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Abstract The aim of this research is to construct a shape
optimization method based on the convected level set
method, in which the level set function is defined as a trun-
cated smooth function obtained by using a sinus filter based
on a hyperbolic tangent function. The local property of the
hyperbolic tangent function dramatically reduces the gen-
eration of red the error between the specified profile of
the hyperbolic tangent function and the level set function
that is updated using a time evolution equation. In addition,
the small size of the error facilitates the use of convective
reinitialization, whose basic idea is that the reinitialization
is embedded in the time evolution equation, whereas such
treatment is typically conducted in a separate calculation
in conventional level set methods. The convected level set
method can completely avoid the need for additional cal-
culations when performing reinitialization. The validity and
effectiveness of our presented method are tested with a
mean compliance minimization problem and a problem for
the design of a compliant mechanism.
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1 Introduction

The study of optimal shape design under various specified
conditions is an attractive area of research for engineers and
mathematicians. Actually, there are many different kinds of
numerical methods applied to various optimal shape design
problems.

Shape optimization is one of the well-studied structural
optimization methods, and its key idea is to optimize a
performance, defined as the objective function, by mov-
ing structural boundaries (Pironneau 1984; Sokolowski and
Zolesio 1992). Topology optimization has also been an
attractive structural optimization method since Bendsøe and
Kikuchi (1988) first proposed the so-called homogeniza-
tion design method. The basic idea of topology optimiza-
tion is the introduction of an extended design domain and
the replacement of the optimization problem with a mate-
rial distribution problem using the characteristic function.
Topology optimization allows the creation of new bound-
aries in the design domain during the optimization process,
which is not possible with classical shape optimization.
Recent developments in the field of topology optimization
have been categorized in a review paper by Sigmund and
Maute (2013).

The level set method for structural optimization is
another popular approach, since Osher and Sethian (1988)
constructed a fundamental methodology for tracking fronts
and free boundaries. The novel aspect of the use of a level
set method for structural optimization is that the shape
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boundaries can split or merge during the optimization in
an Eulerian coordinate system, whereas such topological
changes are typically inhibited in classical shape optimiza-
tion methods based on a Lagrangian coordinate system.
Additionally, although this approach essentially does not
allow the creation of new boundaries in the design domain
during the optimization process, expanded grayscale areas
can be eliminated. Thus, areas of the design domain in
topology optimization approaches that have intermediate
material density and are therefore generally meaningless
from an engineering standpoint, can be eliminated in level
set-based approaches, because the structural boundaries are
represented as the iso-surface of a scalar function, the
so-called level set function.

For these reasons, level set-based approaches have been
often categorized as topology optimization methods that are
free from grayscales. On the other hand, there is another
way of classifying structural optimization methods, based
on how the design sensitivity is handled, in contrast to the
above classification that focuses on whether or not topo-
logical changes are allowed. In this classification, level
set-based approaches are categorized as shape optimization
methods because the shape sensitivity is used to control the
structural boundaries. As will be described later, since our
methodology is mainly based on previous studies proposed
by Allaire et al. (2004, 2014), who argue that their level
set-based approach is categorized as a shape optimization
method due to the way the shape sensitivity is handled, we
adopt their position in this paper. Seminal research pertain-
ing to the level set method for structural optimization can be
found in (Sethian and Wiegmann 2000; Wang et al. 2003;
Allaire et al. 2004), and the reader is referred to a recent
monograph by Van Dijk et al. (2013) in which a variety
of structural optimization methods based on the level set
method are discussed.

In conventional approaches based on the level set
method, the level set function is evolved using an advection
equation, the so-called Hamilton-Jacobi equation, during
the optimization process. This equation is used to capture
the structural boundary, and the convection velocity is typ-
ically defined using the shape derivative. Many previous
studies have applied structural optimization based on the
level set method to a variety of optimization problems, such
as a stiffness maximization problem for linear and nonlinear
elastic structures (Allaire et al. 2004; Luo and Tong 2008), a
shell structure design problem (Park and Youn 2008), and a
multi-material design problem (Wang and Wang 2004; Luo
et al. 2009). In addition, level set-based approaches have
been applied to other physical problems such as fluid prob-
lems (Amstutz and Andrä 2006; Challis and Guest 2009),
and electromagnetic problems (Khalil et al. 2010; Zhou
et al. 2010).

However, conventional approaches based on the level set
method still have serious drawbacks. One particularly trou-
blesome problem is that since the approach is based on the
concept of shape optimization, the optimal shape is strongly
dependent on the initial design setting. Another major prob-
lem is that since the level set function is typically defined
as a signed distance function whose profile must be main-
tained, the gradient of the level set function must be adjusted
to assume a constant value across the entire design domain,
by incorporating a reinitialization procedure. Thus, an addi-
tional time evolution equation, i.e., the so-called unsteady
Eikonal equation, must be periodically solved to ensure the
stability of the Hamilton-Jacobi equation calculations. This
is because the level set function may become too steep or
too flat if the Hamilton-Jacobi equation is solved alone.

Allaire et al. (2005) proposed a methodology based
on the concept of the bubble method (Eschenauer et al.
1994) incorporating a topological derivative (Sokolowski
and Zochowski 1999) that enables the creation of new
boundaries in the design domain during the optimization
process. The advantage of this approach is that since it
is unnecessary to include holes corresponding to the void
domain in the initial design, the dependency of optimal
shapes with respect to the initial design settings can be
mostly avoided. This approach has been applied to various
optimization problems such as a stress minimization prob-
lem (Allaire and Jouve 2008), and fluid problems (Amstutz
and Andrä 2006; Challis and Guest 2009).

Radical methods that do without reinitialization have
been developed (Wei and Wang 2009; Yamada et al. 2010),
where the regularization term is introduced in the objec-
tive functional to preserve the smoothness of the level set
function, redefined as a piecewise constant function that is
originally based on the concept of the phase field method
(Cahn and Hilliard 1958; Allen and Cahn 1979). In the
approaches dealing with this piecewise constant function,
the implicit boundary expressions based on the level set
function are retained, and neither the Hamilton-Jacobi equa-
tion nor the unsteady Eikonal equation need to be solved
during the optimization process. Although these methods
enable the optimization process to proceed without reini-
tialization, a regularization term, typically defined as the
gradient of the level set function, must be included in the
objective functional. Based on the classical level set-based
approach that deals with a signed distance function, Duan
et al. (2008) and Zhu et al. (2015) proposed methodolo-
gies incorporating a regularization term that maintains the
profile of the level set function as a signed distance func-
tion. However, a significant problem remains in the above
methodologies, that of determining an appropriate value
for the tuning parameter used to control the degree of
regularization.
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On the other hand, Wang and Wang (2006) proposed
a level set-based approach, in which a radial basis func-
tion (RBF) is used to express the structural boundary, and
demonstrated that it is possible to conduct the reinitializa-
tion procedure without the use of an additional term in the
objective functional. In their approach, coefficients of RBFs
correspond to the design variables, while in most level set-
based approaches, local nodal values are used as the design
variables in the discrete formulation. This approach may
lead to a rapid rate of shape change, but requires additional
memory and computations due to the interaction of the basis
functions. As an alternate approach that is able to not only
avoid the reinitialization treatment but also reduce the com-
putational cost, Guo et al. (2014) have recently proposed a
unique methodology, in which the aim of the optimization
problem is to design the layout of ‘morphable’ components
whose boundaries are explicitly represented using the level
set function. Due to the use of only a few design variables,
the computational cost in this approach is small.

In the field of computational fluid dynamics dealing with
two-phase fluid flows, Ville et al. (2011) proposed a new
approach, the so-called convected level set method, in which
the level set function is evolved while maintaining its pro-
file, by incorporating an additional term in the advection
equation, a numerical scheme called convective reinitializa-
tion. Additionally, since only the information in the vicinity
of the interface between the phases in a two-phase fluid flow
is necessary, the signed distance function is replaced by a
local function defined as a truncated smooth function that is
obtained with a sinus filter. This local function is constant
almost everywhere except in the vicinity of the interface,
and corrective measures to maintain its profile are there-
fore less necessary compared with implementations using
the original signed distance function. That is, the attractive
feature of the convected level set method is the introduction
of the filtered level set function, which preserves its profile
as a smooth truncated function without the need for addi-
tional reinitialization calculations. Although the convected
level set method has not yet been applied to a structural
optimization problem, it is obvious that it is a promising
approach for shape optimizations. Furthermore, a regular-
ization term in the objective functional is not needed when
using the convected level set method for shape optimiza-
tions, whereas even in the new approaches mentioned above,
the reinitialization procedure cannot be avoided without
the use of an additional regularization term. Although the
convected level set method requires an additional term in
the advection equation, the degree of reinitialization can
be appropriately adjusted using a coefficient of the addi-
tional term, whose value can be estimated from the time and
space step settings for the discretized advection equation
(Ville et al. 2011).

This paper presents a shape optimization method based
on the convected level set method. The proposed method
extends a methodology (Allaire et al. 2004) in which the
level set function is defined as a signed distance function
and evolved based on the information of a shape deriva-
tive using the Hamilton-Jacobi equation, which requires
a reinitialization procedure. The novel aspect of our pro-
posed method is the introduction of the sinus filter and
convective reinitialization for the truncated smooth level
set function.

The remainder of this paper is organized as follows. In
Section 2, the model problem in this study is briefly dis-
cussed. In Section 3, the conventional level set method is
introduced, and then the details of the convected level set
method are explained, including the definition of the sinus
filer as a hyperbolic tangent function (Coupez et al. 2015).
Section 4 presents the numerical implementation of the pro-
posed method, and we also indicate the utility of a mesh
adaptation technique that increases the computational accu-
racy of the time evolution equation for the hyperbolic tan-
gent level set function. Several numerical examples for the
mean compliance minimization problem and the complaint
mechanism problem are provided to confirm the validity
and utility of the proposed method in Section 5. Finally,
Section 6 concludes this paper and summarizes the obtained
results.

2 Formulation of the optimization problem

We consider a model problem for a linearized elastic struc-
ture. Let Ω ⊂ R

d (d = 2, 3) be filled with a linearly
elastic isotropic material. The boundary of Ω is defined as
a Dirichlet boundary, ΓD , on which the displacement u is
fixed, and a Neumann boundary exists at ΓN where a trac-
tion t̄ is applied. The displacement field in Ω is the solution
of the following boundary value problem,

⎧
⎪⎪⎨

⎪⎪⎩

−∇ · σ (u) = 0 in Ω

u = 0 on ΓD

σ (u) · n = t̄ on ΓN

σ (u) · n = 0 on Γ,

(1)

where Γ = ∂Ω \ (ΓD ∪ ΓN) is the traction-free bound-
ary and n is the outer unit normal to ∂Ω . In addition,
σ = C : ε represents the stress tensor, in which C and
ε = (∇u+(∇u)T)/2 are the elastic tensor and the linearized
strain tensor, respectively. The above boundary value prob-
lem (1) has a unique solution in u ∈ H 1(Ω)d when ΓD is
non empty.
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For shape optimization, we consider the following min-
imization problem with respect to the objective functional
J (Ω):

inf
Ω∈Uad

J (Ω) =
∫

Ω

j (u)dΩ +
∫

ΓN

k(u)dΓ, (2)

where j, k : Rd → R are smooth functions and Uad is a
set of admissible shapes. The specific definitions of J (Ω)

will be discussed in Section 5. Since Ω varies during the
optimization process, we introduce a working domain D,
which is a bounded open set of Rd and contains all admis-
sible shapes of Ω . Thus, the set Uad in this study is defined
as follows:

Uad = {Ω ⊂ D such that |Ω| = V, ΓD ∪ ΓN ⊂ ∂D}, (3)

where V represents the prescribed volume of the material
domain. The schematic diagram of the working domain D

including the material domain Ω with the boundary settings
is shown in Fig. 1.

With the help of Lagrange multipliers or penalty and
regularization coefficients, a constrained optimization prob-
lem is typically replaced with an unconstrained optimization
problem. Introducing a regularization coefficient l for the
prescribed volume constraint, we consider the following
minimization problem,

inf
Ω∈Uad

L(Ω) = J (Ω) + l|Ω|. (4)

The aim of this study is to minimize the objective
functional J by varying the shape of Ω . Thus, we intro-
duce the shape derivative to apply a gradient method for
the minimization problem. Based on the previous study
(Allaire et al. 2004), the shape derivative of J is defined
as the Fréchet derivative using the small displacement θ ∈
W 1,∞(Rd ,Rd), as follows:

J ′(Ω)(θ) =
∫

Γ

vθ · n dΓ, (5)

where v represents a scalar function, given by

v = j (u) + ε(u) : C : ε(ũ), (6)

Fig. 1 Schematic diagram of working domain D including the mate-
rial domain Ω with boundary settings

where ũ ∈ H 1(D)d is the adjoint field that is the solution of
the following adjoint problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∇ · σ (ũ) = −
(

∂j (u)
∂u

)T
in Ω

ũ = 0 on ΓD

σ (ũ) · n = −
(

∂k(u)
∂u

)T
on ΓN

σ (ũ) · n = 0 on Γ.

(7)

In a gradient method for a shape optimization problem, a
descent direction of θ is easily revealed as −vn.

3 Shape representation based on the level set
method

Here, we discuss shape optimization based on the level set
method, in which the boundary of shapeΩ is captured based
on the Eulerian approach using the iso-surface of a scalar
function, the so-called level set function, during the opti-
mization process. The novel aspect of the level set-based
approach is that any part of the shape boundary is allowed to
split or merge during the optimization process, whereas such
topological changes are typically inhibited in classical shape
optimization methods based on the Lagrangian approach.

In this study, we propose a new level set-based shape
optimization method that is interpreted as an extended
approach based on the previous research proposed by
Allaire et al. (2004). To clarify the difference between the
conventional approach and our newly proposed method, we
briefly introduce the conventional approach in which the
level set function is convected using an advection equation,
which requires reinitialization so that the level set function
retains its property as a signed distance function to ensure
its smoothness during the optimization process. We then
discuss our approach, in which a sinus filter is applied to
the signed distance function to obtain a smooth truncation
away from the structural boundaries, and the convected level
set method (Ville et al. 2011) is used to avoid the need to
reinitialize the level set function.

3.1 Standard level set method

The basic idea of the level set method is to represent a
structural boundary, here, Γ , as the iso-surface of level set
function φ : D → R. We define the level set function φ in
D as follows:
⎧
⎨

⎩

φ(x) = −d(x, ∂Ω) if x ∈ Ω

φ(x) = 0 if x ∈ ∂Ω

φ(x) = d(x, ∂Ω) if x ∈ D \ Ω,

(8)

where x is a point in the working domain and d(·, ∂Ω) is
the Euclidean distance function to ∂Ω .
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The elastic problem (1) is extended to the working
domain D using the ersatz material approach. That is, we
introduce an extended elastic tensor C∗ to the elastic prob-
lem, replacing the original elastic tensor C, as follows:

C∗ = H(φ)C with H(φ) =
{
1 if φ(x) � 0
ε∗ if φ(x) > 0,

(9)

where ε∗ > 0 is a small value to avoid the singularity prob-
lem of the rigidity matrix, and we set ε∗ = 1.0 × 10−3. We
note that the Heaviside function H(φ) in our method here
is always equal to extreme values, i.e., H(φ) = 1 or ε∗,
whereas in most previous research dealing with level set-
based shape optimization problems, interpolation treatments
are used, in which the Heaviside function is replaced by a
continuous smoothed function.

Using the pseudo-time t , the boundary ∂Ω is evolved
using the following advection equation:

∂φ

∂t
+ V · ∇φ = 0, (10)

whereV represents the convection velocity that is defined as
V = −vn in the level set-based shape optimization method
(Allaire et al. 2004). Since the unit normal is given by n =
∇φ/|∇φ|, (10) can be reformulated as a Hamilton-Jacobi
equation:

∂φ

∂t
− v|∇φ| = 0. (11)

An interesting feature of using the signed distance func-
tion is that we can ensure that the smoothness of the level
set function is preserved, which is important when solv-
ing the advection equation with numerical schemes such as
the finite element method and the finite difference method.
In fact, since the property of the signed distance function,
i.e., |∇φ| = 1, is not retained by just solving (10) or
(11), smooth solutions are not usually guaranteed during
the optimization process. To avoid this numerical instability,
the level set function must be reinitialized by periodically
solving the following unsteady Eikonal equation:

∂φ

∂τ
+ sign(φ0)(|∇φ| − 1) = 0, (12)

where τ represents the pseudo-time for the reinitialization,
and sign(φ0) represents the signed function with respect to
the initial level set function at τ = 0. Equation (12) provides
as a stationary solution the signed distance to the initial
interface, φ0(x) = 0.

One of the main limitations of a conventional level set
method is that the profile of the level set function must
preserve the property of a signed distance function for
the computation to remain stable, whereas classical shape
optimization and topology optimization methods do not
require additional calculations in the form of a reinitializa-
tion scheme. In practice, with conventional level set-based

approaches, this can lead to a tradeoff between substan-
tial numerical instability or massive computational cost to
achieve an optimal shape.

3.2 Convected level set method

To overcome the above limitation of conventional level
set-based approaches, we construct a shape optimization
method based on the convected level set method proposed
by Ville et al. (2011). This approach was originally applied
to two-phase fluid flow problems for stably capturing inter-
faces, and revealed that sufficient accuracy can be preserved
without using a reinitialization procedure. The basic idea of
the convected level set method is as follows.

Since the only information used for computation in a
level set method is the zero iso-surface of the level set func-
tion, the level set function does not need to be evolved with
the advection equation over the entire domain D. Thus, to
limit treatment to only the vicinity of the structural bound-
ary ∂Ω , we introduce the following sinus filter (Coupez
et al. 2015):

ψ(x) = Etanh

(
φ(x)
E

)

, (13)

where E > 0 represents a parameter for determining the
thickness of the interface. As shown in Fig. 2, the profile of
this filtered level set function is almost piecewise constant
and smoothly truncated as |ψ | = E and |∇ψ | 
 1, when
|φ| > 2E. Due to the definition of the sinus filter in (13),
the hyperbolic tangent function has the following property:

Etanh

(
φ(x)
E

)

→ φ(x) when E → ∞. (14)

Since φ(x) is the signed distance function defined in (8),
our proposed method corresponds to an approach that deals
with the signed distance function as E → ∞.

As a simple method for capturing the structural boundary,
based on the filtered level set function ψ , we can use the
following advection equation:

∂ψ

∂t
− V · ∇ψ = 0. (15)

Similarly, we can also use the Hamilton-Jacobi equation as
follows:
∂ψ

∂t
− v|∇ψ | = 0. (16)

The key idea of using the sinus filter is that the hyper-
bolic tangent function has a self-determinant property, i.e.,
the gradient of ψ satisfies the following equation:

|∇ψ | = 1 −
(

ψ

E

)2

:= G(ψ). (17)

Thus, the unsteady Eikonal equation (12) can be easily
extended as a reinitialization scheme for ψ by using (17),
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Fig. 2 Examples of hyperbolic tangent functions in one- and two-dimensional cases

instead of |∇φ| = 1 that was used for the signed distance
function, as follows:

∂ψ

∂τ
+ sign(ψ0) (|∇ψ | − G(ψ)) = 0, (18)

where ψ0 represents the initial value of ψ at τ = 0. Several
studies investigated the validity and utility of the hyper-
bolic tangent level set function in numerical simulations for
two-phase fluid flow problems, and revealed that the com-
putational cost for the reinitialization can be greatly reduced
and the overall robustness of the numerical approach is
improved (Olsson and Kreiss 2005; Olsson et al. 2007;
Desjardins et al. 2008).

Although the computational cost of reinitialization can
be reduced by using the sinus filter, which truncates unim-
portant areas in the working domain D, we further consider
how to completely avoid the need to use additional cal-
culations for the reinitialization treatment during the opti-
mization process. To do this, we introduce the convected
reinitialization equation proposed by Ville et al. (2011),
replacing the Hamilton-Jacobi equation (16), as follows:

∂ψ

∂t
− V · ∇ψ + λsign(ψ) (|∇ψ | − G(ψ)) = 0, (19)

where λ = ∂τ/∂t is a parameter whose determination strat-
egy will be described in Section 4. Since (19) contains both
the interface motion and the reconstruction of ψ , we need
only solve (19) when updating ψ during the optimization
process. This equation can be rewritten as

∂ψ

∂t
− (V − λsign(ψ)n) · ∇ψ = λsign(ψ)G(ψ). (20)

We note that the reason why we use the normal gradient
term in (19) and (20) is that the standard advection equa-
tion is suitable for computations when using an unstructured
mesh incorporating a mesh adaptation, while the finite dif-
ference method is suitable for solving the Hamilton-Jacobi
equation when using a structured mesh.

4 Numerical implementation

Our proposed algorithm is an iterative method based on the
descent gradient method, and is structured as follows:

Step 1. The initial signed distance function φ(x, 0) is set
in the working domain D, and the initial hyperbolic tan-
gent level set function ψ(x, 0) is then derived using the
sinus filter in (13).

Step 2. The mesh adaptation is applied to ψ to concen-
trate fine meshes in an area near structural boundary
∂Ω , while domains beyond this area are discretized using
coarse meshes.

Step 3. The elastic problem (1) based on the extended
elastic tensor C∗ is solved for u using the finite element
method.

Step 4. If the value of L defined in (4) is sufficiently
converged, an optimal configuration is obtained and the
optimization is finished, otherwise, the adjoint problem
(7) is solved for ũ using the finite element method.

Step 5. The shape derivative in (6) is calculated using the
current u and ũ.

Step 6. The level set function is evolved using the con-
vective reinitialization equation in (20), after which the
optimization procedure returns to the second step of the
iterative loop.

Fig. 3 Design domain and boundary conditions in cantilever problem
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(a)

Fig. 4 Initial and optimal configurations in cantilever problem (black: solid; white: void)

These procedures are iterated until the following criterion
for the value of L is met:
∣
∣
∣
∣
Lt − Lt−Δt

Lt

∣
∣
∣
∣ < εopt, (21)

where subscript t represents the number of iterations car-
ried out during the optimization process and Δt is a single
iteration. We set this criterion so that εopt = 1.0 × 10−4.

Our proposed method employs an anisotropic unstruc-
tured mesh adaptation scheme (Castro-Diaz et al. 1997), in
order to increase the computational accuracy of the time
evolution equation for the hyperbolic tangent level set func-
tion. The basic idea of the mesh adaptation is that fine
meshes are generated based on the gradient information of
the target variable, defined as ψ in this study. As mentioned
previously, since |∇ψ | 
 1 is satisfied almost every-
where in D except in the vicinity of ∂Ω , appropriate fine
meshes can be automatically generated near the structural
boundary. Since ψ is smoothly truncated due to the defi-
nition of the hyperbolic tangent function in (13), the mesh
gradually becomes coarser in the non-gradient domain as
distance increases from the vicinity of ∂Ω . Furthermore, the

thickness of this transition phase between the finest mesh
and the coarsest mesh is uniformly distributed without any
treatment, owing to the property of the hyperbolic tangent
function in (17). We therefore note that the hyperbolic tan-
gent level set function and the mesh adaptation are highly
compatible.

The time evolution equation for ψ in (20) is discretized
as P1 Lagrange finite elements in D, in which the state and
adjoint fields are also discretized using P

1 elements. Since
the convective reinitialization equation is nonlinear, the non-
linear terms in (20) are linearized by evaluating the value of
ψ at the previous time step. We note that (20) need not be
solved exactly, butψ should retain its smoothness and local-
ity as far possible. Since unstructured meshes are used in the
treatment of the linearized convective reinitialization equa-
tion in our method, the linearized equation is solved using
the method of characteristics, which is especially suitable
when using unstructured meshes. Details of the operation
of this method are available elsewhere (Pironneau 1982).
Our method is based on an approach (Strain 1999) that has
applied the method of characteristics to a level set method.
The basic idea of this method and its application to solve

Fig. 5 Distribution of the hyperbolic tangent level set function ψ in working domain D during optimization process in mean compliance
minimization problem
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Fig. 6 History of relative objective functional in the mean compliance
minimization problem. The objective functional value is normalized to
its initial value

(20) are shown in Appendix A. To ensure stable computa-
tion, λ in (20) is chosen so that λ ∼ hmin/Δt , where hmin

and Δt are the minimal element edge size and the time step,
respectively (Ville et al. 2011).

Although the shape derivative in (6) only exists on the
structural boundary ∂Ω , the scalar field v should never-
theless be defined in D or a vicinity of ∂Ω . This is a
necessary requirement for the numerical setting of the level
set method. In addition, since v is typically dependent on
the derivatives of the solution u, e.g., v ∈ L2(Γ ), it is
obvious that the smoothness of v is not guaranteed dur-
ing the optimization process. Since this feature can often
causes numerical instability, it is numerically advantageous
to regularize the scalar field v to provide some degree of
smoothness. One way to extend and regularize the scalar
field v is to solve the variational formulation for vreg ∈
H 1(D), as follows (Allaire et al. 2014):
∫

D

(
vregz + α∇vreg · ∇z

)
dΩ =J ′(Ω)(zn) for ∀z∈H 1(D),

(22)

where α > 0 is a small parameter that determines the reg-
ularization width, and this variation formulation represents
a mapping of the shape derivative to H 1(D) from the orig-
inal space, e.g., L2(Γ ). The parameter α is typically of the
order of the minimal element edge size hmin, and is set to
the value of 10h2min in this study. We note that the regular-
ized scalar field vreg does not lose its property as a shape
derivative when the direction of descent for J is given by
−vn. That is, choosing z = −vreg, we find that

J ′(Ω)(−vregn) = −
∫

D

(
(vreg)2 + α|∇vreg|2

)
dΩ � 0,

(23)

which shows that −vregn guarantees a descent direction for
J .

In this research, all numerical computations were per-
formed using FreeFem++ (Hecht 2012).

5 Numerical examples

Here we provide two numerical examples to confirm the
validity of the proposed method. The normalized Young’s
modulus and Poisson’s ratio were set as 1.0 and 0.3,
respectively.

5.1 Mean compliance minimization problem

Our first example is applied to a stiffness maximization
problem for a two-dimensional cantilever, as illustrated in
Fig. 3. The computational domain D is a 2.0 × 1.0 rectan-
gle with a fixed boundary condition on the left side and a
traction boundary condition on a small area near the center
of the right-hand side. The domain D is discretized using
an unstructured mesh whose minimum and maximum ele-
ment edge sizes are set so that hmin = 0.01 and hmax = 0.1,

Fig. 7 Optimal results for different settings of E: (a) E = h̄min; (b) E = 3h̄min; (c) Signed distance function (corresponding to E → ∞)
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Fig. 8 History of relative objective functional for three cases: E =
hmin; E = 3hmin; Signed distance function (corresponding to E →
∞)

respectively. The time step and the parameter λ were set to
Δt = 0.03 and λ = 0.1, respectively. The regularization
coefficient was set as l = 1.0.

For structural optimization in a stiffness maximization
problem, the objective functional J1(Ω) is typically defined
as the mean compliance, as follows:

J1(Ω) =
∫

ΓN

t̄ · u dΓ. (24)

In this case, it is well-known that the mean compliance min-
imization problem is self-adjoint, i.e., ũ = −u. Thus, we do
not need to solve the adjoint problem (7).

Figure 4 shows the initial and optimal shapes, and the
close similarity to the optimal result obtained by Allaire et
al. (2004) confirms that our method obtains an appropri-
ate result. The distribution of the hyperbolic tangent level
set function ψ together with the mesh in D is shown in
Fig. 5, and we can confirm that the mesh adaptation works
appropriately in the vicinity of the structural boundary. The
convergence history of J1(Ω) is shown in Fig. 6, and the
value of J1(Ω) is monotonically converged by approxi-
mately the 50th step. We emphasize that since our proposed

Fig. 9 History of reinitialization error norm εψ in three cases: E =
h̄min; E = 3h̄min; signed distance function

Fig. 10 Design domain and boundary conditions in bridge problem

method is based on the convected level set method, the
additional reinitialization calculation is completely avoided
during the optimization process.

Next, the effect of parameter E settings on optimal con-
figurations was investigated in a cantilever problem. Here,
we introduced an error norm εψ to evaluate the reinitializa-
tion error of ψ , defined as

εψ = ‖|∇ψ(x)| − G(ψ)‖L2(D) . (25)

For an equal evaluation with respect to the error norm under
the same degrees of freedom, we used a structured mesh
of square elements whose edge size is set to h̄min = 0.02,
without the mesh adaptation and convective reinitialization.
Additionally, the Hamilton-Jacobi equation in (16) was used

Fig. 11 Initial configuration (top) and initial distribution of the hyper-
bolic tangent level set function ψ (bottom)
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Fig. 12 Optimal results in different settings of λ, where (a) λ = 0.0; (b) λ = 0.01; (c) λ = 0.1; (d) λ = 0.4

for evolving the hyperbolic tangent level set function ψ ,
and the unsteady Eikonel equation in (18) was used for the
reinitialization. Based on the previous approach proposed
by (Allaire et al. 2004), the finite difference scheme was
employed for solving (16) and (18), in which the unsteady
Eikonel equation in (18) was iteratively calculated 10 times
during each optimization step.

Figure 7 shows the optimal results for the cantilever
problem for different set values of E: (a) E = h̄min; (b)
E = 3h̄min; and (c) signed distance function (corresponding
toE = ∞). The convergence histories of the objective func-
tional for three different settings of E are shown in Fig. 8,
and we can confirm that these convergence behaviors are
almost identical. Figure 9 shows the history of error norm
εψ during the optimization process for the different settings
of E, corresponding to the optimal shapes in Fig. 7. As
shown in Fig. 9, the reinitialization error becomes larger as
E is set to larger values. This is because setting E to a small
value restricts the reinitialization error, since |∇ψ | 
 1
almost everywhere in D except in the vicinity of ψ = 0.
Due to the relationship between ψ and φ in (14), this behav-
ior of E indicates that the use of hyperbolic tangent function

Fig. 13 History of relative objective functional for four cases: λ =
0.0; λ = 0.01; λ = 0.1; λ = 0.4

reduces the computational cost for the reinitialization, com-
pared with the use of the signed distance function. Thus,
when using the convected level set method, E should be set
as small as possible so that the process of updating ψ will
be stable. According to our numerical tests, E = hmin was
a good choice and provided accurate reinitialization in all
numerical examples that we treated in this paper.

As mentioned in the previous section, λ must be chosen
so that λ ∼ hmin/Δt . To reveal the appropriate value of λ,
we investigated the dependency of the optimal shape with
respect to different settings for λ. Here, we consider the
stiffness maximization problem illustrated in Fig. 10, where
the domain D was discretized using unstructured meshes
whose minimum and maximum element edge sizes were set
so that hmin = 0.01 and hmax = 0.1, respectively, with the
mesh adaptation applied. In this optimization problem, we
used the same initial design, shown in Fig. 11, that is used
in all cases for the optimization problem shown in Fig. 10.

Figure 12 shows the optimal results in which differ-
ent values of λ were set as follows: (a) 0.0; (b) 0.01;
(c) 0.1; and (d) 0.4. We can confirm that the optimal
results shown in Figs. 12b and c are practically identical.

Fig. 14 History of reinitialization norm εψ for four cases: λ = 0.0;
λ = 0.01; λ = 0.1; λ = 0.4
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Fig. 15 Design domain and boundary conditions in design of compli-
ant mechanism

On the other hand, the optimal result shown in Fig. 12a
is the outcome without reinitialization, which means that
only the Hamilton-Jacobi equation in (16) was solved

during the optimization process. In this case, the distribution
of the level set function ψ does not have the property of the
hyperbolic tangent function, and the optimal result is there-
fore affected by the numerical instability that occurs due to
the lack of reinitialization treatment. Although the optimal
result shown in Fig. 12d may be an appropriate result, the
distribution of ψ was unstable. In fact, the optimization cal-
culation diverged when λ � 0.5. The convergence histories
of the objective functional for four different settings of λ

are shown in Fig. 13, and we can confirm that these conver-
gence behaviors are almost identical, except the case where
λ = 0.4.

Figure 14 shows the histories of the error norm εψ for
different settings of λ corresponding to the results shown
in Fig. 12. We note that λ = 0.1 was a good choice not
only for this problem, but also for all the numerical exam-
ples in this paper, as it provided stability in the convective
reinitialization computations.

Fig. 16 Four different Initial and optimal shapes in design of compliant mechanism, showing the deformed shape of each optimal shape
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5.2 Design of compliant mechanism

Our second example is a compliant mechanism design prob-
lem, as illustrated in Fig. 15, where the traction boundary is
set so that traction t̄in is imposed at Γin. The domain D is
discretized using an unstructured mesh whose minimum and
maximum element edge sizes were set so that hmin = 0.005
and hmax = 0.1, respectively. The time step and the parame-
ter λ were set to Δt = 0.005 and λ = 0.1, respectively. The
regularization coefficient was set as l = 1.0.

Based on the seminal work proposed by Sigmund (1997),
the objective functional J2(Ω) for the design of compliant
mechanism is defined as

J2(Ω) = −
∫

Γout

t̄out · u dΓ, (26)

where t̄out is a dummy traction vector representing the direc-
tion of the specified deformation at output boundary Γout.
In this approach, a spring is located at the output bound-
ary Γout, and sufficient stiffness of the material domain Ω

is obtained by maximizing the mutual mean compliance
(Nishiwaki et al. 1998; Nishiwaki et al. 2001). That is,
the specified deformation is maximized under the condition
that a sufficient stiffness is preserved. We note that since
this design problem is not self-adjoint, the adjoint problem
based on (7) must be solved.

We investigated the dependency of the optimal shape
with respect to the initial design. The initial and optimal
shapes are shown in Fig. 16, and we can confirm that
all examples successfully achieved optimal shapes that can
deform in a specified direction. The convergence histories
of the objective functional for four cases in the com-
pliant mechanism design problem are shown in Fig. 17.
The numerical instability often observed when an opti-
mal design has a hinge structure is evident (Fig. 16). In
previous research (Allaire et al. 2004) employing a line
search technique, the time step Δt for solving the Hamilton-
Jacobi equation is adjusted so that Lt � Lt−Δt is satisfied

Fig. 17 History of objective functional for four cases in Fig. 16

during the optimization process. The numerical instability
we encountered can be avoided by using this kind of special
treatment, but this incurs additional calculations to deter-
mine an appropriate value of Δt , and significant slowing
of convergence. For these reasons, and for simplicity, the
optimization was carried out until the 200th step in this
study.

Since the proposed method is based on the concept of
shape optimization, in which the optimal shape is obtained
by moving the structural boundary, the resulting optimal
shape is strongly dependent on the initial design. This char-
acteristic of level set-based shape optimization was also
confirmed in previous research (Allaire et al. 2004). To
overcome this problem, Allaire et al. (2005) proposed a
methodology incorporating the idea of the bubble method
(Eschenauer et al. 1994), which enables local minima to be
avoided and enables feasible optimal results to be obtained
for the most part. We note that although we do not address
the local minima issue in this paper, our proposed method
can be naturally expanded to a method incorporating the
bubble method.

6 Conclusion

This paper proposed a new shape optimization method
based on the convected level set method. The presented
approach was applied to standard elastic problems. We
achieved the following:

(1) The optimization problem for the linearized elas-
tic structure was formulated based on the level set
method in which a sinus filter was applied to map the
original signed distance function to a smooth func-
tion defined as the hyperbolic tangent function. In
addition, convective reinitialization was applied to
the level set function to avoid the the need for a
reinitialization procedure.

(2) An optimization algorithm was constructed based on
the formulation of our proposed method. The analy-
sis domain was discretized based on the finite element
method in which an unstructured mesh was used. A
time evolution equation based on the convected level
set method was solved using the method of char-
acteristics, and a mesh adaptation was utilized to
concentrate fine meshes in the vicinity of the struc-
tural boundary so that the convected reinitialization
equation could be precisely solved.

(3) Numerical examples for two-dimensional elastic
problems were provided to confirm the validity and
utility of the proposed method for the mean com-
pliance minimization problem and a design problem
for a compliant mechanism. The proposed method
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provided optimal results for the mean compliance
minimization problem similar to those obtained in
previous research. By introducing an error norm with
respect to the specified profile of the level set func-
tion, we confirmed that the hyperbolic tangent profile
is stably retained during the optimization process.
Furthermore, optimal results were obtained for the
compliant mechanism design problem and we inves-
tigated the dependency of the optimal shapes with
respect to the initial designs. Based on our results,
we confirmed that the obtained optimal configura-
tions are strongly dependent on the initial design, but
lowering the criteria was achieved for all examples.
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Appendix A: Update scheme for the level set
function based on the method of characteristics

Here, we discuss the basic idea of the method of character-
istics and its application to solve the time evolution equation
in (20).

For this brief explanation, we first deal with the sim-
ple advection equation (15). Consider a vector field X that
satisfies the following ordinary differential equation,

∂X(t)

∂t
= V(X(t), t) (A.1)

The time derivative of the composite function ψ ◦ X(t) =
ψ(X(t), t) is obtained as follows:

dψ(X(t), t)

dt
= ∂ψ(X(t), t)

∂t
+ V · ∇ψ(X(t), t)

= Dψ(X(t), t)

Dt
, (A.2)

where Dψ/Dt represents the material derivative of ψ and
corresponds to the left-hand side of (15). Based on the back-
ward Euler scheme and using a time step Δt , this can be
discretized as
Dψ(X(t), t)

Dt
= ψ(X(t), t) − ψ(X(t − Δt), t − Δt)

Δt
+O(Δt). (A.3)

We now assume that the discrete time is defined as 0 < t1 <

· · · < tn < · · · < tN with tn = nΔt , and consider the
following initial value problem:
⎧
⎨

⎩

∂X(t)

∂t
= V(X(t), t) for t ∈ (tn−1, tn)

X(tn) = x.
(A.4)

Using an approximate solution,Xn(x) := x−V(x, tn)Δt ,
we obtain the following relation:

X(tn−1) − Xn(x) = O(Δt2). (A.5)

Consequently, (A.3) can be reformulated as

Dψ(x, tn)
Dt

= ψ(x, tn) − ψ(Xn(x), tn−1)

Δt
+ O(Δt). (A.6)

Using a test function ψ̃ , the notation ψn := ψ(·, tn), and
the scalar product (·, ·) in L2(D), the material derivative of
ψn can be approximated as follows:
(
Dψn

Dt
, ψ̃

)

≈
(

ψn − ψn−1 ◦ Xn

Δt
, ψ̃

)

, (A.7)

where ψ and ψ̃ are chosen from a finite element space. Due
to the definition of V = vn with n = ∇ψ/|∇ψ |, it should
be noted that we need to assume that V(x, tn) ≈ V(ψn−1),
to avoid the nonlinearity in (A.7).

Equation (A.7) can be only used for solving (15), so it
must be expanded in order to solve (20) in which the convec-
tion velocity is defined as (V−λsign(ψ)n) instead of onlyV
as it is in (15). Considering the source term λsign(ψ)G(ψ),
(20) can be approximated as

(
Dψn

Dt
− λsign(ψn)G(ψn), ψ̃

)

≈
(

ψn − ψn−1 ◦ Xn

Δt
− λsign(ψn−1)G(ψn−1), ψ̃

)

,

(A.8)

where Xn = x − (V(x, tn) − λsign(ψn−1)n)Δt . Note that
the use of sign(ψn−1) and G(ψn−1) in the right-hand side
of (A.8) is necessary to avoid the nonlinearity.
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