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Dynamic modeling of lymphocyte behavior has primarily been based on populations based
differential equations or on cellular agents moving in space and interacting each other.
The final steps of this modeling effort are expressed in a code written in a programing
language. On account of the complete lack of standardization of the different steps to
proceed, we have to deplore poor communication and sharing between experimentalists,
theoreticians and programmers. The adoption of diagrammatic visual computer language
should however greatly help the immunologists to better communicate, to more easily
identify the models similarities and facilitate the reuse and extension of existing software
models. Since immunologists often conceptualize the dynamical evolution of immune sys-
tems in terms of “state-transitions” of biological objects, we promote the use of unified
modeling language (UML) state-transition diagram. To demonstrate the feasibility of this
approach, we present a UML refactoring of two published models on thymocyte differentia-
tion. Originally built with different modeling strategies, a mathematical ordinary differential
equation-based model and a cellular automata model, the two models are now in the same
visual formalism and can be compared.
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The perspective is to encourage immunologists involved into
mathematical modeling or software productions, to adopt a visual
graphical language, here mainly the unified modeling language
(UML) “state-transition” diagram to ease the communication, the
reuse and the extension of their models.

COMPLEXITY OF THE IMMUNE SYSTEM
The immune system is a complex biological adaptive, highly
diversified, robust and resilient system, characterized by com-
plexity at different levels. Lymphocytes are the central actors of
the immune system, in the middle of a multi-scale biological
organization, “from molecule to organism”. Multi-scale modeling
remains a challenge, as for other biological systems (1). Despite
recent systems biology initiatives to understand and model the
immune system (2), we are still far from having the appropri-
ate tools to understand its dynamics and to easily communicate
among various researchers who observe this system at different
levels of granularity and attempt through software modeling to
answer different questions. Several complementary experimen-
tal methods and models have been used to explore lymphocyte
dynamics and turnover (3, 4) and to model it in health, aging and
diseases (5).

DRAWBACKS OF CURRENT DYNAMICS LYMPHOCYTE
MODELING AND EVOLUTION
System dynamics models deal with time, formalized with two dis-
tinct concepts as “discrete time,” by a succession of time points
and intervals, or as “continuous time” (6). Models of lympho-
cyte population dynamics and turnover (3) have primarily been
based on mechanistic reconstruction with continuous time mod-
els. The fluxes of cell populations are then described by differen-
tial equations. These mathematical models describe for example
the thymocyte differentiation and selection (7), until the thymic
export (8–10), the homeostasis of CD4/CD8 T cells (11, 12), the
CD8 immune response (13, 14), or the Bromodeoxyuridine or
deuterium labeling (15) to account for turnover. Up to now, sim-
ulations and validation of some of these models reveal interesting
T cell dynamics properties: how the system grows, self-maintains
as well as the effects of perturbations, i.e. how the system reacts to
antigens, collapses and reorganizes. However, integrating the het-
erogeneity of cell populations, phenotypes, lineages, cell location
and interactions, cell differentiation across generations (16) in the
different biological, and time scales, is problematic in such a math-
ematical form, which make these models particularly difficult to
handle.
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The evolution of homogeneous mathematical model of cell
populations (17) toward “spatialized,” discrete, and heteroge-
neous software models (18) has allowed the reproduction and
observation of more detailed and thus complex behaviors. For
example, this made possible to model lymphocyte dynamics from
thymic selection (19, 20) up to quantitative modeling of immune
responses, as extensively reviewed (21) with development of agent-
based and automata models (22). However,both population-based
mathematical model (a top-down approach) and discrete cell-
based model (a bottom-up approach) and the various platforms
developed have limitations (23). Conversely, the Statecharts lan-
guage (24) and the visual reactive tools (25) such as biocharts (26)
and reactive animation applied to various systems (27) developed
by Harel et al. are a powerful way to simulate complex dynam-
ical biological behavior with more didactic representation than
equations. Such models have revealed emergent properties during
thymic differentiation (28) pancreatic islet organogenesis but also
the immune response in lymph node (29).

LACK OF INTEROPERABILITY, UNDER-USE OF SOFTWARE
MODELS
Although in Immunology there is more than 20-years tradition
of software and mathematical modeling, very few of them have
been the object of further exploitation once published and made
available (30). Models are often under-used because experimen-
talists can be reluctant to entertain mathematical formalization
and because published models are largely disposable: rapidly
forgotten after being published, instead of providing a founda-
tion to build upon. Moreover, the various expressions of these
models with different mathematical descriptions, programing lan-
guages, software libraries and graphical packages, require much
effort in understanding and running the software and prevent
interoperability.

USING VISUAL LANGUAGE TO COMMUNICATE AND
EXECUTE MODELS
Immunologists often conceptualize the dynamical evolution of
their systems in terms of “state-transitions” of biological objects
and do it by means of personalized and informal graphical illus-
trations. Thus, the adoption of a more formal and standard type
of state-transition diagram could improve the current situation to
not only help biologists to better understand each other but also to
facilitate the production and the reading of software code execut-
ing these visual transitions, at level of populations or agents (31).

Thus, in this paper, we promote the development and
usage of a visual, computational approach more comprehensible
than mathematical equations and programing instructions. This
should improve our understanding of lymphocyte dynamics, the
exchange on this understanding and simplify the implementation
of models by non-specialists delivered from the production of exe-
cutable code or mathematical equations, to concentrate to in silico
experiments.

LEVEL OF ABSTRACTION AND MULTI-SCALE MODELING
A model describes a complex system from the “real word” and
thus requires abstraction. This abstraction is performed as the
immunologist decides about an experimental protocol in order to
observe selected objects at different scales and to follow them in

time and space. For example, the capacities of the immune system
to preserve the homeostasis and to provide rapid adaptation to an
antigen and anamnestic responses can be observed at the organism
level, through physiological or pathological clinical observations
that relate to lower scale levels. At molecular level, the somatic
generation of the diversity of an immuno-receptor, as the TCR,
allows for a dynamic network of interactions with antigens. At the
cell level, this leads to clonal selection, activation and division. At
the organ level, the fluidity of the system insures constant tissue
redistribution of cells and molecules, cell migration from thymus
to spleen and lymph nodes.

Thus, models of lymphocyte population dynamics and
turnover consist in reconstructing the components or “entities”
of the system across various scales, from molecules to organisms,
to determine the relations/interactions through space (varying
from micrometer to meters) and “processes” through time (vary-
ing between microseconds to years) as explained below. However,
the formalization and abstraction of the immune objects as enti-
ties undergoing processes, with the help of spatial and dynamic
ontologies, respectively defined as SNAP and SPAN (32), as well
as cell/molecule interactions (33), is rarely done, maintaining
a language-barrier between biologists and theoreticians. In the
following, some examples will be given to help the immunolo-
gists with the transition between current mathematical models to
computer ones and with the terms currently used in modeling.

DEFINE ENTITIES, STATES, LOCATION, INTERACTIONS, GRANULARITY
The immune “entities” could be described according to the lan-
guage used by the modeler. A cell exists in one “state”: it could be
quiescent or in a given phase of the cell cycle or dead. In addition
the phenotype and/or a function of a cell define a given state, as
CD4 helper T cells. Cells are “located” in various tissues and are
in “relation” with other entities. Finally, cells can be considered at
various level of “granularity.” For example, T lymphocyte popula-
tions are“aggregation”of T cells according to criteria of phenotype,
structure or function, although heterogeneity still prevails inside
these populations at lower granularity. Accordingly, cells can be
modeled at population level (with continuous model as ordinary
equation) or at cell level according to space (with discrete model
as automata or multi-agent system).

DEFINE PROCESSES
According to ontologies, cells participate to various processes, such
as division,activation,differentiation, interaction,clonotype selec-
tion, apoptosis or migration. According to the states of the cells,
their evolution can thus be modeled as “state-transition” that can
be applied to various processes in parallel: for example, a thymo-
cyte can differentiate while migrating in cortex and medulla. Note
that processes at other levels like molecular or organ levels can
similarly be described and modeled. Finally, all these process will
determine the global cell dynamics and turnover.

THE UNIFIED MODELING LANGUAGE FOR HIGH-LEVEL
MODELING
“High-level programing languages” are based on abstraction and
use of natural language that is easier to understand as compared
to “low level programing language,” based on codes. Thus,
visual modeling language considers biological-object as concep-
tual abstract-objects that endure processes. The level of abstraction
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allowed by these diagrams makes possible to distinguish more eas-
ily the“entities”as T cells and the“processes”that occur at different
levels such as differentiation, migration and cell cycle. Moreover,
such “state-transition diagrams” allow computing parallel path-
ways at various scales to avoid redundancy that is inherent in the
formal description of multi-level, heterogeneous and concurrent
systems and to model heterogeneity in a very simplified and eco-
nomical form (as compared to mathematical equations) (31).We
have thus used the well-established Unified Modelling Language
(UML – a sofware standard) that still remains approachable to
the lab-immunologist, convenient for the theoretician and that
can be directly adopted for the high-level graphical depiction (31,
34). The adoption of UML state-transition diagrams that tran-
scends any programing language or computer platform, will allow
both experimentalists and theorists to work together at a higher
level than writing software code or mathematical equations. This
final step is progressively more and more automatized out of
the diagrams. Example of basic transformations of mathemati-
cal equations into state-transition diagrams including elementary,
parallel, independent, or coupled state transition have been given
(31), to familiarize biologists with the general approach.

REFACTORING FROM LOW LEVEL (CODE, EQUATIONS) TO
HIGH-LEVEL (DIAGRAM) MODELING LANGUAGES
To convince the immunologist of the feasibility of this approach
as well as the benefit gained by adopting it, we sketch in the rest
of the paper how existing “low level programed” immune models
should gain in readability and accessibility by adopting a “high-
level graphical” representation under the form of “state-transition
diagrams.” We present a “refactoring” of two published models of
T cell biology in the thymus. Refactoring consists in restructuring
the code or equations of a model to improve its expression, read-
ability and extensibility, without changing its external behavior.
One model consists in cell population differentiation modeling
with differential equations (continuous model). The other one is
a discrete model. Originally it was an automata model consisting
of a discrete lattice, where each site (cell) in a given state, follows
some rules in space and time that depends on local neighbors
(18). It has been refactorized as an agent-based model (ABM),
depicting individual cell behavior through thymus differentia-
tion and migration. It would be much too long and redundant
to describe in details the behavior of these two models. We do not
pretend here to modify at all the results obtained by the running of
these models (the readers interested in these results are invited to
access the original papers). We have just reshape them into a state-
transition diagrammatic form that allows execution of simulations
reproducing the original results with similar parameter values.

POPULATION-BASED MODEL DESCRIBING THE CONVEYOR-BELT T CELL
DIFFERENTIATION IN THYMUS
The original model (8) is a compartmentalized ordinary differen-
tial equation (ODE) model, rather complex to read and manage by
immunologists. This model reflects the conceptual“conveyor belt”
model of thymic T cell differentiation, schematically represented
by immunologists by the continuous ordered transition of cells
through the different stages with time (35–37). Figure 1 represents
a biological schema, originally published and the“state-transition”
description of the model (in a UML state-transition diagram) as

it is proposed now. Although the original model is composed of
30 differential equations, the whole mathematical description and
the code that captures it, can easily be deduced and regenerated
from the Figure 1. Conversely, the mathematical equations can
be automatically generated from the state-transition diagram as
previously described (38). In essence, the model is summarized
by the input, transition and output from the thymus, by “parallel
processes” that occur concomitantly, as differentiation, cell cycle,
proliferation and death, and by exit from the thymus. Note that
these parallel processes concern various biological levels and time
scales. The “differentiation” process represents each stage of the
conveyor belt, from double negative (DN) to single positive (SP)
cells, with flows into and from a particular stage according to the
general equation:

dxi
/

dt = 2γ pxi−1 −
(
p + d + u (i)

)
xi

p, d, and u represent proliferation, death, and differentiation,
respectively, and xi represents the ith stage. The model mainly con-
sists of constant hematopoietic progenitor influx in thymus (Sn);
differentiation between thymocyte developmental phenotypes DN
and double-positive (DP) cells differentiation into CD4+ or CD8+

cells, then egression of SP stage, either, to the periphery [Us4(i),
Us8(i)]; proliferation [Pn(y), Pp(y), and Ps(y)]; positive and neg-
ative selection (a4, a8); and natural cell death (Dn, Dp, and Ds).
In parallel, the “cell cycle” is represented: the cell switches between
quiescence (G0) and cycle with division (S/M). The parameter γ

set to 1 represents the cell division into two daughter cells. There
is the possibility to induce a perturbation into the system through
the specific depletion of T cells entering the S/M cycle phase (p), if
γ is set to 0. This represents the presence or absence of a pharmaco-
genetic conditional treatment by ganciclovir that induces apopto-
sis related to the incorporation of a nucleotide analog during DNA
elongation. This rule applies to all cell populations except in late
DP quiescent cells as indicated in the schema. The “proliferation”
depicts that the daughters of a proliferating cell transit into the
next generational compartment, except during treatment (γ= 0)
when dividing cells die by apoptosis and are lost from the model.
The parameter u is an increasing function of generation (G1 to
n), making cells more likely to differentiate between phenotypic
compartments as they progress through the cell generations.

The parallelism in this graphical model largely simplifies the
original formulation of ODEs while remaining faithful to it. Hier-
archy and compound states are present again clearly reducing the
diagram clutter. Other representation of the model depicting the
differentiation with linear cell generations is also possible (31).

DISCRETE MODEL DESCRIBING THE DIFFERENTIATION ALONG THE
MIGRATION OF T CELLS IN THE THYMUS IN A 2-D ENVIRONMENT
The original model (20) is a discrete-based “cellular automata”
computer model. The model depicts the behavior of individual
thymocytes that evolve in the 2-D epithelial cell network, guided
by chemokines gradients. The current model (Figure 2) is now an
Agent-Based Model (ABM). Again, the interested reader is referred
to the original paper for a detailed understanding of the simula-
tion. Although available for download, the 40 pages of FORTRAN
source code are far from easy to understand. After refactoring, the
transition rules of any agent (thymocytes) map onto a parallel
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FIGURE 1 | Refactoring the continuous population (ODE) conveyor-belt
model of thymocyte differentiation (8) into a computer executable visual
language:The «biological schema »of thymocyte dynamics originally
proposed is transformed into a UML state-transition diagram. This
diagram represents the evolution of cell populations in the thymus,
represented by their state from DN to SP, with UML figuration of the input

(close circle arrow) and output representing death and thymus exit (open
circle arrow) and transitions (oriented arrows). Parallel processes (underlined
with red box) as differentiation, cell cycle and proliferation are depicted more
explicitly in this representation than with the original 30 mathematical
equations. Annotation with the proliferation and death rates values indicated
in each state are values from the best scenario observed in the original paper.

state-transition diagram. The conception of the state-transition
diagram, as done here, should considerably improve the under-
standing of the model (even for the original programmer) allowing
the researchers to progress further with the existing simulator. A
complete description of the model includes additional implemen-
tation details that are abstractions of the mechanisms behind cell
decisions to differentiate. The parallel state-transition diagram
represents the different simultaneous transitions taking place in
the model and coded as various cellular automata rules: a cell in
the model as it differentiates transits in successive states, it may be
bound or not to thymic epithelial cells via TCR/MHC, it moves and
may be located into one of several anatomical compartments of
the thymus. As indicated in the boxes, the gradient of chemokines
(k) orients the migration of cells for each specific stage of dif-
ferentiation, and chemokines are localized in specific areas of the
thymus. A T cell sums up the time and number of interactions
with the same or different epithelial cells. This sum value deter-
mines whether the T cell is positively or negatively selected. DP and
SP phenotypes have their own threshold parameters. They cannot
differentiate until they cross a threshold number of interactions.
If, after a given time, a DP cell has not reached this threshold,
it enters apoptosis by neglect. If the time is too long, it is neg-
atively selected. A threshold parameter simulates the phenotype
decision. With this “signal-duration” hypothesis, long duration
TCR-MHC interactions promote the CD4 phenotype and short
duration promotes the CD8 phenotype.

It is important to notice that both refactored models,
population-based and ABM can now be compared, are directly
executable and can provide simulations of physiology, pathologies,
and treatment, while not being the scope of this paper. Moreover,
their parameters can be automatically tuned to fit experimental
data. Any ABM model can also be run as a population version
to save time in simulation (McEwan et al., manuscript in prepara-
tion). Moreover, the flexibility of these diagrams allows assembling
the parts of the biological puzzle piece after piece and improving
the models.

PERSPECTIVES
As shown here, state-transition diagrams can represent high-
level semantics suitable to clarify immunological concepts and
to aid communication among interdisciplinary researchers. It
can also represent low levels quantitative information suitable
for individual-based ABM and population-based ODE model-
ing. Organization of immune knowledge using a standardized,
diagrammatic formal language should greatly improve knowl-
edge integration at multi-scale levels and sharing between experi-
mentalist and theoretician collaborators, rendering their software
more readable, scalable, and usable. We are currently working
on ways of automatically generating executable code out of these
state-transition diagrams. State-transition diagrams supports the
extension and interoperability of published models. This will help
for dynamic computational modeling of lymphocyte behavior
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FIGURE 2 | Refactoring the automata single-cell model of thymocyte
differentiation and migration (20) into a computer executable visual
language. The 40 pages of Fortran code is transformed in computer UML
state-transition diagram. This diagrams describes the experimentally
observable heterogeneity, and the biologically relevant parallel processes
(underlined in red box). As in Figure 1, input, output, and oriented
transitions are described in the state-transition diagram. Parallel
state-transitions represent the evolution of single cells in the thymus,

represented by their differentiation from DN to SP stage, sequential
binding event of TCR/MHC peptide on epithelial cells, thymic location,
egression of cell when matured. Additional qualitative abstractions for
computational model of individual cells in semi-realistic environment are
represented by the 2-D array: cells are allowed migrating sequentially
through the epithelial cell network (black network) across the various
thymic areas, guided by chemokine gradients CXCL12 (red), CCL19/CCL21
(green), S1P (blue).

in health and diseases, and for “in silico” experiments to pre-
dict and explain the puzzling T cells dynamics and the effect of
immunological perturbations.
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