C. Reitz, Epidemiology of Alzheimer disease, Nature Reviews Neurology, vol.33, issue.3, pp.137-152, 2011.
DOI : 10.1001/archneur.1976.00500040001001

H. Hampel, Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives, Nature Reviews Drug Discovery, vol.61, issue.7, pp.560-74, 2010.
DOI : 10.1038/jcbfm.1988.104

H. Hampel, Development of biomarkers to chart all Alzheimer???s disease stages: The??royal road to cutting the therapeutic Gordian Knot, Alzheimer's & Dementia, vol.8, issue.4, 2012.
DOI : 10.1016/j.jalz.2012.05.2116

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathologica, vol.80, issue.4, pp.239-259, 1991.
DOI : 10.1007/978-3-642-70644-8_2

B. Dubois, Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimer's Dement, pp.292-323, 2016.
DOI : 10.1016/j.jalz.2016.02.002

J. A. Hardy and G. A. Higgins, Alzheimer's disease: the amyloid cascade hypothesis, Science, vol.256, issue.5054, pp.184-185, 1992.
DOI : 10.1126/science.1566067

K. Blennow, Amyloid biomarkers in Alzheimer's disease, Trends in Pharmacological Sciences, vol.36, issue.5, pp.297-309, 2015.
DOI : 10.1016/j.tips.2015.03.002

M. Pievani, Brain connectivity in neurodegenerative diseases???from phenotype to proteinopathy, Nature Reviews Neurology, vol.13, issue.11, pp.620-633, 2014.
DOI : 10.1212/WNL.0b013e31825830bd

P. M. Matthews, Brain Structural and Functional Connectivity and the Progression of Neuropathology in Alzheimer's Disease. J. Alzheimer's Dis, pp.163-172, 2013.

M. R. Brier, Network Dysfunction in Alzheimer's Disease: Refining the Disconnection Hypothesis, Brain Connectivity, vol.4, issue.5, pp.299-311, 2014.
DOI : 10.1089/brain.2014.0236

A. Fornito, The connectomics of brain disorders, Nature Reviews Neuroscience, vol.148, issue.3, 2015.
DOI : 10.1016/j.neuron.2013.07.035

J. W. Wu, Neuronal activity enhances tau propagation and tau pathology in vivo, Nature Neuroscience, vol.24, issue.8, pp.1085-1092, 2016.
DOI : 10.1016/j.neurobiolaging.2012.05.010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961585

K. D. Smith, In vivo axonal transport rates decrease in a mouse model of Alzheimer's disease, NeuroImage, vol.35, issue.4, pp.1401-1408, 2007.
DOI : 10.1016/j.neuroimage.2007.01.046

G. Bartzokis, Alzheimer's disease as homeostatic responses to age-related myelin breakdown, Neurobiology of Aging, vol.32, issue.8, pp.1341-1371, 2011.
DOI : 10.1016/j.neurobiolaging.2009.08.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128664

K. A. Celone, Alterations in Memory Networks in Mild Cognitive Impairment and Alzheimer's Disease: An Independent Component Analysis, Journal of Neuroscience, vol.26, issue.40, 2006.
DOI : 10.1523/JNEUROSCI.2250-06.2006

R. L. Buckner, Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease, Journal of Neuroscience, vol.29, issue.6, pp.1860-1873, 2009.
DOI : 10.1523/JNEUROSCI.5062-08.2009

J. S. Damoiseaux, Functional connectivity tracks clinical deterioration in Alzheimer's disease, Neurobiology of Aging, vol.33, issue.4, pp.1-20, 2012.
DOI : 10.1016/j.neurobiolaging.2011.06.024

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218226

A. L. Bokde, Assessing neuronal networks: Understanding Alzheimer's disease, Progress in Neurobiology, vol.89, issue.2, pp.125-133, 2009.
DOI : 10.1016/j.pneurobio.2009.06.004

J. B. Thomas, Functional Connectivity in Autosomal Dominant and Late-Onset Alzheimer Disease, JAMA Neurology, vol.71, issue.9, p.1111, 2014.
DOI : 10.1001/jamaneurol.2014.1654

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240274

M. E. Raichle, The Brain's Default Mode Network, Annual Review of Neuroscience, vol.38, issue.1, 2015.
DOI : 10.1146/annurev-neuro-071013-014030

D. T. Jones, Cascading network failure across the Alzheimer???s disease spectrum, Brain, vol.139, issue.2, pp.547-562, 2015.
DOI : 10.1093/brain/awv338

G. Wang, Correspondence between Resting-State Activity and Brain Gene Expression, Neuron, vol.88, issue.4, pp.659-66, 2015.
DOI : 10.1016/j.neuron.2015.10.022

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4694561

M. D. Greicius, Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI, Proceedings of the National Academy of Sciences, vol.19, issue.2, 2004.
DOI : 10.1016/S0197-4580(98)00022-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC384799

J. Richiardi, Correlated gene expression supports synchronous activity in brain networks, Science, vol.27, issue.2_Part_1, pp.1241-1244, 2015.
DOI : 10.1016/j.neuroimage.2013.12.039

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829082

C. M. Karch and A. M. Goate, Alzheimer???s Disease Risk Genes and Mechanisms of Disease Pathogenesis, Biological Psychiatry, vol.77, issue.1, pp.43-51, 2015.
DOI : 10.1016/j.biopsych.2014.05.006

L. Bertram, The role of genetics for biomarker development in neurodegeneration, Progress in Neurobiology, pp.95-501, 2011.
DOI : 10.1016/j.pneurobio.2011.09.011

K. Bettens, Genetic insights in Alzheimer's disease, The Lancet Neurology, vol.12, issue.1, pp.92-104, 2013.
DOI : 10.1016/S1474-4422(12)70259-4

S. Lista, Biomarkers in Sporadic and Familial Alzheimer's Disease. J. Alzheimer's Dis, pp.291-317, 2015.

L. Beason-held and L. , Dementia and the Default Mode, Current Alzheimer Research, vol.8, issue.4, pp.361-365, 2011.
DOI : 10.2174/156720511795745294

S. Erk, Hippocampal Function in Healthy Carriers of the CLU Alzheimer's Disease Risk Variant, Journal of Neuroscience, vol.31, issue.49, pp.18180-18184, 2011.
DOI : 10.1523/JNEUROSCI.4960-11.2011

P. Zhang, Impacts of PICALM and CLU variants associated with Alzheimer???s disease on the functional connectivity of the hippocampus in healthy young adults, Brain Structure and Function, vol.197, issue.1, pp.1463-1475, 2015.
DOI : 10.1016/j.bbr.2008.08.012

X. Zhang, Bridging Integrator 1 (BIN1) Genotype Effects on Working Memory, Hippocampal Volume, and Functional Connectivity in Young Healthy Individuals, Neuropsychopharmacology, vol.31, issue.7, pp.1794-1803, 2015.
DOI : 10.1176/appi.ajp.163.9.1603

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915264

N. Filippini, Distinct patterns of brain activity in young carriers of the APOE-??4 allele, Proceedings of the National Academy of Sciences, vol.28, issue.8, pp.7209-7214, 2009.
DOI : 10.1038/jcbfm.2008.46

E. T. Westlye, Increased Hippocampal Default Mode Synchronization during Rest in Middle-Aged and Elderly APOE ??4 Carriers: Relationships with Memory Performance, Journal of Neuroscience, vol.31, issue.21, pp.7775-7783, 2011.
DOI : 10.1523/JNEUROSCI.1230-11.2011

M. N. Braskie, Common Alzheimer's Disease Risk Variant Within the CLU Gene Affects White Matter Microstructure in Young Adults, Journal of Neuroscience, vol.31, issue.18, 2011.
DOI : 10.1523/JNEUROSCI.5794-10.2011

O. Kohannim, Predicting White Matter Integrity from Multiple Common Genetic Variants Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline, Neuropsychopharmacology Neurology, vol.37, issue.74, pp.1969-1976, 2010.

R. A. Sweet, Effect of Alzheimer???s Disease Risk Genes on Trajectories of Cognitive Function in the Cardiovascular Health Study, American Journal of Psychiatry, vol.169, issue.9, pp.954-962, 2012.
DOI : 10.1176/appi.ajp.2012.11121815

M. Thambisetty, Alzheimer Risk Variant CLU and Brain Function During Aging, Biological Psychiatry, vol.73, issue.5, pp.399-405, 2013.
DOI : 10.1016/j.biopsych.2012.05.026

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488132

B. A. Strange, Functional organization of the hippocampal longitudinal axis, Nature Reviews Neuroscience, vol.6, issue.10, pp.655-669, 2014.
DOI : 10.1212/WNL.0b013e3181cbcd6f

M. S. Fanselow and H. Dong, Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures?, Neuron, vol.65, issue.1, pp.7-19, 2010.
DOI : 10.1016/j.neuron.2009.11.031

URL : http://doi.org/10.1016/j.neuron.2009.11.031

A. J. Trachtenberg, The effects of APOE on the functional architecture of the resting brain, NeuroImage, vol.59, issue.1, pp.565-572, 2012.
DOI : 10.1016/j.neuroimage.2011.07.059

T. M. Harrison, Altered memory-related functional connectivity of the anterior and posterior hippocampus in older adults at increased genetic risk for Alzheimer's disease, Human Brain Mapping, vol.299, issue.1, pp.366-380, 2016.
DOI : 10.1126/science.1077775

V. Heise, Apolipoprotein E genotype, gender and age modulate connectivity of the hippocampus in healthy adults, NeuroImage, vol.98, pp.23-30, 2014.
DOI : 10.1016/j.neuroimage.2014.04.081

J. S. Damoiseaux, Gender Modulates the APOE ??4 Effect in Healthy Older Adults: Convergent Evidence from Functional Brain Connectivity and Spinal Fluid Tau Levels, Journal of Neuroscience, vol.32, issue.24, pp.8254-8262, 2012.
DOI : 10.1523/JNEUROSCI.0305-12.2012

A. S. Fleisher, Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer's disease risk groups, NeuroImage, vol.47, issue.4, pp.1678-1690, 2009.
DOI : 10.1016/j.neuroimage.2009.06.021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722694

K. T. Patel, Default mode network activity and white matter integrity in healthy middle-aged ApoE4 carriers, Brain Imaging and Behavior, vol.256, issue.2, pp.60-67, 2013.
DOI : 10.1148/radiol.10091701

M. M. Machulda, Effect of <emph type="ital">APOE</emph> ??4 Status on Intrinsic Network Connectivity in Cognitively Normal Elderly Subjects, Archives of Neurology, vol.68, issue.9, p.1131, 2011.
DOI : 10.1001/archneurol.2011.108

Y. I. Sheline, APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF A?42, J, 2010.

Y. Chen, Disrupted Functional and Structural Networks in Cognitively Normal Elderly Subjects with the APOE ??4 Allele, Neuropsychopharmacology, vol.53, issue.5, pp.1-31, 2014.
DOI : 10.1016/j.neuroimage.2010.05.068

S. Matura, Recognition memory is associated with altered restingstate functional connectivity in people at genetic risk for Alzheimer's disease, 2014.

Y. Liang, 4 Allele on Resting-State Networks in Nondemented Elders, BioMed Research International, vol.2017, p.54, 2017.
DOI : 10.1523/JNEUROSCI.1296-11.2011

H. Shu, Opposite Neural Trajectories of Apolipoprotein E ??4 and ??2 Alleles with Aging Associated with Different Risks of Alzheimer's Disease, Cerebral Cortex, vol.26, issue.4, pp.1421-1429, 2016.
DOI : 10.1093/cercor/bhu237

E. R. Tuminello, D. Han, and S. , The Apolipoprotein E Antagonistic Pleiotropy Hypothesis: Review and Recommendations. SAGE-Hindawi Access to Res, Int. J. Alzheimer's, pp.10-4061726197, 2011.
DOI : 10.4061/2011/726197

URL : http://doi.org/10.4061/2011/726197

A. P. Schultz, Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals, The Journal of Neuroscience, vol.37, issue.16, pp.4323-4331, 2017.
DOI : 10.1523/JNEUROSCI.3263-16.2017

J. Sepulcre, Tau and amyloid-? proteins distinctively associate to functional network changes in the aging brain Alzheimer's Dement, 2017.

B. Dubois, Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria, The Lancet Neurology, vol.13, issue.6, pp.614-629, 2014.
DOI : 10.1016/S1474-4422(14)70090-0

Y. T. Quiroz, Brain Imaging and Blood Biomarker Abnormalities in Children With Autosomal Dominant Alzheimer Disease, JAMA Neurology, vol.72, issue.8, p.912, 2015.
DOI : 10.1001/jamaneurol.2015.1099

Y. Y. Su, Lower functional connectivity of default mode network in cognitively normal young adults with mutation of APP, presenilins and APOE ??4, Brain Imaging and Behavior, vol.23, issue.5, 2016.
DOI : 10.1093/hmg/ddt525

J. P. Chhatwal, Impaired Default Network Functional Connectivity in Autosomal Dominant Alzheimer's Disease: Findings from the DIAN Study, 2012.

R. Sala-llonch, Evolving brain functional abnormalities in psen1 29 mutation carriers: A resting and visual encoding FMRI study. J. Alzheimer's Dis, pp.165-175, 2013.

X. Li, The Effects of Gene Mutations on Default Mode Network in Familial Alzheimer's Disease. J. Alzheimer's Dis, pp.327-334, 2017.

W. Koch, Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer's disease, Neurobiology of Aging, vol.33, issue.3, pp.466-478, 2012.
DOI : 10.1016/j.neurobiolaging.2010.04.013

X. Zhao, Disrupted Small-World Brain Networks in Moderate Alzheimer's Disease: A Resting-State fMRI Study, PLoS ONE, vol.360, issue.3, pp.33540-66, 2012.
DOI : 10.1371/journal.pone.0033540.s005

J. Lambert, Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease, Nature Genetics, vol.9, issue.12, pp.1452-1458, 2013.
DOI : 10.1093/bioinformatics/btq419

D. P. Hibar, Novel genetic loci associated with hippocampal volume, Nature Communications, vol.10, p.13624, 2017.
DOI : 10.1186/s13029-015-0032-8

URL : https://hal.archives-ouvertes.fr/hal-01488337

D. P. Hibar, Common genetic variants influence human subcortical brain structures, Nature, vol.43, issue.7546, pp.224-233, 2015.
DOI : 10.1016/S0959-4388(00)00211-7

URL : https://hal.archives-ouvertes.fr/hal-01196805

P. M. Thompson, ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide, NeuroImage, vol.145, pp.389-408, 2016.
DOI : 10.1016/j.neuroimage.2015.11.057

URL : https://hal.archives-ouvertes.fr/hal-01380998

H. H. Adams, Novel genetic loci underlying human intracranial volume identified through genome-wide association, Nature Neuroscience, vol.91, issue.12, pp.1569-1582, 2016.
DOI : 10.1016/j.ajhg.2012.08.004

URL : https://hal.archives-ouvertes.fr/hal-01382716

N. Jahanshad, Do Candidate Genes Affect the Brain's White Matter Microstructure? Large-Scale Evaluation of 6,165 Diffusion MRI Scans, 2017.
DOI : 10.1101/107987

J. Sanchez-mut, Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns, Translational Psychiatry, vol.38, issue.1, pp.718-73, 2016.
DOI : 10.1038/nn.3639

P. M. Thompson, Genetics of the connectome, NeuroImage, vol.80, pp.475-488, 2013.
DOI : 10.1016/j.neuroimage.2013.05.013

N. Jahanshad, Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity, Proc. Natl. Acad, 2013.
DOI : 10.1016/j.neuroimage.2009.10.003

H. Hampel, Recent developments of functional magnetic resonance imaging research for drug development in Alzheimer's disease, Progress in Neurobiology, vol.95, issue.4, 2011.
DOI : 10.1016/j.pneurobio.2011.05.012

H. Hampel, PRECISION MEDICINE -The Golden Gate for Detection, Treatment and Prevention of Alzheimer's Disease, J. Prev, 2016.

H. Hampel, A Precision Medicine Initiative for Alzheimer???s disease: the road ahead to biomarker-guided integrative disease modeling, Climacteric, vol.12, issue.2, pp.107-118, 2017.
DOI : 10.1016/j.jalz.2016.02.002

M. Ewers, Staging Alzheimer's disease progression with multimodality neuroimaging, Progress in Neurobiology, vol.95, issue.4, pp.535-546, 2011.
DOI : 10.1016/j.pneurobio.2011.06.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223355

S. J. Teipel, Relevance of Magnetic Resonance Imaging for Early Detection and Diagnosis of Alzheimer Disease, Medical Clinics of North America, vol.97, issue.3, pp.399-424, 2013.
DOI : 10.1016/j.mcna.2012.12.013

M. Ewers, Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia, Trends in Neurosciences, vol.34, issue.8, pp.430-442, 2011.
DOI : 10.1016/j.tins.2011.05.005

E. Grober, Free and cued selective reminding and selective reminding in the elderly, Journal of Clinical and Experimental Neuropsychology, vol.49, issue.5, pp.643-654, 1997.
DOI : 10.3758/BF03198248

I. Reinvang, APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer's disease, Neuroscience & Biobehavioral Reviews, vol.37, issue.8, pp.1322-1335, 2013.
DOI : 10.1016/j.neubiorev.2013.05.006

C. Lane-donovan and J. Herz, ApoE, ApoE Receptors, and the Synapse in Alzheimer's Disease, Trends in Endocrinology & Metabolism, vol.28, issue.4, pp.273-284, 2017.
DOI : 10.1016/j.tem.2016.12.001

M. Tan, Bridging integrator 1 (BIN1): form, function, and Alzheimer's disease, Trends in Molecular Medicine, vol.19, issue.10, pp.594-603, 2013.
DOI : 10.1016/j.molmed.2013.06.004

E. A. Bignante, Amyloid ?? precursor protein as a molecular target for amyloid ?????induced neuronal degeneration in Alzheimer's disease, Neurobiology of Aging, vol.34, issue.11, pp.2525-2562, 2013.
DOI : 10.1016/j.neurobiolaging.2013.04.021