved by MC on a few points on the circle.
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(c) Computation result.

Figure 1 Put option with Heston’s model computed by solving the PDE by implicit Euler

+ FEM using the public domain package freefem++ (see [11]).

3 Monte-Carlo Mixed with a 1-Dimensional PDE

Let us rewrite (2.1) as

dSt = St[r dt + σt

√
1 − ρ2dW̃

(1)
t + σtρdW̃

(2)
t ], (3.1)

where W̃ 1
t , W̃ 2

t are now independent Brownian motions.
Drawing a trajectory of vt by (2.4), with the same δt and the same discrete trajectory

W
(2)
i+1 = W

(2)
i + N2

0,1

√
δt, we consider

dSt = St[μt dt + σt

√
1 − ρ2dW̃

(1)
t ], (3.2)

μt = r + ρσt

W
(2)
i+1 − W

(2)
i

δt
− 1

2
ρ2σ2

t , t ∈ [ti, ti+1[. (3.3)

Proposition 3.1 As δt → 0, St given by (2.4) and (3.2)–(3.3) converges to the solution to
Heston’s model (2.1)–(2.2). Moreover, the put P = e−rT

E(K − ST )+ is also the expected value
of u(S0, 0), with u given by

∂tu +
1
2
(1 − ρ2)σ2

t S2∂SSu + Sμt∂Su − ru = 0, u(S, T ) = (K − S)+ (3.4)

with σt given by (2.4) and μt given by (3.3).

Proof By Itô’s formula, we have

d log(St) =
dSt

St
+

1
2
(log S)′′(S2

t σ2
t (1 − ρ2)dt) =

dSt

St
− σ2

t

2
(1 − ρ2)dt

= μtdt +
√

1 − ρ2σtdW̃
(1)
t − (1 − ρ2)

σ2
t

2
dt
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≈ rδt + ρσtδW
(2)
t − ρ2σ2

t

2
δt +

√
1 − ρ2σtδW̃

(1)
t − (1 − ρ2)

σ2
t

2
δt

≈ rdt + ρσtdW
(2)
t +

√
1 − ρ2σtdW̃

(1)
t − σ2

t

2
dt. (3.5)

Consequently,

St = S0 exp
( ∫ t

0

μtdt +
∫ t

0

√
1 − ρ2σtdW

(1)
t −

∫ t

0

1
2
(1 − ρ2)σ2

t dt
)
. (3.6)

Proposition 3.2 If we restrict the MC samples to those that give 0 < σm ≤ σt ≤ σM , for
some given σm, σM , then equations (2.4) and (3.3)–(3.4) are well-posed.

Proof Let

Λτ =
∫ T

T−τ

μξdξ, y =
S

K
eΛ(τ). (3.7)

Then u(t, S) = v(T − t, S
K eΛ(τ)), where v is the solution to

∂τv − 1
2
(1 − ρ2)σ2

T−τ y2∂yyv = 0, v(0, y) = (1 − y)+. (3.8)

If 0 < σm ≤ σt ≤ σM almost surely and for all t, then the solution exists in the sense of Barth
et al. [3].

Remark 3.1 Note that (3.6) is also

σ2 =
1 − ρ2

T

∫ T

0

σ2
t dt, m = r − σ2

2
+

ρ

T

∑
i

σti(W
(2)
ti+1

− W
(2)
ti

), (3.9)

ST (x) = S0 exp(mT + σTx). (3.10)

Therefore,

E[u(S0, 0)] = e−rT

∫
R+

(K − S0emT+σTx)+
e−

x2
2T√

2πT
dx. (3.11)

There is a closed form for this integral, namely the Black-Scholes (or BS for short) formula with
the interest rate r, the dividend m + r and the volatility σ.

3.1 Numerical tests

In the simulations, the parameters are S0 = 100, K = 90, r = 0.05, σ0 = 0.6, θ = 0.36,
k = 5, λ = 0.2, T = 0.5. We compared a full MC solution with M samples to the new algorithm
with M ′ samples for μt and σt given by (2.4). The Black-Scholes formula is used as indicated
in Remark 3.1.

To observe the precision with respect to ρ, we have taken a large number of Monte-Carlo
samples, i.e., M = 3 × 105 and M ′ = 104. Similarly, the number of time steps is 300 with 400
mesh points and Smax = 600 (i.e., δS = 1.5).

To study the precision, we let M and M ′ vary. Table 2 shows the results for 5 realizations
of both algorithms and the corresponding mean value for PN and variance.

Note that one needs many more samples for pure MC than those for the mixed strategy
MC+BS. This variance reduction explains why MC+BS is much faster.
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Table 1 Precision versus ρ.

ρ −0.5 0 0.5 0.9
Heston MC 11.135 10.399 9.587 8.960

Heston MC+BS 11.102 10.391 9.718 8.977
Speed-up 42 44 42 42

Table 2 Precision study with respect to M and M ′. Five realizations of pure MC and

MC+PDE for various M ′ and M .

MC+BS: M ′= MC: M=
100 1000 10000 3000 30000 300000

P 1 10.475 11.129 11.100 11.564 11.481 11.169
P 2 10.436 11.377 11.120 11.6978 11.409 11.249
P 3 11.025 11.528 11.113 11.734 11.383 11.143
P 4 11.205 11.002 11.113 11.565 11.482 11.169
P 5 11.527 11.360 11.150 11.085 11.519 11.208

P = 1
5

∑
P i 10.934 11.279 11.119 11.529 11.454 11.187√

1
5

∑
(P i − P )2 0.422 0.188 0.0168 0.232 0.0507 0.0370

4 Lévy Processes

Consider Bates model (see [4]), i.e., an asset modeled with stochastic volatility and a jump
process,

dvt = k(θ − vt)dt + ξ
√

vtdW
(2)
t , σt =

√
vt, (4.1)

dXt =
(
r − σ2

t

2

)
dt + σt(

√
1 − ρ2dW̃

(1)
t + ρdW̃

(2)
t ) + ηdNt, (4.2)

where Xt = lnSt and Nt is a Poisson process. As before, this is

dXt = μ̃tdt + σt

√
1 − ρ2 dW̃

(1)
t + ηdNt, (4.3)

μ̃t = r − σ2
t

2
+ ρσt

δW (2)

δt
. (4.4)

By Itô, a put on St with u(T ) = (K − ex)+ satisfies

∂tu − ru +
1
2
(1 − ρ2)σ2

t ∂xxu + μ̃t∂xu

= −
∫

R

[(u(x + z) − u(x))J(z) − ∂xu(x)(ez − 1)J(z)]dz. (4.5)

Let us apply a change of variables τ = T − t, y = x−∫ T

T−τ
μtdt with μt = μ̃t−

∫
R
(ez −1)J(z)dz,

and use

v(y, τ) = e(r+
∫

R
J(z)dz)τu

(
y +

∫ T

T−τ

μtdt, T − τ
)
. (4.6)

Proposition 4.1

∂τv − 1
2
(1 − ρ2)σ2

T−τ∂yyv −
∫

R

v(y + z)J(z)dz = 0, v(y, 0) = (K − ey)+. (4.7)
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Proof Let r = r +
∫

R
J(z)dz. Then

∂τv = erτ
[
−

(
r +

∫
R

J(z)dz
)
u + μT−τ∂xu − ∂tu

]
, ∂yv = erτ∂xu, ∂yyv = erτ∂xxu. (4.8)

Therefore,

e−rτ
[
∂τv − 1

2
(1 − ρ2)σ2

τ∂yyv −
∫

R

v(y + z)J(z)dz
]

=
(
r +

∫
R

J(z)dz
)
u + μt∂xu − ∂tu − (1 − ρ2)

σ2
t

2
∂xxu −

∫
R

u(x + z)J(z)dz,

which is zero by (4.5).

Remark 4.1 Once more, we notice that the PDE depends on time integrals of μ̃t and σt,
and integrals damp the randomness and make the partial integro-differential equation (or PIDE

for short) (4.7) easier to solve. Table 3 displays 9 realizations of
√

1
T

∫ T

0 σ2
t dt for M ′ = 100 and

500.

Table 3 9 realizations of ( 1
T

∫ T

0
σ2

t dt)
1
2 for M ′ = 100 and 500.

M′ T1 T2 T3 T4 T5 T6 T7 T8 T9 mean
100 0.3470 0.3482 0.3496 0.3484 0.3474 0.3548 0.3492 0.3492 0.3502 0.3493± 0.002
500 0.3490 0.3481 0.3488 0.3493 0.3502 0.3501 0.3501 0.3489 0.3488 0.3493± 0.0007

Remark 4.2 Let f τ = 1
τ

∫ T

T−τ
f(t)dt. From (4.6), we see that the option price is recovered

by

u(S, t) = e−(r+
∫

R
J(z)dz)(T−t)v

(
ln S −

(
r − σ2

t |t
2

−
∫

R

(ez − 1)J(z)dz

+ ρ σt
δW (2)

δt

∣∣∣
t

)
(T − t), T − t

)
,

where v is the solution to (4.7). For a European put option, with the standard diffusion-Lévy
process model and the dividend q, the formula is

u(S, t) = e−(r+
∫

R
J(z)dz)(T−t)v

(
ln S −

(
r − q − σ2

2
−

∫
R

(ez − 1)J(z)dz
)
(T − t), T − t

)
,

∂τv − 1
2
σ2∂yyv −

∫
R

v(y + z)J(z)dz = 0, v(y, 0) = (K − ey)+.

(4.9)

It means that any solver for the European put option, with the standard diffusion-Lévy process
model and the dividend q, can be used provided that the following modifications are made:

(1) In the solver, change σ2 into (1 − ρ2)σ2
t |t.

(2) Change q into q + ρ2σ2
t |t − ρ σt

δW (2)

δt |t.

4.1 The numerical solution to the PIDE by the spectral method

Let the Fourier transform operators be

F(u) =
∫

R

e−iωxu(x)dx and F
−1(û) =

1
2π

∫
R

eiωxû(ω)dω. (4.10)
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Applying the operator F to the PIDE (4.7) for a call option gives

∂τ v̂ − Ψv̂ = 0 in R, v̂(ω, 0) = F(ex − K)+, (4.11)

where Ψ is

Ψ(ω) = −(1 − ρ2)
σ2

t

2
ω2 − ϕ(ω), ϕ(ω) =

∫
R

eiωyJ(y)dy. (4.12)

So, with m indicating a realization, the solution is

u
(
x −

∫ T

T−τ

μtdt
)

=
1

M ′
∑
m

e−rT (K − F
−1[{Fv0}(ω)e−ϕ(w)τ−ω2 1−ρ2

2

∫
T
T−τ

σm
t

2dt])+ (4.13)

with μ̃t given by (3.3) and μt = μ̃t +
∫

R
(ez − 1)J(z)dz.

Remark 4.3 The Car-Madan trick in [7] must be used, and v0 must be replaced by
e−ηS(S−K)+, which has a Fourier transform, in the case of a call option. Then in (4.13) F

−1χ̂

must be changed into
Kη

π

∫ ∞

0

�(e−iωSχ̂(ξ + iη))dξ.

Remark 4.4 As an alternative to the fast Fourier transform (or FFT for short) methods,
following Lewis [13], for a call option, when 	ω > 1,

Fv0 = F(ey − K)+ = −eln K(iω+1)

ω2 − iω
. (4.14)

Using such extended calculus in the complex plane, Lewis obtained for the call option,

u(S, T ) = S −
√

KS

π

∫ ∞

0

�
[
eiukφT

(
u − i

2

)] du

u2 + 1
4

(4.15)

with k = ln S
K , where φt is the characteristic function of the process, which, in the case of (4.7)

with Merton Kernel (see [15])

J(x) = λ
e−

(x−μ)2

δ2

√
2πδ2

,

is

φT (u) = exp
(
iuwT − 1

2
u2Σ2T + Tλ(e−

δ2u2
2 +iμu − 1)

)
with Σ2 = 1

T

∫ T

0 σ2
τdτ and w = 1

2Σ2 − λ(e
δ2
2 +μ − 1). The method has been tested with the

following parameters:

T = 1, μ = −0.5, λ = 0.1, δ = 0.4, K = 1, r = 0.03, σ0 = 0.4, θ = 0.4, κ = 2,

ρ = −0.5, ξ = 0.25, M ′ = 10000, δt = 0.001.
(4.16)

Results for a put are reported in Figure 2. The method is not precise out of the money, i.e.,
S > K. The central processing unit (or CPU for short) is 0.8′′ per point on the curve.
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Figure 2 Put calculated with Bates’ model by mixing MC with Lewis’ formula (see (4.15)).

4.2 Numerical results

The method has been tested numerically. The coefficients for the Heston+Merton-Lévy are
T = 1, r = 0, ξ = 0.3, v0 = 0.1, θ = 0.1, k = 2, λ = 0.3, ρ = 0.5. This gives an average volatility
0.27. For the Heston and the pure Black-Scholes for comparison, T = 1, r = 0, σ = 0.3, λ = 5,
m = −0.01, v = 0.01.

The results are shown in Figure 3.

Figure 3 Call calculated by a Heston+Merton-Lévy by mixed MC-Fourier (see the blue

curve), and compared with the solution to the 2-dimensional PIDE Black-Scholes+Lévy

(see the red curve), and a pure Black-Scholes (see the green curve).
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5 Conditional Expectation with Spot and Volatility

If the full surface σ0, S0 → u(σ0, S0, 0) is required, MC+PDE becomes prohibitively expen-
sive, much like MC is too expensive if S0 → u(S0, 0) is required for all S.

However, notice that after some time t1 the stochastic differential equation (or SDE for
short) for σt will generate a large number of sample values σ1. Let us take advantage of this to
compute u(σ1, S1, t1).

5.1 Polynomial fits

Let τ = T − t1 for some fixed t1.
Instead of gathering all u( · , τ) corresponding to the samples σm

τ with the same initial value
σ0 at t = 0, we focus on the time interval (t1, T ), consider that σm

t is a stochastic volatility
initiated by σ

(m)
t1 , then search for the best polynomial fit in terms of σ for u, i.e., a projection

on the basis φk(σ) of R, and solve

min
α

J(α) :=
1
M

∑
m

1
L

∫ L

0

∥∥∥ ∑
k

αk(S)φk(σ(m)
τ ) − u(m)(S, τ)

∥∥∥2

dS.

It leads to solving, for each Si = iδS,( 1
M

∑
m

φk(σ(m)
τ )φl(σ(m)

τ )
)
αi

k =
1
M

∑
m

u(m)(Si, τ)φl(σ(m)
τ ). (5.1)

5.2 Piecewise constant approximation on intervals

We begin with a local basis of polynomials, namely, φk(σ) = 1 if σ∈(σk , σk+1) and φk(σ) = 0
otherwise.

Algorithm 5.1 (1) Choose σm, σM , δσ, σ0.
(2) Initialize an array n[j] = 0, j = 0, · · · , J := σM−σm

δσ .
(3) Compute M realizations {σ(m)

ti
} by MC on the volatility equation.

(4) For each realization, compute u( · , τ) by solving the PDE.
(5) Set j = σ(m)

τ −σm

δσ and n[j]+ = 1, and store u( · , τ) in w( · )[j].
(6) The answer is u(σ; S, τ) = w(S)[j]

n[j] with j = σ−σm

δσ .

5.3 Polynomial projection

Now we choose φk(σ) = σk.

Algorithm 5.2 (1) Choose σm, σM , δσ, σ0.
(2) Set A[ · ][ · ] = 0, b[ · ][ · ] = 0.
(3) Compute M realizations {σ(m)

ti
} by MC on the volatility equation and for each realization.

(i) Compute u( · , τ) by solving the PDE.
(ii) Do A[j][k]+ = 1

M

∑
m

(σ(m)
τ )j+k, j, k = 1, · · · , K.

(iii) Do b[i][k]+ = 1
M u(iδS, τ)(σ(m)

τ )k, k = 1, · · · , K.
(4) The answer is found by solving (5.1) for each i = 1, · · · , N .
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5.4 The numerical test

A Vanilla put with the same characteristics as in subsection 3.1 has been computed by
Algorithm 5.2 for a maturity of 3 years. The surface St1 , σt1 → u is shown after t1 = 1.5 years
in Figure 4. The implied volatility is also shown.

(a) Local volatility of a vanilla put with 3 years maturity after 1.5 years, computed with a

Heston model by the mixed MC-PDE algorithm with polynomial projection.

(b) Comparison on the price of the put computed with full MC Heston.

Figure 4 Both surfaces (a) and (b) are on top of each other, indistinguishable.

6 American and Bermudan Options

For American options, we must proceed step by step backward in time as in the dynamic
programming for binary trees (see [2]).
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Consider M ′ realizations [{σm
t }t∈(0,T )]M

′
m=1, giving [{μm

t }t∈(0,T )]M
′

m=1 by (3.3). At time tn =
T , the price of the contract is (K − S)+. At time tn−1 = T − δt, it is given by the maximum
of the European contract, knowing S and σ at tn−1 and (K − S)+, i.e.,

un−1(S) = max
{ 1
|Mσ|

∑
m∈Mσ

um
n−1(S), (K − S)+

}
, (6.1)

where um
n−1 is the solution at tn−1 to

∂tu + (1 − ρ2)
(Sσm

t )2

2
∂SSu + Sμm

t ∂Su − ru = 0, t ∈ (tn−1, tn),

un := u(S, tn),
(6.2)

where un is known, and Mσ is the set of trajectories which give a volatility equal to σ at time
t.

Here we have used the piecewise constant approximation intervals to compute the European
premium. Alternatively, one could use any projection method, and the backward algorithm
follows the same lines.

As with American options with binary trees, convergence with optimal order will hold only
if δt is small enough. Mσ is built as in the previous section.

To prove the concept, we computed a Bermudan contract at 1
2T by the above method, using

the polynomial basis for the projection. The parameters are the same as above except K = 100.
The results are displayed in Figure 5. To obtain the price of the option at time zero, the surface
of Figure 5, i.e., (6.1), must be used as time-boundary conditions for the MC-PDE mixed solver
for t ∈ (0, 1

2T ), while for Americans, this strategy is applied at every time step, but here it is
done once only at 1

2T .

Figure 5 A Bermuda option at 1
2
T with Heston’s model compared with (K − S)+.
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7 Systems of Dimension Greater than 2

Stochastic volatility models with several SDEs for the volatilities are now in use. However,
in order to assess the mixed MC-PDE method, we need to work on a systems for which an exact
or precise solution is easily available. Therefore, we will investigate basket options instead.

7.1 Problem formulation

We consider an option P on three assets whose dynamics are determined by the following
system of stochastic differential equations:

dSi,t = Si,t(rdt + dWi,t), t > 0, i = 1, 2, 3 (7.1)

with initial conditions Si,t=0 = Si,0, Si,0 ∈ R
+. The parameter r (r ∈ R≥0) is constant, and

Wi :=
3∑

j=1

aijBj are linear combinations of standard Brownian motions Bj , such that

Cov[Wi,t, Wj,t] = ρijσiσjt, t > 0.

We further assume that Ξ := (ρijσiσj)3i,j=1 is symmetric positive definite with

ρij = 1 (i = j) or ρij ∈ (−1, 1) otherwise.

The coefficients aij (aij ∈ R) have to be chosen, such that

Cov[Wi,t, Wj,t] = E[Wi,tWj,t]

= E[(ai1B1,t + ai2B2,t + ai3B3,t)(aj1B1,t + aj2B2,t + aj3B3,t)]

= ai1aj1E[B2
1,t] + ai2aj2E[B2

2,t] + ai3aj3E[B2
3,t]

= (ai1aj1 + ai2aj2 + ai3aj3)t, t > 0,

or equivalently,

AAT = Ξ,

where A := (aij)3i,j=1. Without loss of generality, we may set the strict upper triangular
components of A to zero and find

A =

⎛⎜⎜⎜⎜⎜⎝
σ1 0 0

σ2ρ21 σ2

√
1 − ρ2

12 0

σ3ρ31 σ3
ρ32 − ρ21ρ31√

1 − ρ2
12

σ3

√
1 − ρ2

31 −
(ρ32 − ρ21ρ31√

1 − ρ2
12

)2

⎞⎟⎟⎟⎟⎟⎠ .

The option P has the maturity T (T ∈ R
+), the strike K (K ∈ R

+) and the payoff function
ϕ : R

+3 → R,

ϕ(x) =
(
K −

3∑
i=1

xi

)+

, x = (x1, x2, x3)T ∈ R
+3

.
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The Black-Scholes price of P at time 0 is

P0 = e−rT E∗
[(

K −
3∑

i=1

Si,T

)+]
, (7.2)

where E∗ denotes the expectation with respect to the risk-neutral measure.

7.2 The uncoupled system

In order to combine different types of methods (Monte-Carlo, quadrature and/or PDE
methods), we will uncouple the SDE in (7.1), we start with a change of variable to logarithmic
prices. Let si,t := log(Si,t), i = 1, 2, 3, and then Itô’s lemma shows that

dsi,t = ridt + dWi,t, t > 0 (7.3)

with initial conditions si,t=0 = si,0 := log(Si,0). The parameters ri (i = 1, 2, 3) have been
defined as ri = r − a2

i1
2 − a2

i2
2 − a2

i3
2 = r − σ2

i

2 . In the rest of the section, the time index of any
object is omitted to simplify the notation.

We note that (7.3) can be written as⎛⎜⎜⎝
ds1 − r1dt

ds2 − r2dt

ds3 − r3dt

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a11 0 0

a21 a22 0

a31 a32 a33

⎞⎟⎟⎠
⎛⎜⎜⎝

dB1

dB2

dB3

⎞⎟⎟⎠ .

Then, uncoupling reduces to Gaussian elimination. Using the Frobenius matrices

F1 :=

⎛⎜⎜⎜⎝
1 0 0

−a21

a11
1 0

−a31

a11
0 1

⎞⎟⎟⎟⎠ , F2 :=

⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 −a32

a22
1

⎞⎟⎟⎟⎠ ,

we write

F2F1(ds + rdt) = Diag(a11, a22, a33)dB,

where s = (s1, s2, s3)T, r = (r1, r2, r3)T and B = (B1, B2, B3)T. We set L−1 := F2F1, and
define

s̃ := L−1s and S̃ := eL−1s.

Remark 7.1 (i) The processes s̃1, s̃2 and s̃3 are independent of each other, and are
analogous with S̃1, S̃2 and S̃3, respectively.

(ii) Let r̃ := L−1r. Then

ds̃ = r̃dt + Diag(a11, a22, a33)dB.

(iii) The coupled system expressed in terms of the uncoupled system is s = Ls̃.
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(iv) In the next section, we will make use of the triangular structure of L = (Lij)3i,j=1 and
L−1 = ((L−1)ij)3i,j=1,

L =

⎛⎜⎜⎜⎝
1 0 0

a21

a11
1 0

a31

a11

a32

a22
1

⎞⎟⎟⎟⎠ and L−1 =

⎛⎜⎜⎜⎝
1 0 0

−a21

a11
1 0

a21a32

a11a22
− a31

a11

a32

a22
1

⎞⎟⎟⎟⎠ .

(v) The notation has been symbolic and the derivation heuristic.

7.3 Mixed methods

We describe nine combinations of Monte-Carlo, quadrature (or QUAD for short) and/or
PDE methods.

Convention If Z is a stochastic process, we denote by Zm a realization of the process.
Let M ′ stand for a fixed number of Monte-Carlo samples.

Basic methods
(i) MC3 method
Simulate M ′ trajectories of (S1, S2, S3). An approximation of the option price P0 is

P a
0 := e−rT 1

M ′

M ′∑
m=1

ϕ(Sm
1,T , Sm

2,T , Sm
3,T ).

(ii) QUAD3 method
In order to use a quadrature formula, we replace the risk neutral measure in

P0 = e−rT E∗[(K − e(Ls̃T )1 − e(Ls̃T )2 − e(Ls̃T )3)+]

by the Lebesgue-measure. Note

s̃i,t ∼ N(μi,t, a
2
iit), 1 ≤ i ≤ 3,

where μi,t = s̃i,0 + r̃it. Let fi,t be the density of s̃i,t, i.e.,

fi,t(xi) =
1√

2πaii

√
t
e−

1
2 (

xi−μi,t

aii
√

t
)2

, xi ∈ R, 1 ≤ i ≤ 3.

Due to the independence of s̃1,t, s̃2,t and s̃3,t, the density of

(K − e(Ls̃T )1 − e(Ls̃T )2 − e(Ls̃T )3)+

is

(x1, x2, x3) �→ f1,T (x1)f2,T (x2)f3,T (x3), (x1, x2, x3) ∈ R
3.

The formula for the option price becomes

P0 = e−rT

∫
R3

(K − e(Lx)1 − e(Lx)2 − e(Lx)3)+f1,T (x1)f2,T (x2)f3,T (x3)dx.
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Now, a quadrature formula can be used to compute the integral.
The methods, which are based on a combination of quadrature and some other methods, will

be presented for the case, where the trapezoidal rule is used. Next we show how the trapezoidal
rule can be used to compute the integral. This allows us to introduce the notation for the
description of methods, which are combinations of quadrature and some other methods.

To compute the integral, we truncate the domain of integration to κ standard deviations
around the means μ1,T , μ2,T and μ3,T . Let

xi,0 = μi,T − κa2
ii,

xi,n = xi,0 + nδxi, n = 1, · · · , NQ,

1 ≤ i ≤ 3, where δxi = 2κ
NQ

, NQ.
The option price P0 is then approximated by

P a
0 := e−rT

N∑
n1,n2,n3=1

( 3∏
i=1

χniδxifi,T (xi,ni )
)
(K − e(Lxn)1 − e(Lxn)2 − e(Lxn)3)+,

where xn := (x1,n1 , x2,n2 , x3,n3)T and

χn =

{
0.5, if n = 0 or n = NQ,

1, otherwise.

(iii) MC2-PDE1 method (combination of two methods)
Note

P0 = e−rT E∗[(K − S1,T − S2,T − S
−2(L−1)31
1,T S

−(L−1)32
2,T S̃3,T )+]

= e−rT E∗[(K − ˜̃
S3,T )+],

where

K := K − S1,T − S2,T ,

and ˜̃
S3 is the solution to the stochastic initial value problem

d˜̃
S3,t = ˜̃

S3,t(˜̃r3dt + a33dB3,t),˜̃
S3,t=0 = αS̃3,0

with parameters ˜̃r3 := r̃3 + a2
33
2 and α = S

−2(L−1)31
1,T S

−(L−1)32
2,T .

The method is then as follows. Simulate M ′ realizations of (S1, S2) and set K
m

= K −
Sm

1,T − Sm
2,T and αm = Sm

1,T
−2(L−1)31Sm

2,T
−(L−1)32 . Compute an approximation of P0 by

P a
0 :=

1
M ′

M ′∑
m=1

u(x3, t; K
m

)|x3=αmS̃3,0,t=T ,
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where u is the solution to the initial value problem for the one-dimensional Black-Scholes PDE
with the parametrized (β) initial condition

∂u

∂t
− (a33x3)2

2
∂2u

∂x2
3

− ˜̃r3x3
∂u

∂x3
+ ˜̃r3u = 0 in Ω × (0, T ), (7.4a)

u(t = 0) = u0 in Ω, (7.4b)

where Ω = R
+ and

u0(x3; β) := (β − x3)+, x3 > 0.

(iv) QUAD2-PDE1 method
Note

P0 = e−rT

∫
R2

E∗[(K − eL11x1 − eL21x1+L22x2

− eL31x1+L32x2eL33s̃3,T )+]f1,T (x1)f2,T (x2)dx1dx2.

The option price P0 is approximated by

P a
0 :=

NQ∑
n1,n2=1

( 2∏
i=1

χniδxifi,T (xi,ni )
)
u(x3, t; Kn1n2)|x3=αn1n2 S̃3,0,t=T ,

where

Kn1n2 : = K − eL11x1,n1 − eL21x1,n1+L22x2,n2 ,

αn1n2 : = eL31x1,n1+L32x2,n2 ,

and u denotes the solution to (7.4).
(v) MC1-PDE2 method
Note

P0 = e−rT E∗[(K − S1,T − S2,T − S
−2(L−1)31
1,T S

−(L−1)32
2,T S̃3,T )+].

Simulate M ′ realizations of S̃3. The option price P0 is then approximated by

P a
0 :=

1
M ′

M ′∑
m=1

u(x1, x2, t; S̃m
3,T )|x1=S1,0,x2=S2,0,t=T ,

where u denotes the solution to the initial value problem for the 2-dimensional Black-Scholes
PDE with the parameterized (β) initial condition

u0(x1, x2, 0; β) = (K − x1 − x2 − x
−2(L−1)31
1 x

−(L−1)32
2 β)+, x1, x2 > 0.

The problem is

∂u

∂t
−

2∑
i,j=1

xixj�ij
∂u

∂xi

∂u

∂xj
− r

2∑
i=1

xi
∂u

∂xi
+ ru = 0 in Ω × (0, T ), (7.5a)

u(t = 0) = u0 in Ω, (7.5b)
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where Ω = R
+ × R

+ and

� = (�ij)i,j=1,··· ,3 =
1
2

(
a2
11 a11a21

a11a21 a2
21 + a2

22

)
. (7.6)

(vi) QUAD1-PDE2 method
Note

P0 = e−rT

∫
R

E∗[(K − S1,T − S2,T − S
−2(L−1)31
1,T S

−(L−1)32
2,T ex3)+]f3,T (x3)dx3.

With the notation above, another approximation of the option price P0 is

P a
0 : =

NQ∑
n=1

δx3f3,T (x3,n)e−rT E∗[(K − S1,T − S2,T − S
2(L−1)31
1,T S

−(L−1)32
2,T ex3,n)+]

=
NQ∑
n=1

δx3f3,T (x3,n)u(x1, x2, t; x3,n)|x1=S1,0,x2=S2,0,t=T ,

where u is the solution to the initial value problem (7.5).
(vii) MC1-QUAD2 method
Reformulating (7.2), we deduce

P0 = e−rT E∗
∫

R2
(K − e(Lx)1 − e(Lx)2 − eL31x1+L32x2+s̃3,T )+f1,T (x1)f2,T (x2)dx1dx2,

and obtain the following method.
Compute M ′ realizations of s̃3,T , and approximate P0 by

P a
0 : = e−rT 1

M ′

NQ∑
n1,n2=1

M ′∑
m=1

( 2∏
i=1

χniδxifi,T (xi,ni)
)

· (K − ex1,n1 − eL21x1,n1+x2,n2 − eL31x1,n1+L32x2,n2+s̃m
3,T )+.

(viii) MC2-QUAD1 method
Note

P0 = e−rT

∫
R

E∗[(K − S1,T − S2,T − S
−2(L−1)31
1,T S

−(L−1)32
2,T ex3)+]f3,T (x3)dx3.

The method is as follows. Simulate M ′ realizations of (S1, S2), and compute

P a
0 : = e−rT 1

M ′

M ′∑
m=1

NQ∑
n=1

χnδx3f3,T (x3,n)(K − Sm
1,T − Sm

2,T

− Sm
1,T

−2(L−1)31Sm
2,T

−(L−1)32ex3,n)+.

(ix) MC1-QUAD1-PDE1 method (combination of three methods)
Note

P0 =
∫

R

f2,T (x2)e−rT E∗[(K − es̃1,T − eL21s̃1,T +x2

− e(−2(L−1)31−(L−1)32L21)s̃1,T −(L−1)32x2 S̃3,T )+]dx2.
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Then an approximation to P0 is

P a
0 :=

1
M ′

M ′∑
m=1

NQ∑
n=1

χ2δx2f2,T (x2,n)u(x3, t; K
m

n )|x3=αm
n S̃3,0,t=T ,

where

K
m

n : = K − es̃m
1,T − eL21s̃m

1,T +x2,n2 ,

αm
n : = e(−2(L−1)31−(L−1)32L21)s̃

m
1,T −(L−1)32x2,n ,

and u denotes the solution to (7.4).

7.4 Numerical results

This section provides a documentation of numerical results. We have considered European
put options on baskets of three and five assets, and used mixed methods to compute their
prices. If the method is stochastic, i.e., if a part of it is Monte-Carlo simulation, then we
have run the method with different seed values several times (NS) and computed mean (m)
and standard deviation (s) of the price estimates. If the method is deterministic, we have
chosen the discretization parameters, such that the first three digits of P a

0 remained fix, while
the discretization parameters have been further refined. Instead of solving the 1-dimensional
Black-Scholes PDE, we have used the Black-Scholes formula.

(i) European put on three assets
The problem is to compute the price of a European put option on a basket of three assets

in the framework outlined in Subsection 7.1.
We have chosen the parameters as follows: K = 150, T = 1, r = 0.05, S0 = (55, 50, 45),

ρ =

⎛⎜⎜⎝
1 −0.1 −0.2

−0.1 1 −0.3

−0.2 −0.3 1

⎞⎟⎟⎠ , σ =
(
0.3 0.2 0.25

)T
.

We have used various (mixed) methods to compute approximations to P0 (see (7.2)).
We have used freefem++, and the rest is programmed in C++. The implementation in

freefem++ requires a localization and the weak formulation of the Black-Scholes PDE. The
triangulation of the computational domain and the discretization of the Black-Scholes PDE by
conforming P1 finite elements are done by freefem++.

A reference result for P0 has been computed by using the Monte-Carlo method with 107

samples.
The numerical results are displayed in Table 4. One can see that the computational load

for the PDE2 methods (i.e., MC1-PDE2, QUAD1-PDE2) is much larger than that for the
other methods. Furthermore, the results seem to be less precise than those in the other cases.
The results have been obtained very fast if just quadrature (i.e., QUAD3) or quadrature in
combination with the Black-Scholes formula (i.e., QUAD2-PDE1) was used. In these cases,
the results seem to be very precise although the discretization has been coarse (NQ = 12).



274 T. Lipp, G. Loeper and O. Pironneau

Table 4 Pricing a European put option on a basket of three assets, i.e., estimates of the

option price at time 0. Columns 1–3: the method used to approximate P0. Columns

4–6: the discretization parameters. M ′ is the number of Monte-Carlo samples, NQ is the

number of quadrature points, NS is the number of samples used to compute the mean (m)

and the standard deviation (s). Column 9: the computing time.

MC PDE QUAD M ′ NQ NS m s CPU
3 - - 107 - 10 3.988 0.002 22.46
3 - - 25000 - 100 3.994 0.046 0.147
2 1 - 25000 - 100 3.989 0.029 0.162
1 2 - 100 2601 10 3.886 0.195 372.5
- - 3 - - - 3.984 - 0.005
- 1 2 - - - 3.987 - 0.005
- 2 1 - 2601 - 4.016 - 42.24
1 - 2 25000 - 100 3.991 0.022 2.723
2 - 1 25000 - 100 3.987 0.032 0.369
1 1 1 25000 - 100 3.990 0.023 0.514

Comparison of the results obtained by the MC3 method with the results obtained by the MC2-
PDE1 method shows that the last mentioned seems to be superior. The computing time is
about equal, but the standard deviation for MC2-PDE1 is much less than that for MC3.

(ii) European put on five assets
Let P be a European put option on a basket of five assets, with payoff

ϕ(x) =
(
K −

5∑
i=1

xi

)+

.

The system of stochastic differential equations, which describes the dynamics of the underlying
assets, has the usual form. We have set K = 250, T = 1, r = 0.05,

S0 = (40, 45, 50, 55, 60)T,

σ = (0.3, 0.275, 0.25, 0.225, 0.2)T,

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −0.37 −0.40 −0.44 −0.50

−0.37 1 −0.50 −0.46 −0.05

−0.40 −0.50 1 0.51 0.29

−0.44 −0.46 0.51 1 0.20

−0.50 −0.05 0.29 0.20 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We approximated the price of P at time 0 by various (mixed) methods. The results are
displayed in Table 5. One can see that for all tested methods the (mean) price has been
close (±0.003) to the reference price (1.159). Since NQ = 10 turned out to be enough, the
computational effort has been very low for QUAD5 and QUAD4-PDE1. In the case, the method
is stochastic, and deterministic methods allow to reduce the variance, such as in MC4-QUAD1
and MC4-PDE1-QUAD1.
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Table 5 Pricing a European put option on a basket of five assets, i.e., estimates of the

option price at time 0. Columns 1–3: the method used to approximate P0. Columns

4–6: the discretization parameters. M ′ is the number of Monte-Carlo samples, NQ is the

number of quadrature points, NS is the number of samples used to compute the mean (m)

and the standard deviation (s). Columns 7–9: the numerical results. Column 7: the mean

of P0. Column 8: the standard deviation of P0. Column 9: the computing time.

MC PDE QUAD M ′ NQ NS m s τ
5 - - 107 - 10 1.159 0.001 27.67
5 - - 25000 - 100 1.161 0.019 0.162
4 - 1 25000 - 100 1.156 0.015 0.174
- - 5 - 10 - 1.161 - 0.082
- 1 4 - 10 - 1.159 - 0.036
3 1 1 25000 10 100 1.158 0.013 0.442

8 Conclusion

Mixing Monte-Carlo methods with partial differential equations allows the use of closed
formula on problems which do not have any otherwise. In these cases, the numerical methods
are much faster than full MC or full PDE. The method works also for nonconstant coefficient
models with and without jump processes and also for American contracts, although proofs of
convergence have not been given here.

For multi-dimensional problems, we tested all possibilities of mixing MC and PDE and also
quadrature on semi-analytic formula, and we found that the best is to apply PDE methods to
one equation only.

The speed-up technique by polynomial fit has been discussed also, but we plan to elaborate
on such ideas in the future particularly in the context of reduced basis, such as POD (proper
orthogonal decomposition), ideally suited to the subproblems arising from MC+PDE, because
the same PDE has to be solved many times for different time dependent coefficients.
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