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Computational Issues for Optimal Shape Design
in Hemodynamics

Olivier Pironneau *

March 9, 2015

Abstract

A Fluid-Structure Interaction model is studied for aortic flow, based
on Koiter’s shell model for the structure, Navier-Stokes equations for the
fluid and transpiration for the coupling. It accounts for wall deformation
while yet working on a fixed geometry. The model is established first.
Then a numerical approximation is proposed and some tests are given.
The model is also used for optimal design of a stent and possible recovery
of the arterial wall elastic coefficients by inverse methods.

Introduction

Hemodynamics, a special branch of computational fluid dynamics, poses many
problems of modeling, data acquisition, computation and visualization. However
even as of now it is a valuable tool to understand aneurisms, to design stents
and heart valves, etc (see for example [13, 6, 12]).

In this paper we shall focus on algorithms for fluid flows with compliant walls
like aortic flow, their modelisation, numerical simulation and inverse techniques.

Blood in large vessels like the aorta is Newtonian and flows in a laminar
regime with Reynolds number of a few thousands. The Navier-Stokes equation
for incompressible fluid is a good model for it.

A blood vessel on the other hand is a complex structure for which linear
elasticity is only a first crude approximation and for which the Lamé coefficients
do not have a universal value and can vary with individuals.

Nevertheless, like many authors ([11, 9] for instance) we shall use Koiter’s
linear shell theory.

1 Koiter’s Shell Model for Arteries

The following hierarchy of approximations for the displacement d of the aortic
wall will be made:
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e Small displacement linear elasticity instead of large displacement (needed
for the heart).

e No contact inequalities with the surrounding organs.
e Shell model for the mean surface.
e With reference to the mean surface, normal displacement of the walls only.

Let ¥ be the shell surface representing the mean position of the blood vessel.
Let n(x) be the normal at x € 3. Let d(x,t) be the displacement of the wall at
x at time ¢. Normal displacement implies d = nn.

In [9] it is shown that under such conditions, Koiter’s model reduces to the
following equation of 1 on X

pshdun —V - (TVn) = V- (CVOn) + adyn + by = 7, (1)

where p, is the density and h the thickness of the vessel, T is the pre-stress
tensor, C is a damping term, a,b are viscoelastic terms and f*® the external
normal force, i.e. the normal component of the normal stress tensor —o%,,,.
As with all second order wave type equations two conditions must be given at
t = 0, for instance

M=o =Mo,  OeMjt=o = Mp-

Remark 1 When [h,T,C,a] < b, (1) leads to the so-called surface pressure
model
. FEhr
7O'Snn = bT], with b = m, (2)
where A is depends on the geometry of the artery’s cross section and equal to the
cross section surface when it is circular; E is the Young modulus, £ the Poisson
coefficient.

Some typical values are (in the metric system MKSA) for a heart beat of one
pulsation per second:

E=3MPa, £€=03, A=7R? R=0.013, h=0.001, p/ =09.81 105,

leading to b = 3.310"ms~2 and giving displacements in the range of 0.1 10~3m
and flow rates around 2 10~°m?3s~! for aortic flows.

2 Fluid Equations

The Navier-Stokes equations in a moving domain Q(t) define the velocity v and
the pressure p,

0
f(—u—l—u-Vu)—i—Vp—uV-(Vu—i—VuT):0, V-u=0, (3)

P o



where pf is the density of the fluid and p its viscosity.
Continuity on ¥ of fluid and solid velocities implies
_od an

‘= n—, on X.

Yo T "o

With the surface pressure model, continuity of normal stresses implies

Notice that as a consequence of the hypothesis of normal displacements only
of the structure, there is no provision to write the continuity of the tangential
stresses.

For aortic flow there also an inflow and an outflow boundary I'; and I', on
which we will prescribe pressure and no tangential velocity. If S = T'; UT',, then
the boundary T is

[:=0Q)=XUS=xUTl;UT,.

In [10] and many other authors, the matching conditions on ¥ are written on the
boundary of a fixed reference domain 92y because Koiter’s shell model works
with a fixed mean surface 3.

With the notations of [5], assume that the domain of the fluid is Q; = A:(Qo)
with Ay : 29 — x4 := Ay(mp). Let

ur(z,t) = u(A (A7 (2)), 1), Vo € Q. (4)
Then in Q; at t = 7, the Navier-Stokes equations are in ALE format

ou
f T
P ot
V.ou, =0, with ¢, (z) =

+ (U — ¢7) - Vur +Vp — uV - (Vu, + Vul) =0,

DA (A (@)
R )

3 Transpiration Conditions for the Fluid

3.1 Conservation of Energy

We begin with an important remark on the conservation of energy.
The variational formulation of (3)- divided by p® - is, Vi, p

/ [0 (Owu 4u-Vu)+Vp-i4—pV - -u
Q(t)
+2(Vu+ VaT) : (Vi + vaT)) = / f5-a. (6)
2 0

An energy balance is obtained by taking 4 = v and p = —p,

2
5,5/ u—+z/|Vu+VuT|2:/fs~fL7/ pU - N, (7)
an 2 2Ja Q o0



because

&g/ u-w = 6t(u-w)+/ vUu-w,
Q(t) Q(t) a0
u? v
/((uVu)u):/ u~n—:/ —u-u, (8)
0 o9 2 o0 2

when v = u - n, the normal speed of 0f2.

With transpiration conditions we intend to work on a fixed domain with zero
tangential velocity but non zero normal velocity u-n = w. In that case, in order
to preserve energy, (6) on a fixed domain 2 needs to be modify into

/[ﬁ-(@tu+u-Vu)+Vﬁ-d—ﬁV-u
Q

+Z(Vu+ vul) : (Vi + Val)) —/ Yt = / AR S 9)

2 o0 2 Q
or equivalently into
/[ﬁ~(8tu—u><V><u) +Vp-4—pV-u
Q
F5(Vu+ Val) s (Va4 Vi) = [ 2, (10)
Q

where p = p + %\u|2 is the dynamic pressure.

Remark 2 Notice that the difference between p and p is second order with re-
spect to the displacement, so exchange one for the other in the shell model is a
modification well within the small displacement hypothesis. However it makes a
difference on I';, T, and pr should be changed accordingly.

From now on we drop the tilde on p.

Finally we recall an identity (see [4] for instance) which holds whenever uxn = 0
and shows that we can use several forms for the viscous terms,

/[qu-va—!—V-uV-v]:/Vu:Vv
Q Q

= / [%(Vu—FVuT) (Vo + Vo) =V -uV -] (11)
Q

Hence a variational formulation adapted to the problem is to find u with uxn =
0 and, for all p and all & with & x n =0

/[ﬁ~(8tu—u><V><u) —pV -4 —pV-u+vV xu-V X v
Q

—|—/8$2pu-n=/ﬂfs-1l. (12)



3.2 Transpiration
As the wall vessel is {x +nn : = € ¥} and as, by Taylor,
w(z +nn) = u(z) + nVu - n(z) + o(n),

matching the velocities of fluid and structure may be written as

0 0
u—l—na—Z:na—Z—i—o(n)onE, uxn=0. (13)
On a torus of small radius r and large radius R, at a point of coordinates
(R+rcos@)cosp, (R4 cos ) cos g, rsin ), a straightforward calculation shows
that

Oou T u-n
= Sy = =~ = (14 — cos® ) ——.
uxn=0, V.-u=0=n o (+Rcos )7“
So (13) becomes
u~n:6t77(1+ﬂ(l—&-%COSQQ))_l, uxn=0. (14)
r

Similarly the normal component of the normal fluid stress tensor is
r H
of =p+201+ o cos? 9);u -,

Therefore for a quasi toroidal geometry, for large R, (1) is

pshdun— V- (TVn) =V - (CVOm) + adn + bn
=p+2(1+ %0052 9)%@7](1 + 2(1 + %cos2 9))71. (15)

So, in fine, the domain 2 no longer varies with time but on part of its boundary
u-n=0om(l+ T4+ %COS2 9))_1, uxn=0,
r
pshdun —V - (TVn) =V - (CVOn) + adm + by = p, (16)
where a is a non linear function of 7.

Remark 3 Notice that n < r, i.e. large vessels, allows us to eliminate n and
write everything in terms of O¢p and u, = u - n. It suffices to differentiate the
last equation with respect to t and use the first one and integrate in time,

p= P+t L(u-n):=

/ (pshattun —V - (TVu,) -V - (CVou,) + adyu, + bun). (17)
0



4 Variational Formulation and Approximation

Coming back to (12) and using (17):
Continuous Problem Find u with v x n = 0 and, for all p and all & with
uxmn=0

[0 - (Ou—uxVxu)—pV -4—pV-u+vV xXu-V xv]

+/E<po+£(u-m)u'ﬂ=—/sprﬁ~n

4.1 Approximation in Time

From now on, for clarity, we consider only the case of the surface pressure model,
ie. h=T=C=a=0, L(u-n) =bu-n. However everything below extends to
the full model.

So define

t
Ut) = / u(s)ds and use the integration rule U™ = U™ + 4™ *1dt.
0

and
V={ueH@Q)? : uxn=00nd0}, Q=L*Q).

Time discrete Problem p(t) = pg + bU (t) and we seek u™*! € V,pm+! €
Q, satisfying for all & € V,p € Q,

m+1 _ ,m
/ [u (L T ymtE VX ™)
A 5t

MY G- BV ™ £V x u R LV x u}

+/[ba-n<um+%5t+Um)-n} :—/ppa-n, (18)
b S

where u™tz = 3(u™ ™ +u™) and 6 = 0 for a semi-explicit lineat but order one
scheme or 0 = % for a fully implicit second order scheme in time but nonlinear.

4.2 Convergence

A convergence analysis was done in [3]; we recall the results. We denote us the
linear in time interpolate of {u™} on (0,T) = UM[ (m—1)dt, mét]. For clarity
let’s assume that S = (.

Lemma 1 If Q is CY' or polyhedral and uy € L*(Q)?, py € HY?(X), then
the weak solution of the continuous problem verifies u € L*(H?), d,u € L*(L?),
p€ L2(H'Y),and uxn = 0in L>(L*(X)), ;p = bu-n in L2(H'/?(X)), p(0) = po.



Theorem 1 The solution of the time discretized variational problem satisfies

n+1

sl oo ey + Vo llusll 2@+ b6t > uF - nllpe@as))
k=1

1
<C <||U0| 02,0+ \/DHPOL?(Z)) :

Theorem 2 If Q is simply connected, there is a subsequence (us/,ps) which
converges to the continuous problem in L?>(W) x H~1(L?) where

W = {wel?*Q)|Vxwel*Q),V-wel*Q),nxw_=0}

Is

4.3 Spatial Discretization with Finite Elements

The easiest is to use penalization to enforce u xn = 0 by adding to the boundary

integral % fz: ™t x n -4 x n. Then we may use conforming triangular or

tetrahedral elements P2 or P!'+bubble for the velocities and P' for the pressure.
A freefem++ implementation (see [8]) is shown on Figure 1

problem bb([u,v,w,pl, [uh,vh,wh,ph], solver=UMFPACK)
= int3d(th) ((uxuh+vkvh+wikwh) /dt2
+ nux(dx(u)*dx(uh)+dy(u)*dy(uh)+dz(u)*dz(uh) // rot u.rot uh

+ dx(v)xdx(vh)+dy(v)*dy(vh) +dz(v)*dz(vh)

+ dx(w)xdx(wh)+dy(w)*dy(wh) +dz(w)*dz(wh)

—(dx(u)+dy(v)+dz(w) )*(dx(uh)+dy(vh)+dz(wh))

) — (dx(uh)+dy(vh)+dz(wh))*p — (dx(u)+dy(v)+dz(w))*ph //-ph div u - p div uh

— vk(dx(vold)-dy(uold))*uh —wk(dy(wold)-dz(vold))*vh —ux(dz(uold)-dx(wold))*wh // u x rot u
+ wk(dz(uold)-dx(wold) )*kuh +ux(dx(vold)-dy(uold))*vh + vk(dy(wold)-dx(vold))*wh

— int3d(th)( (uoldxuh + voldkvh + woldswh)/dt2 ) // u*m/dt
+ int2d(th,1) (( (UKN. Y=V ) % (uhsN. y—vhsN. %) // uxn.uhxn/eps

+ (V. z—wiN. v )% (vhaN. z-whiN. y)

+ (wiN. =N, )k (whaN. x—uhiN.z) ) /eps)
int2d(th, 1) (bkdt2x(usN. x+vaN, y+wkN, 2 ) ) (uhsN. x+vhasN. y+whsN. 2) ) // b dt u.n uh.n
int2d(th,1) (bk(UoldKN. x+Vold*N. y+Wold#N. z)k(uhsN. x+vhsN. y+whsN.z)) // b n. int_0~t u
int2d(th,2) (p@xwh ) — int2d(th,3)(plxvh )
on(2,3,u=0) + on(2,v=0) +on(3,w=0);

+ 0+ +

Figure 1: An implementation using freefem++ for problem (18)

5 Optimization and Inverse Problems

5.1 Optimal Stents with the Surface Pressure Model

A stent is a device to reinforce part of a cardiac vessel and/or to change the
topology of the flow by its rigidity. This results in a change of the coefficient b.
So with a first order scheme in time we can consider

min J :/ F(p)dadt : Subject to
2x(0,T)



um+1 —um
/[ﬁ-(ifu"”l x V xu™) —p" TV i — pv - um™
Q

ot
+/Vqum'H-Vxd+/[bﬁ~n(um+%6t+U"‘)-n]:—/prﬁ-n
Q b s
Vi € Vi, D € Q. (19)

For instance F' = |p|* will minimize the time averages pressure peak on .

5.2 Inverse Problems

Can we recover the structural parameters of the vessel walls from the observation
of the pressure?
Consider the minimization problem

: 1 o o
min _J(u,p,b) := f/ (™ —py )2, (20)
b(z),z€X Qx(0,T)

subject to (19) or to

/ [@- (%(um*'1 —u™(z — u"(z)dt)) — p" TV 0 — pV ™
Q

+/ vV ><um+1~V><ﬂ+/ b(um+15t+Um)oﬁ:7/ppﬂn
Q b)) r
Vi € Vi, p € Qp with @ x nlp = 0; U™ = U™ ™5t (21)

The difference between (19) and (21) is the numerical treatment of the nonlinear
term: implicit Euler in the first and Characteristic-Galerkin in the second.

5.3 Calculus of Variations

To set up a descent algorithm we must do a sensitivity analysis of the problem.
This is done with a “Calculus of Variations".

When a parameter varies it triggers a variation of u,p which we call du, dp.
To compute them we linearise the Navier-Stokes equations. These written glob-
ally over (0,T) in weak form are,

M1
Z 5t(/[ﬁm+1 . (% (5um+1 —6u™(z — um(x)ét)) AR VAN K L VAN FTA
Q

0

+/ vV xSV a4 / PP GUTTY Z SU™ — su™ Lt
3 b5

+/ (b(6u™ 6t + 6U™) + Sb(u™ 5t + U™)) - am“) =0
3>
va"™ € Vi, p™ € Qp,r™ with 4™ x n|r = 0. (22)

If 4™+t =0, M+ =0, it can be rearranged as follows

M-—1

Z 5t(/[$ (@™ — @ (o + ™ (@)08) - oum T — ep I A Y Y
0 Q



+/ I/V % 6u'm+1 V ) ~m—+1 + / (r7rL+1 _ rm+2)6U'm+1 _ r'm+16u7n+16t)
Q =

+/ (b(Bu™ 5t + 6U™) + Sb(u™ ot +U™)) - am“) —0.
p

5.4 Adjoint State

To express the variations in terms of db, we need to introduce an adjoint state
v, solution of the following,

(23)

Z (5t(/ m+1 vm+2((x—|-u ( )(St)) Am—i-l m+1v_,um+1_ m+1v Am+1]

+/ vV x @V o™ +/(r’"+1 — AR YLt lgmt st
Q

M-1
+/ b(@m+1(5t+‘77n m+1) Z (St/ m—+1 _ m+1)(jm+1,
b

for all 0, G such that © x n = 0 on 9f). Denote V" = r"§t

= lem“ VR — by 26t
/ I:E (Um+1 _ ’Um+2((x 4 um(x)5t)) - qv . ,Uerl _ qm+1v . ,[}]

+/ vV X Um+1 -V X0+ / (bv7rn+15t _ V7n+1) o= / (pm—i-l perl)q’
Q » Q
(25)

for all 0, q such that © x n = 0 on 9.

5.5 Computation of Gradients with Respect to b

Letting 9 = du™*t!,§ = 6p™T! and summing in m, from 1 to M after multipli-
cation by dt gives,

M—-1

Z 5t/(pm+1 _p:irL+1)5pm+1
0 Q
= 5t</ [l (0™ — ™2 (2 + u(2)6t)) - ou T
q 0t

0
—spm iy gty 6um+1} "‘/ vV x ou™ .V x o™t
Q

+ (bp™F1 — DYyt 5E — sU™HL (P2 pm L bvm+2)))

= Z 6t</9 [% (5um+1 _5um(w —u ( )(5t)) m—+1
0

(24)



U A VA A A T I / vV x Su™ TV x o™
Q

+/ (bv7n+16um+15t + 5U'rnbv’m+1 + ((SU"H_I _ 5U7n _ 6’U/m+1(5t)7°m+1))
EM—l M-1
- 6t/ Sb(u™ 5t + U™) 0™ = —/ (5b(5t > o -UM), (26)
0 x x 0

because U? = v = (. To minimize in H'-norm we solve for g € H} (%),

M-1

. —— m. o, m 1
/Evsg Vsw /E<6t¥U v )w,‘v’weHO(E)

= 0= / Vg Vob (27)
>

5.6 Numerical Tests

We take the test case documented in [1]. It is a 2-d problem for the upper part
of a symmetric straight vessel. The geometry is the rectangle (0, L) x (0, R)
with L = 6 and R = 0.5. Pressure is imposed at both end, zero on the right
and p; = %pmm(l — cos(ZWTtw)) with prmaez = 2000 and t,,4, = 0.005.

The mesh is uniform 60 x 10. The step size is 6t = 210~* and there are 60
time steps in this simulation, so 7' = 0.012 = 2.4¢,,,4.. The P? x P! element is
used for velocity-pressure.

The objective is to see if it is possible to reconstruct b on the upper wall
from the pressure in the vessel.

So we first solve the direct problem with b = by := 2.10°(1+ 6% (1 — %)) ap-
proximated with the P! element. We call the computed pressure {p7'(z) (I)VI -1
Then we solve (20) with 50 iterations of an H}- projected gradient method with
fixed step size, A = 106.

Algorithmic Steps
e Compute pg by a time loop from 0 to T" and store on disk.
e Optimization loop:

1. Compute u,p by a time loop from 0 to T and store on disk u,p,U.

2. Compute v, p by a time loop from T down to 0 requiring to read from
disk pgq,u,p,U.

Compute gradient by solving (27).
Compute cost function and ||,g||3.
Update b by b < b — Ag.

Modify b by b < max{min(b, byaz ), brmin }-

S ok W

10
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Figure 2: g (left) and J (right) versus iteration number in log-log scale. Initially
J = 1403 and after 50 gradient iterations J = 1.27 while g decreases from
1.2107* to 3.3107°

e Display results.

We choose bpap = 2.10°(1 4 12%(1

- %))>bmin = 2.105(1 + 2%(1 _ %))
The results are shown on figures 2, 3, 4

5.7 Preliminary 3D tests

Experiment 1 This is only a feasibility test with F' = p*; The geometry is
a quarter of a torus with R=4 and r=1. It is discretized with 1395 vertices
and 6120 elements. The number of unknown of the coupled system [u,p] is
23940 with the P!-bubble/P! element and Crank-Nicolson implicit scheme. The
viscosity is ¥ = 0.01; we chose € = v. The final time is T = 1, the time step
is dt = 0.1 and the pressure difference imposed at T'; (top) and T, bottom is
6 cos?(t).

The flow is stored on disk at every iteration ready to be reused backward in
time for the adjoint equations.

Starting with b=200, after 3 iterations of steepest descent with fixed step
size, the cost function is decreased from 1200 to 900. But as there is no constraint
b is much reduced at the top near I';. Consquently the vessel wall becomes fragile
as shown by a simulated wall motion by x — x4 > u™ - ndt at every time step,
as shown on Figure 5.

Experiment 2 The same computations has been made but now b is con-
strained to be greater than by/2. A mesh double the size of the previous one has
been used, with 191808 degrees of freedom. The initial value of b is by = 200. Af-

11

100



AN/
/T S Z/I0T
7T NS 71T

Figure 3: Target by (top curve) and computed b after 50 iterations. Initial
Pressure map after one iteration (top), final pressure after 50 gradient iterations
(middle) and target pressure pg (bottom). The color scales are linear from —986
to 896 except for py which has a range from —680 to 782

\
.

Figure 4: Flow velocity vectors u (middle) and adjoint flow velocity vectors v
(bottom) at final time after 50 gradient iterations. The color scales are linear
from 0 (safran) to 0.03 (red) for w and 0 (safran) to 2.9 (red) for v. The
singularity at the top left corner is due to a theoretical incompatibility between
the normal velocities at this corner.
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Figure 5: Top left: Optimization criteria versus iteration number. Top right:
the coefficient b(x) after 3 iterations. Bottom Left: effect of the change of b on
the dilatation of the vessel and some iso surfaces of constant pressure. Bottom
right: a snap shot of the adjoint pressure and some iso surfaces.
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ter 10 iterations, similar to Experiment 1 but with a projected gradient method
for the optimization, the results of Figure 6 are found.

527686401 1 SBI0ER2
|
1 0884E 402 21078402

1250

1200

N AN 74

Siti,

1150

B,
o]
e AT
==

S yeTaa
T

1100

1050

1000

Figure 6: Left: Optimization criteria fo (0.7) p* versus iteration number. Right:
the coefficient b(xz) after 4 iterations. Right: effect of the change of b on the

dilatation of the vessel.

Experiment 3 Finally we run an identification test of b from the observation
of the wall displacement, ideally, u-n. However the formulation does not allow it
because the extra integral in the adjoint variational formulation is in competition
with a similar term from the surface pressure model, so we used p/b. For this

J= / p— palPdad,
£x(0,T)

where py is obtained from a reference computation (introduction of b in the

criteria makes the problem harder) with

first test the criteria is

b = 200 + 100 cos x cos y cos z.

The results are shown on figure 7.
Because of the computing cost, we made only an initial study; the target is

not reached, but 5 iterations go into the right direction. To do better one would
have to used a varying step size gradient method and a better computer (this

being done on a macbook pro, takes about 15 min).

14
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Figure 7: Left: Optimization criteria fzx(o 7) (p—pa)? versus iteration number.
Right: the coefficient b(x) after 5 iterations. middle: The target b.

6 Conclusion

In this paper we have introduced a reduced fluid structure model based on a
transpiration condition and applied it on a problem arising from hemodynamics.
We have shown that it has good stability property. In [3] a comparison study
is made with full fluid-structure models on moving domains; it is shown to give
very similar results.

The greatest advantage of this reduced model is its computational speed and
unconditional stability. As inverse problems are important in hemodynamics [2],
it could be a good idea to use it. This preliminary study shows that it is indeed
feasible.

Acknowledgement:  Special thanks to Frédéric Hecht for his help with
freefem—++ and Marc Thiriet and Suncica Canic for helpful discussions.
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