Supplementary Material

Amorphous Surface Layer *versus* Transient Amorphous Precursor Phase in Bone - A Case Study Investigated by Solid-state NMR Spectroscopy

Stanislas Von Euw,^a Widad Ajili,^a Tsou-Hsi-Camille Chan-Chang,^a Annette Delices,^a Guillaume Laurent,^a Florence Babonneau,^a Nadine Nassif^a and Thierry Azaïs^{a*}

^a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France.

*corresponding author: thierry.azais@upmc.fr; +33 1 44 27 56 75

This PDF file includes Figures S1 to S11and Table S1.

Figure S1

Figure S1. Schematic pulse sequence of the ¹H Double CP EXSY MAS NMR experiment that consists of a Double CP ${}^{1}H\rightarrow{}^{31}P\rightarrow{}^{1}H$ experiment followed by a ¹H magnetization EXchange SpectroscopY (EXSY) experiment.

Figure S2

Figure S2. Powder XRD patterns of the synthetic calcium phosphate samples: stoichiometric apatite (HA); biomimetic apatites (CHA and CHA-SBF); and amorphous calcium phosphate (ACP).

Figure S3

Figure S3. FT-IR spectra of the synthetic calcium phosphate samples: stoichiometric apatite (**HA**); biomimetic apatites (**CHA** and **CHA-SBF**); and amorphous calcium phosphate (**ACP**). Red asterisks = hydroxyl ions located in crystalline apatitic environments.

Figure S4

Figure S4. TGA weight-loss curves of the synthetic calcium phosphate samples: stoichiometric apatite (HA); biomimetic apatites (CHA and CHA-SBF); and amorphous calcium phosphate (ACP).

Figure S5

Figure S5. TEM images of the synthetic calcium phosphate samples: a) stoichiometric apatite (HA); biomimetic apatites, b) CHA and c) CHA-SBF; and d) amorphous calcium phosphate (ACP).

Figure S6

Figure S6. One-pulse ¹H MAS NMR spectra of the synthetic calcium phosphate samples: stoichiometric apatite (HA); biomimetic apatites (CHA and CHA-SBF); and amorphous calcium phosphate (ACP). The two narrow resonances in the ACP spectrum (see red asterisks) are due to the presence of ethanol.

Figure S7

Figure S7. One-pulse ³¹P MAS NMR spectra of the synthetic calcium phosphate samples: stoichiometric apatite (HA); biomimetic apatites (CHA and CHA-SBF); and amorphous calcium phosphate (ACP).

Figure S8

Figure S8. Double CP ${}^{1}\text{H} \rightarrow {}^{31}\text{P} \rightarrow {}^{1}\text{H}$ MAS NMR spectra of the physical mixture of HA and ACP powders (**HA/ACP mixture**), and the biomimetic apatites **CHA** and **CHA-SBF**. Contact times, $t_{CP}1 = 1000 \ \mu\text{s}$ and $t_{CP}2 = 850 \ \mu\text{s}$.

Figure S9

Figure S9. Double CP ${}^{1}H \rightarrow {}^{31}P \rightarrow {}^{1}H$ MAS NMR spectrum of a mature bone tissue sample originating from a two-years old sheep. Contact times, $t_{cp}1 = 1000 \ \mu s$ and $t_{cp}2 = 850 \ \mu s$.

Figure S10

Figure S10. TEM images of the physical mixture HA + ACP displaying: a) microsized aggregates of ACP; b) microsized aggregates of HA; and c) locally HA (rode-like particle with visible crystallographic plans) and ACP (sphere-like particle) particles close to each other.

Figure S11

Figure S11. Comparison of the ¹H-¹H spin diffusion intensities in the ACP (sum of the ¹H signal in F1 dimension in the red region) and in the apatitic (sum of the ¹H signal in F1 dimension in the blue region) region from the 2D ¹H Double CP EXSY MAS NMR spectra of bone mineral and **CHA-SBF** (tmix = 10 ms). For the bone sample, we found that 45% of the total ¹H magnetization of the ACP-like domain was exchanged with the OH⁻ from the apatitic domain. For the biomimetic apatite **CHA-SBF**, the proportion is a little bit less as we found 36%.

	one-pulse ³¹ P NMR			cross polarization ³¹ P NMR			
Sample	δ(³¹ P) ± 0.1 ppm	LW ± 20 Hz	apatitic environments		non-apatitic environments		
			δ(³¹ P) ± 0.1 ppm	LW ± 20 Hz	δ(³¹ P) ± 0.1 ppm	LW ± 20 Hz	
HA	2.8	80	2.8	80	N/A	N/A	
CHA	2.9	200	3.0	140	3.1	430	
CHA-SBF	3.2	370	3.1	290	3.2	660	
Bone mineral	3.2	360	3.1	270	3.2	640	
ACP	3.2	700	N/A	N/A	3.2	700	

Table S1. Position and linewidth of the 31 P NMR resonances for the various samples studied in the paper. N/A = not applicable.