
HAL Id: hal-01561052
https://hal.sorbonne-universite.fr/hal-01561052v1

Preprint submitted on 12 Jul 2017 (v1), last revised 13 Oct 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Hardware IIR Filters Computing Just Right:
Direct Form I Case Study

Anastasia Volkova, Matei Istoan, Florent de Dinechin, Thibault Hilaire

To cite this version:
Anastasia Volkova, Matei Istoan, Florent de Dinechin, Thibault Hilaire. Towards Hardware IIR Filters
Computing Just Right: Direct Form I Case Study. 2017. �hal-01561052v1�

https://hal.sorbonne-universite.fr/hal-01561052v1
https://hal.archives-ouvertes.fr

1

Hardware IIR Filters:
Direct Form I Computing Just Right

Florent de Dinechin∗, Thibault Hilaire†, Matei Istoan∗, Anastasia Volkova†
∗Université de Lyon, INRIA,

INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France
†Sorbonne Universités,

UMPC Univ. Paris 06, UMR 7606, LIP6, F-75005 Paris, France

Abstract—Linear Time Invariant (LTI) filters are often spec-
ified and simulated using high-precision software, before being
implemented in low-precision hardware. A problem is that the
hardware does not behave exactly as the simulation due to
quantization and rounding issues. This article advocates the
construction of LTI architectures that behave as if the compu-
tation was performed with infinite accuracy, then rounded only
once to the low-precision output format. From this minimalist
specification, it is possible to deduce the optimal values of many
architectural parameters, including all the internal data formats.
This requires a detailed error analysis that captures the rounding
errors, but also their infinite accumulation in infinite impulse
response filters. This error analysis then guides the design of
hardware satisfying the accuracy specification at the minimal
hardware cost. This is illustrated on the case of low-precision
LTI filters implemented in FPGA logic. This approach is fully
automated in a generic, open-source architecture generator tool
built upon the FloPoCo framework, and evaluated on a range of
Finite and Infinite Impulse Response filters.

I. INTRODUCTION

This article addresses the automatic implementation of
Linear Time Invariant (LTI) digital filters. Such filters are
ubiquitous in signal processing and control, and are typically
defined as a transfer function in the frequency domain:

H(z) =
∑nb

i=0 biz
−i

1 +
∑na

i=1 aiz
−i , ∀z ∈ C. (1)

Equivalently, the output signal y(k) and the input signal u(k)
may also be related by the following equation in the time
domain:

y(k) =

nb∑
i=0

biu(k − i)−
na∑
i=1

aiy(k − i) (2)

Equation (1) or (2), along with a mathematical definition
of each coefficient ai and bi, constitute the mathematical
specification of the filter. In this specification, the coefficients
are considered as real numbers. They may be given as explicit
formulae, as for instance in textbook pulse-shaping filters (half-
sine or root-raised cosine) used in wireless communication
[1]. The coefficients may also be provided as high-precision
floating-point numbers.

This work is partly supported by the MetaLibm project (ANR-13-INSE-
0007) of the French Agence Nationale de la Recherche.

This article deals with the implementation of such a specifi-
cation as fixed-point hardware operating on low-precision data
(typically 8 to 24 bits).

To specify such an implementation, a designer needs to
define several parameters on top of the mathematical spec-
ification. Obviously, he needs to define the finite-precision
input and output formats. He also needs to make several
architecture choices, some of which will impact the accuracy
of the computation. For instance, each real-valued coefficient
must be rounded to some internal machine format. A naive
choice is to round the coefficients to the input/output format,
but then for large filter orders (large values of na and nb)
or for sensitive filters, the result can become very inaccurate.
Some design tools for filter synthesis let the designer chose
an extended internal precision. The risk is then to obtain an
architecture that wastes area, time and power by computing
more accuracy than it can output.

The main contribution of this article is to show that such
design decisions can be automated, based on the following
simple claim:

An LTI architecture should be designed to compute results
that are accurate to the last bit, but no more.

This claim is based on two common-sense observations. On
the one hand, there is no point in designing an architecture
that outputs bits which we know hold no useful information.
On the other hand, there is no point in computing internally to
an accuracy that we will not be able to express on the output.

Section III will show how this claim may be formalized

LTI Filter
architecture
generator

(ai)1≤i<na
, (bi)0≤i<nb

input format (1, `in)

output accuracy `out
FPGA frequency

.vhdl

Functional spec. Performance spec.

Fig. 1. Interface to the proposed tool. The coefficients ai and bi are
considered as real numbers: they may be provided as high-precision numbers
from e.g. Matlab, or even as mathematical formulae such as sin(3*pi/8).
The integers `in and `out respectively denote the bit position of the least
significant bits of the input and of the result. In the proposed approach, `out
specifies output precision, but also output accuracy.

2

and developed into a complete error analysis. This enables a
very simple interface (Fig. 1) to an LTI implementation tool.
The designer may focus on those design parameters which are
relevant: the (real) coefficients, and the input/output formats.
The construction of a minimal-cost architecture of proven last-
bit accuracy can be fully automated out of this information.

As an illustration, an open-source tool demonstrates this im-
plementation process for a particular hardware target: FPGAs
based on Look-Up Tables (LUTs). Built upon the FloPoCo
project1, this tool automatically generates VHDL for LTI
filters from the specification of Fig. 1. It also benefits from
the FloPoCo back-end framework: the generated architectures
are optimized for a user-specified FPGA family, and a user-
specified frequency.

This demonstrator also incorporates several architectural
novelties. The constant multipliers are built using an evolution
of the KCM algorithm [2], [3] that manages multiplications
by a real constant without needing to truncate it first [4].
The summation is efficiently performed thanks to the BitHeap
framework recently introduced in FloPoCo [5]. These technical
choices lead to logic-only architectures suited even to low-
end FPGAs, a choice motivated by work on implementing
the ZigBee protocol standard [1] (some of the examples
illustrating this article address this standard). However, the
same philosophy could be used to build other architecture
generators, for instance exploiting embedded multipliers and
DSP blocks.

II. DEFINITIONS AND NOTATIONS

A. Fixed-point formats
There are many standards for representing fixed-point data.

The one we use in this work is inspired by the VHDL sfixed
standard. For simplicity we only deal with signed fixed-
point number, classically represented in two’s complement.
As illustrated by Figure 2, a fixed-point format is then fully
specified by two integers (m, `) that respectively denote the
position of the most significant and least significant bit (MSB
and LSB) of the data. Both m or ` can be negative if the
format includes fractional bits. The value of bit at position i is
always 2i, except for the sign bit at position m, whose weight
is −2m (two’s complement). The LSB position ` denotes the
precision of the format. The MSB position denotes its range.
Both MSB and LSB are included, therefore the size of a fixed-
point number in (m, `) is m− `+1. For instance, for a signed
fixed-point format representing numbers in (−1, 1) on 16 bits,
we have one sign bit to the left of the point and 15 bits to the
right, so (m, `) = (0,−15). More precisely, the 216 possible
numbers in that format are in [−1, 1− 2−15].

B. Approximations and errors
Due to the finite precision implementation, the exact filterH,

with exact output y, cannot usually be synthesized. An actual
filter will produce a finite precision output ỹout (see Fig. 3).
The overall error, noted εout, of an architecture that outputs a

1http://flopoco.gforge.inria.fr/

s

bit position -8-7-6-5-4-3-2-101234567

bit weight −2
m

2m−1

20 2`

Fig. 2. The bits of a fixed-point format, here (m, `) = (7,−8).

fixed-point result ỹout is defined as the difference between the
computed value and its mathematical specification:

εout(k) = ỹout(k)− y(k). (3)

More generally, in all the article, we denote ε (with some
subscript) an error, which is always defined as the difference
between a more accurate term and a less accurate one.

We also try to use tilded letters (e.g. ỹout above) for
approximate or rounded terms. This is but a convention, and
the choice is not always obvious. For instance, the u(k) in (2)
are fixed-point inputs, and most certainly the result of some
approximate measurement or computation. However, from the
point of view of the architecture, inputs are given, so they are
considered exact.

In all the following, we also note ε a bound on ε(k), i.e.
the maximum value of |ε(k)| over time.

C. Perfect and faithful rounding
The rounding of a real such as our ideal output y to the near-

est fixed-point number of precision ` is denoted ◦`(y). In the
worst case, it entails an error | ◦` (y(k))− y(k)| < 2`−1, ∀k.
For instance, rounding a real to the nearest integer (` = 0)
may entail an error up to 0.5 = 2−1. This is a limitation
of the format itself. Therefore, the best we can do, when
implementing (2) with a precision-` output, is a perfectly
rounded computation with an error bound εout = 2`−1.

Unfortunately, reaching perfect rounding accuracy may re-
quire arbitrary intermediate precision. This is not acceptable
in an architecture. We therefore impose a slightly relaxed
constraint: εout < 2`. We call this last-bit accuracy, because
the error must be smaller than the value of the last (LSB) bit
of the result. It is sometimes called faithful rounding in the
literature.

Considering that the output format implies that εout ≥ 2`−1,
it is still a tight specification. For instance, if the exact y
happens to be a representable precision-` number, then a last-
bit accurate architecture will return exactly this value.

The main reason for chosing last-bit accuracy over perfect
rounding is that, as will be shown in the sequel, it can be
reached with very limited hardware overhead. Therefore, in
terms of cost and efficiency, an architecture that is last-bit-
accurate to ` bits makes more sense than a perfectly rounded
architecture to `− 1 bits, for the same accuracy bound 2`.

The main conclusion of this discussion is the following:
specifying the output precision (`out on Fig. 1) is enough to
also specify the accuracy of the implementation.

This is a huge improvement over classical approaches, such
as the various Matlab toolboxes that generate hardware filters.

3

In such approaches, one must provide `out and various other
parameters that impact the accuracy, then measures the result-
ing accuracy, and iterate until a satisfactory implementation
has been reached. Not only is the proposed interface simpler,
it also enables architecture optimization under a strict accuracy
constraint. An optimal architecture will be an architecture that
is accurate enough, but no more.

D. Worst-case peak gain of an LTI filter
To determine the MSB position of the output (mout) and

to perform the roundoff analysis, we need to capture the
amplification of a signal by an LTI filter. This measure is called
the Worst-Case Peak-Gain (WCPG) [6], [7], and is defined as
follows. If we consider a LTI filterH with input u (bounded by
u) and output y, then the WCPG of H, denoted 〈〈H〉〉 is defined
as the largest peak value of the output y over all possible input
u with unitary peak value, i.e.

〈〈H〉〉 = max
||u||∞=1

||y||∞ (4)

where ||u||∞ is defined as ||u||∞ = max
k
|u(k)|.

Due to the linearity of the filter H and the property of the
impulse response, the output y(k) is a convolution between
the impulse response and the input:

y(k) =

k∑
l=0

h(l)u(k − l) (5)

So,

|y(k)| ≤
k∑
l=0

|h(l)|u (6)

with equality if ∀0 ≤ l ≤ k u(k − l) = sign(h(l))u. Finally,
the WCPG can be computed as the `1-norm of the impulse
response h of H, i.e.

〈〈H〉〉 =
∞∑
k=0

|h(k)|. (7)

Remark: the WCPG cannot be computed if the filterH is not
Bounded Input Bounded Output (BIBO) stable [8], i.e. if the
moduli of the poles of its transfer function are not all strictly
smaller than 1 (otherwise, that makes its impulse response not
absolutely summable).

The bound 〈〈H〉〉u on the output is quite conservative in
practice, but it is always possible to exhibit an input u(k)
bounded by u such that the corresponding output is arbitrary
close to its bound 〈〈H〉〉u.

In this work, we compute WCPGs using the reliable algo-
rithm exhibited in [9].

III. ERROR ANALYSIS OF DIRECT-FORM LTI FILTER
IMPLEMENTATIONS

This section shows how to obtain an implementation of the
mathematical definition (2) in fixed-point with last-bit accuracy
on the computed result with respect to this mathematical
definition. The two filters are exhibited on Figure 3.

Hu(k) y(k)

H̃u(k) /
(0, `in)

ỹout(k)/
(mout, `out)

Fig. 3. The ideal filter (top) and its implementation (bottom)

Since the considered filters are linear, we can assume
without loss of generality that the MSB of the input is equal
to 0. The MSB of the output mout is therefore defined by:

mout = dlog2 〈〈H〉〉e . (8)

Technically, it may happen, rarely, that rounding errors
propagate all the way to the MSB. Since these errors will
be bounded by 2`out−1, the formula to be used is actually
mout =

⌈
log2

(
〈〈H〉〉+ 2`out−1

)⌉
. In addition, the implemen-

tation computes for (8) a slight but safe overestimation [10]
of 〈〈H〉〉.

Then, instead of computing y(k) with equation (2), we
will compute an approximation ỹ(k) of the involved Sum
of Product by Constants (SOPC) using some internal format
(mout, `ext)

ỹ(k) ≈
nb∑
i=0

biu(k − i)−
na∑
i=1

aiỹ(k − i) (9)

and the final output ỹout(k) will be some rounding of this
intermediate value ỹ(k). This computations scheme is summed
up by the abstract architecture of Figure 4.

Formally, we refine the definition of the overall evaluation
error as

εout(k) = ỹout(k)− y(k) (10)

Let us now decompose this error into its sources.

A. Final rounding of the internal format
The architecture needs to internally use a fixed-point format

that offers extended precision with respect to the input/output
format. This extended format (mout, `ext) offers additional LSB
bits (sometimes called guard bits) in which rounding errors
may accumulate without touching the output bits. The sequel
will show more formally how to compute this extended format
in an optimal way. Eventually we need to round the interme-
diate result in this extended format to the output format (in
the “final round” box on Figure 4). This entails an additional
error εf, formally defined as

εf(k) = ỹout(k)− ỹ(k) . (11)

This error may be bounded by εf = 2`out−1, as round to nearest
is easy to achieve here.

Remark that we feed back the intermediate result ỹ(k)
(on the extended format), not the output result ỹout(k). This
prevents an amplification of εf(k) by the feedback loop that
could compromise the goal of faithful rounding.

4

SOPC

u(k) /
(0, `in)

b0 b1 b2 b3

u(k − 1)

+

u(k − 2)

+

u(k − 3)

+ final
round/

(mout, `ext)̃

y(k)
/

(mout, `out)
ỹout(k)

a1

+
-

ỹ(k − 1)

a2

+
-

ỹ(k − 2)

a3

+
-

ỹ(k − 3)

Fig. 4. Abstract architecture for the direct form realization of an LTI filter

B. Rounding and quantization errors in the sum of products
As the coefficients ai and bi are real numbers, they must

be rounded to some finite value (quantization) before the
multiplication can take place. Then, the multiplication and the
summation may themselves involve rounding errors. Managing
all these rounding errors will be the subject of section IV,
which will show how to build an architecture that achieves a
given accuracy goal at the minimum cost. For now, we may
summarize all these errors in a single term εr(k) mathemati-
cally defined as

εr(k) = ỹ(k)−

(
nb∑
i=0

biu(k − i)−
na∑
i=1

aiỹ(k − i)

)
(12)

This equation should be read as follows: εr(k) measures
how much a result ỹ(k) computed by the SOPC architecture
diverges from that computed by an ideal SOPC (that would
use the infinitely accurate coefficients ai and bi, and be free
of rounding errors), this ideal SOPC being applied on the same
inputs u(k − i) and ỹ(k − i) as the architecture.

C. Error amplification in the feedback loop
The input signal u(k) can be considered exact, in the sense

that whatever error it may carry is not due to the filter under
consideration. However, the feedback signal ỹ(k) that is input
to the computation (see Figure 4) differs from the ideal y(k).
Let us now define εt(k) as the error of ỹ(k) with respect to
y(k):

εt(k) = ỹ(k)− y(k). (13)

This error is potentially amplified by the architecture.
Using (13), let us rewrite ỹ(k− i) in the right-hand side of

(12):

εr(k) = ỹ(k)−
nb∑
i=0

biu(k − i) +
na∑
i=1

aiy(k − i)

+

na∑
i=1

aiεt(k − i)

= ỹ(k)− y(k) +
na∑
i=1

aiεt(k − i) (using (2))

= εt(k) +

na∑
i=1

aiεt(k − i) (using (13)). (14)

If we rewrite equation (14) as

εt(k) = εr(k)−
na∑
i=1

aiεt(k − i) (15)

we obtain the equation of an LTI filter inputting εr(k) and
outputting εt(k), whose transfer function is

Hε(z) =
1

1 +
∑na

i=1 aiz
−i . (16)

Figure 5 illustrates this relationship between the ideal output
y, the implemented output ỹout and the different error terms.

H
u(k) y(k)

Hε
εr(k) εt(k)

+
ỹ(k)

+
ỹout(k)

εf(k)

Fig. 5. A signal view of the error propagation with respect to the ideal filter

We can now apply the Worst-Case Peak-Gain to Hε with
input εr in order to bound εt by

εt = 〈〈Hε〉〉 εr . (17)

Therefore, we can also keep εt as low as needed by
increasing the internal precision `ext to reduce εr.

D. Putting it all together
We may now rewrite (10) as

εout(k) = ỹout(k)− ỹ(k) + ỹ(k)− y(k)
= εf(k) + εt(k) (18)

hence

εout = εf + εt

= εf + 〈〈Hε〉〉 εr (19)

The objective of faithful rounding translates to the accuracy
constraint εout < 2`out . The final rounding implies an error
bounded by εf = 2`out−1 (round to nearest). To achieve faithful

5

SOPC
architecture
generator

(ci)1≤i<N

input formats (xi, `i)1≤i<N

output format (mr, `r)

.vhdl

Fig. 6. Interface to a sum-of-product-by-constant generator

rounding, it therefore suffices that the error εt of the filter
before final rounding is bounded by 2`out−1. This leads to the
following constraint on εr:

εr <
2`out−1

〈〈Hε〉〉
. (20)

This constraint finally translates to the LSB `ext of the
intermediate result as follows. We assume that we may build
an SOPC faithful to any value of `ext: for this SOPC we will
have εr < 2`ext .

Therefore, the constraint (20) holds if

2`ext <
2`out−1

〈〈Hε〉〉
. (21)

and the optimal value of `ext that ensures this constraint is

`ext = `out − 1− dlog2 〈〈Hε〉〉e . (22)

The implementation of this error analysis actually uses a
guaranteed overestimation of 〈〈Hε〉〉 [9]. This ensures that
rounding errors in the the computation of 〈〈Hε〉〉 itself do
not jeopardize the accuracy. Because of this, very rarely, the
computed value of `ext may be one less than the mathematical
value as defined per (22). This has no impact in practice.

Meanwhile, the MSB of the internal format is the same as
that of the result (mout). Some overflows may occur in the
internal computation, but since the computation is performed
modulo 2mout , the final result will be correct.

IV. SUM OF PRODUCTS COMPUTING JUST RIGHT

A. Problem statement
In this section, we address the sub-problem of building a

faithfully accurate Sum of Product by Constants (SOPC), i.e.
an architecture computing

r =

N∑
i=1

cixi (23)

for a set of real constants ci, and a set of fixed-point inputs
xi.

In previous work [11], all the xi shared the same format, as
is the case in an FIR filter. In the context of an LTI filter, this
is no longer true: on Figure 4, we have a single SOPC where
the ci may be ai or bi, and the xi may be either some delayed
ui, or some delayed yi. The format of the yi, as determined
by previous section, is in general different from that of the ui.

Therefore, the present work uses a more generic interface to
the SOPC generator, where the format of each input may be
specified independently. This interface is shown on Figure 6.

x0 =
x1 =
x2 =
x2 =
c0 =
c1 =
c2 =
c3 =

11100101110101 00100100011
11111001000010011001 01111110101
100011110001011101 11110000110
1001001000010111 01000011001

p̃0 ≈ c0x0
+p̃1 ≈ c1x1
+p̃2 ≈ c2x2
+p̃3 ≈ c3x3
= r̃ext

r̃ = dr̃extc
2`r 2`r−g

Fig. 7. Alignment of the cixi for fixed-point xi and real ci

Specifically, the input LSBs are provided as `i. For the input
MSBs, instead of mi, the interface uses the maximum absolute
value xi of each xi, which provides a finer information that
will be exploited in the sequel.

Another difference with [11] is that the output MSB mr

is input to the generator. An overestimation of mr could be
computed out of the ci and the input formats, as in [11].
However, the worst case peak gain of an IIR filter provides
a much finer value of mr, and in this case we want to provide
this value to the SOPC generator.

Here again, the weight `r of the least significant bit of the
SOPC output also specifies the accuracy of this SOPC: the
present section shows how to build an SOPC accurate to 2`r .
This is what was assumed in the previous section with `r =
`ext.

B. Error analysis for a faithfully rounded SOPC

The fixed-point summation of the various terms cixi is
depicted on Fig. 7. For this figure, we take as an example the
4-input SOPC of an IIR of order 2 with arbitrary coefficients:
it is a smaller version of the one depicted on Figure 4, where
x0 and x1 are respectively u(k) and u(k − 1), while x2 and
x3 are respectively ỹ(k − 1) and ỹ(k − 2). The output r will
become ỹ(k).

As shown on the figure, a real ci may have an infinite
number of bits. Therefore, even though the xi are finite, each
product cixi potentially also has an infinite number of bits.

The MSB of each product cixi is easily determined out of
the value of ci itself and xi: |xi| ≤ xi, therefore |cixi| ≤ cixi,
so the MSB of cixi will be dlog2(|cixi|)e. This is where using
xi instead of an MSB specification for xi can save one bit. As
previously, to anticipate possible overflows due to rounding,
the implementation must add, before taking the log2, an upper
bound of its rounding error. This bound will be detailed in the
sequel.

Negative cixi must have have their sign extended to the
MSB of the sum, so it could seem that Figure 7 only shows
the cases when all the cixi are positive. Here we must explain
another technicality. The sign extension ss...ssxxxxxxx of

6

a signed number sxxxx, where s is the sign bit, may be
performed as follows [12]:

00...0sxxxxxxx
+ 11...110000000
= ss...ssxxxxxxx

Here s is the boolean complement of s. The reader may
check this equation in the two cases, s = 0 and s = 1. Now the
variable part sxxxxxxx has the same MSB as in the positive
case, and this is what Figure 7 shows.

This transformation is not for free: we need to add the
constant 11...110000000. Fortunately, in the context of a sum-
mation, we may add in advance all these constants together.
Thus the overhead cost of two’s complement in a summation is
limited to the addition of one single constant. In the following,
we will use another trick that allows to merge this addition for
free in the computations of one of the cixi.

Performing all the internal computations to the output pre-
cision `r would in general not be accurate enough to achieve
faithful rounding to precision `r, due to the accumulation of
rounding errors. The solution is, as previously, to use a slightly
extended precision `r − g for the internal computation: g is a
number of “guard” bits. As this extended precision will require
more hardware, we now discuss how to compute the extended
precision that will minimize this hardware overhead.

We assume that we are able to build hardware constant
multipliers that compute some approximation

p̃i = cixi + εi (24)

of the mathematical product cixi. The LSB of each p̃i is `r−g
(see Figure 7), and we assume that the rounding error εi of
each of these multipliers is bounded by some εmult(g):

εi < εmult(g) . (25)

The value of εmult(g) depends on the multiplier technique
used (examples will be given in the sequel), but it can be made
as small as needed by increasing g.

The output value r̃ is computed in an architecture as the
sum of the p̃i. This summation, as soon as it is performed
with adders of the proper size, will entail no error. Indeed,
fixed-point addition of numbers of the same format may entail
overflows (these have been taken care of above), but no
rounding error. This enables us to write

r̃ext =

N−1∑
i=0

p̃i, (26)

therefore the total rounding error of the summation is
defined as

εsum =

N−1∑
i=0

p̃i −
N−1∑
i=0

cixi =

N−1∑
i=0

εi . (27)

As each εi is bounded by εmult(g), in the worst case the sum
of the εi can come close to Nεmult(g). However, this error term
may be made as small as needed by increasing g: there exists
some g such that Nεmult(g) < 2`r−1.

The intermediate result now has g more bits at its LSB than
we need (Figure 7). It therefore needs itself to be rounded
to the target format. This is easy, using the identity ◦(x) =
bx+ 1

2c: rounding to precision 2−`r is obtained by first adding
2`r−1 (this is a single bit) then discarding bits lower than 2−`r .
However, in the worst case, this will entail an error εfinal rounding
of at most 2`r−1.

To sum up, the overall error of a faithful architecture SOPC
is therefore

r̃ −
N−1∑
i=0

cixi = εfinal rounding +

N−1∑
i=0

εi (28)

< 2`r−1 +Nεmult(g) (29)

and this error can be made smaller than 2−`r as soon as we
are able to build multipliers such that

Nεmult(g) < 2`r−1 . (30)

All the previous was quite independent of the target tech-
nology: it could apply to ASIC synthesis as well as FPGA.

The remainder of this section, conversely, is more focused
on a particular technology: LUT-based SOPC architectures
for FPGAs. It explores architectural means to reach last-bit
accuracy at the smallest possible cost on this technology.

On most FPGAs, the basic logic element is the look-up-table
(LUT), a small memory addressed by α bits. For the current
generation of FPGAs, α = 6.

C. Perfectly rounded constant multipliers
As we have a finite number of possible values for xi, it is

possible to build a perfectly rounded multiplier by simply tab-
ulating all the possible products. The precomputation of table
values must be performed with large enough accuracy (using
multiple-precision software) to ensure the correct rounding of
each entry. This even makes perfect sense for small input
precisions on recent FPGAs: if xi is a 6-bit number, each
output bit of the perfectly rounded product cixi will consume
exactly one 6-input LUTs. For 8-bit inputs, each bit consumes
only 4 LUTs. In general, for (6 + k)-bit inputs, each output
bit consumes 2k 6-LUTs: this approach scales poorly to larger
inputs. However, perfect rounding to precision `r + g means
a maximum error smaller than an half-LSB: εi = 2`r−g−1.
Note that for real-valued ci, this is more accurate than using
a perfectly rounded multiplier that inputs ◦`r (ci): this would
accumulate two successive rounding errors.

D. Table-based constant multipliers for FPGAs
For larger precisions, we may use a variation of the KCM

technique, due to Chapman [2] and further studied by Wirthlin
[3]. The original KCM method addresses the multiplication by
an integer constant. We here present a variation that performs
the multiplication by a real constant.

This method consists in breaking down the binary decom-
position of an input xi into D chunks dik of α bits. With the
input size being mi − `i + 1, we have

D = d(mi − `i + 1)/αe (31)

7

(for instance D = 3 on Figure 8). Mathematically, this is
written

xi =

D∑
k=1

2−kαdik where dik ∈ {0, ..., 2α − 1} . (32)

Another point of view is that the input xi is considered as a
radix-2α number, the dik being its digits. For instance with
α = 4 we obtain the classical hexadecimal writing of xi.

The product becomes

cixi =

D∑
k=1

2−kαcidik . (33)

Since each chunk dik consists of α bits, where α is the LUT
input size, we may tabulate each product cidik in a look-up
table that will consume exactly one α-bit LUT per output bit.
This is depicted on Figure 8. Of course, cidik has an infinite
number of bit in the general case: as previously, we will round
it to precision 2−`r−g . In all the following, we define t̃ik =
◦`r−g(cidik) this rounded value (see Figure 9).

Contrary to classical (integer) KCM, all the tables do not
consume the same amount of resources. The factor 2−kα in
(33) shifts the MSB of the table output t̃ik, as illustrated by
Figure 9.

Here also, the fixed-point addition is errorless. The error of
such a multiplier therefore is the sum of the errors of the D
tables, each perfectly rounded:

εi < D × 2`r−g−1 . (34)

This error is proportional to 2−g , so can made as small as
needed by increasing g.

E. Computing the sum
Instead of considering each KCM in isolation, it is better to

consider the summation at the SOPC level. Indeed, our faithful

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

Ti1 : ◦`r (ci × di1)

di1

Ti2

di2

Ti3

di3

+

/qi + g

t̃i1

/qi − α+ g

t̃i2

/qi − 2α+ g

t̃i3

/qi + g

p̃i ≈ cixi

Fig. 8. The FixRealKCM method when xi is split in 3 chunks

t̃i1 ≈ cidi1 xxxxxxxxxxxxxxxxxxxxxxxxxx...

t̃i2 ≈ cidi2 xxxxxxxxxxxxxxxxxxxx...

t̃i3 ≈ cidi3 xxxxxxxxxxxxxx...

2`r−gα bitsα bits

Fig. 9. Aligment of the terms in the KCM method

SOPC result is now obtained by computing a double sum:

ỹ = ◦p

(
N−1∑
i=0

D∑
k=1

2−kαt̃ik

)
(35)

There, the errors of each t̃ik add up into an overall SOPC
error, out of which the value of g can be computed.

Before that, let us also observe that it is often possible to
use a finer bound than (34). Indeed, some constant multipliers
entail no error: it is for instance the case for multiplication by
0 and by 1. Such trivial cases will happen quite often if the
proposed SOPC generator is used as a backend for a larger
architecture generator, as is the case in the present article.
Besides, such trivial cases deserve specific treatment since their
implementation is much simpler than the generic case.

Therefore, the implementation first invokes, for each con-
stant, a method that returns the maximum error that will be
entailed by a multiplier by this constant. This error is expressed
in units in the last place (ulp), whatever the value of g will
be. The implementation sums these errors, then uses this sum
to compute the value of g that will enable faithful rounding.
Once this g has been determined it may proceed with the actual
construction of the multipliers.

Here is the list of cases managed by the implementation:
• if ci = 0, then εi = 0.
• if |ci| = 1 or more generally if |ci| = 2k, then εi = 0

if k + li ≥ `r (shift of xi such that all the bits will be
kept), otherwise εi = 1 (shift to the right, losing some
bits due to truncation). Here we may overestimate the
error, because the test should be if k + li ≥ `r − g, but
we don’t know g yet.

• In the general case when we use the generic KCM
architecture, εi = D/2 (we have D tables, each entailing
one half-ulp of error).

One final technicality: we have so far assumed that the
number of tables D is computed out of the input size, using
(31). However, for small constants, it may happen that the con-
tribution of the lower tables can be neglected. To understand
this, consider Figure 9: each table output is shifted right if ci is
small. Therefore, the implementation will not generate a table
if its MSB is smaller than `r−g−1. The error analysis remains
valid in this case, although the source of the error is no longer
the rounding of the table, but its being neglected altogether. If
more than one table is fully neglected, this error analysis was
slightly pessimistic (we could have a single half-ulp for all the
neglected tables), but it remains safe.

F. Computing the sum
In FPGAs, each bit of an adder also consumes one LUT.

Therefore, in a KCM architecture, the LUT cost of the
summation is expected to be roughly proportional to that
of the tables. However, using the associativity of fixed-point
addition, this summation can be implemented very efficiently
using compression techniques developed for multipliers [12]
and more recently applied to sums of products [13], [14]. In
this work, we may use the bit-heap framework introduced in
[5]. Each table throws its t̃ik to a bit-heap that is in charge

8

Half-Sine Root-Raised Cosine

Fig. 10. Example bit heaps for simple FIR filters generated for Virtex-6

Bit-heap based
summation architecture

x0

T01

/α

T02

/α

T03

/α

x1

T11

/α

T12

/α

T13

/α

x2

T21

/α

T22

/α

T23

/α

x3

T31

/α

T32

/α

T33

/α

/`
y

Fig. 11. KCM-based SOPC architecture for N = 4, each input being split
into 3 chunks

of performing the final summation. The bit-heap framework
is naturally suited to adding terms with various MSBs, as
is the case here. It also manages two’s complement numbers
efficiently – the interested reader is referred to [5] for details.

This is illustrated on Fig. 10. On these figures, we have
binary weights on the horizontal axis, and the various terms to
add on the vertical axis. These figure are generated by FloPoCo
before bit heap compression.

The shape of the bit heap reflects the tik, which depend
on the ci. Some bit heaps are smaller due to special constant
optimization.

G. Final rounding by truncation
There is one more term to add to the summation of (35):

the rounding bit 2`r−1, necessary for the final rounding by
truncation. Its value is added to one of the tables.

Finally, the typical architecture generated by our tool is
depicted by Figure 11.

V. IMPLEMENTATION AND RESULTS

The method described in this paper is implemented as the
FixIIR operator of FloPoCo. FixIIR offers the interface
shown on Fig. 1, and inputs the ci as arbitrary-precision
numbers.

To test FixIIR, a small Python script uses numpy and
scipy.signal to generate the double-precision coefficients
for Butterworth filters. Such wrappers can easily be written for
other classical filter families.

fc guard bits Speed Area
0.6 7 175 MHz 170R + 1388L
0.7 8 168MHz 180R + 1621L
0.8 10 163MHz 190R + 1912L
0.9 15 169 MHz 215R + 2623L
0.95 19 159MHz 235R + 3141L

TABLE I. NEEDED GUARD BITS AND SYNTHESIS RESULTS FOR SOME
12-BIT, 5TH-ORDER BUTTERWORTH FILTERS.

Thanks to this script, several 5th-order Butterworth low-
pass filters were generated for 12-bit signals, with increasingly
values of the normalised cutoff frequency fc. Table I shows
how the number of guard bits computed by FixIIR, and the
corresponding area and operating frequency.
FixIIR, like most FloPoCo operators, was designed with a

testbench generator [15]. All these operators reported here have
been checked for last-bit accuracy by extensive simulation.

These results were obtained for Virtex-6 (6vhx380tff1923-3)
using ISE 14.7.

CONCLUSION

This paper claims that sum-of-product architectures should
be last bit accurate, and demonstrates that this has two positive
consequences: It gives a much clearer view on the trade-off
between accuracy and performance, freeing the designer from
several difficult choices. It actually leads to better solutions
by enabling a “computing just right” philosophy. All this is
demonstrated on an actual open-source tool that offers the
highest-level interface.

Future work include several technical improvements to the
current implementation, such as the exploitation of symmetries
in the coefficients or optimization of the bit heap compression.

Beyond that, this work opens many perspectives.
As we have seen, fixed-point sum of products and sum of

squares could be optimized for last-bit accuracy using the same
approach.

We have only studied one small corner of the vast liter-
ature about filter architecture design. Many other successful
approaches exist, in particular those based on multiple constant
multiplication (MCM) using the transpose form (where the
registers are on the output path) [16], [17], [18], [19], [20]. A
technique called Distributed Arithmetic, which predates FPGA
[21], can be considered a generalization of the KCM technique
to the MCM problem. From the abstract of [22] that, among
other things, compares these two approaches, “if the input
word size is greater than approximately half the number of
coefficients, the LUT based multiplication scheme needs less
resources than the DA architecture and vice versa”. Such a
rule of thumb (which of course depends on the coefficients
themselves) should be reassessed with architectures computing
just right on each side. Most of this vast literature treats
accuracy after the fact, as an issue orthogonal to architecture
design.

A repository of FIR benchmarks exists, precisely for the pur-
pose of comparing FIR implementations [23]. Unfortunately,

9

the coefficients there are already quantized, which prevents
a meaningful comparison with our approach. Few of the
publications they mention report accuracy results. However,
cooperation with this group should be sought to improve on
this.

We have only considered here the implementation of a filter
once the ci are given. Approximation algorithms, such as
Parks-McClellan, that compute these coefficients, essentially
work in the real domain. The question they answer is “what is
the best filter with real coefficients that matches this specifica-
tion”. It is legitimate to wonder if asking the question: “what
is the best filter with low-precision coefficients” could not lead
to a better result.

Still in filter design, the approach presented here should be
extended to infinite impulse response (IIR) filters. There, a
simple worst-case analysis (as we did for SOPC) doesn’t work
due to the infinite accumulation of error terms. However, as
soon as the filter is stable (i.e. its output doesn’t diverge), it
is possible to derive a bound on the accumulation of rounding
errors [24]. This would be enough to design last-bit accurate
IIR filters computing just right.

REFERENCES

[1] IEEE Std 802.15.4-2006, IEEE Standard for Information technology–
Telecommunications and information exchange between systems– Local
and metropolitan area networks– Specific requirements– Part 15.4:
Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (WPANs),
2006.

[2] K. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993 design
idea winner),” EDN magazine, no. 10, p. 80, May 1993.

[3] M. Wirthlin, “Constant coefficient multiplication using look-up tables,”
Journal of VLSI Signal Processing, vol. 36, no. 1, pp. 7–15, 2004.

[4] F. de Dinechin, H. Takeugming, and J.-M. Tanguy, “A 128-tap complex
FIR filter processing 20 giga-samples/s in a single FPGA,” in 44th
Asilomar Conference on Signals, Systems & Computers, 2010.

[5] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. Illyes, and B. Popa,
“Arithmetic core generation using bit heaps,” in Field-Programmable
Logic and Applications, Sep. 2013.

[6] V. Balakrishnan and S. Boyd, “On computing the worst-case peak gain
of linear systems,” Systems & Control Letters, vol. 19, pp. 265–269,
1992.

[7] S. P. Boyd and J. Doyle, “Comparison of peak and rms gains for
discrete-time systems,” Syst. Control Lett., vol. 9, no. 1, pp. 1–6, June
1987.

[8] T. Kailath, Linear Systems. Prentice-Hall, 1980.
[9] A. Volkova, T. Hilaire, and C. Lauter, “Reliable evaluation of

the Worst-Case Peak Gain matrix in multiple precision,” in IEEE
Symposium on Computer Arithmetic, 2015. [Online]. Available:
http://hal.upmc.fr/hal-01083879

[10] A. Volkova, T. Hilaire, and C. Q. Lauter, “Determining fixed-point for-
mats for a digital filter implementation using the worst-case peak-gain
measure,” in Asilomar Conference on Signals, Systems and Computers,
November 2015.

[11] F. de Dinechin, M. Istoan, and A. Massouri, “Sum-of-product
architectures computing just right,” in Application-Specific Systems,
Architectures and Processors (ASAP). IEEE, 2014. [Online]. Available:
http://hal.inria.fr/hal-00957609

[12] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[13] H. Parendeh-Afshar, A. Neogy, P. Brisk, and P. Ienne, “Compressor tree
synthesis on commercial high-performance FPGAs,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 4, no. 4, 2011.

[14] R. Kumar, A. Mandal, and S. P. Khatri, “An efficient arithmetic sum-of-
product (SOP) based multiplication approach for FIR filters and DFT,”
in International Conference on Computer Design (ICCD). IEEE, Sep.
2012, pp. 195–200.

[15] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, Jul. 2011.

[16] M. Potkonjak, M. Srivastava, and A. Chandrakasan, “Efficient sub-
stitution of multiple constant multiplications by shifts and additions
using iterative pairwise matching,” in ACM IEEE Design Automation
Conference, San Diego, CA USA, 1994, pp. 189–194.

[17] N. Boullis and A. Tisserand, “Some optimizations of hardware multipli-
cation by constant matrices,” IEEE Transactions on Computers, vol. 54,
no. 10, pp. 1271–1282, 2005.

[18] M. Mehendale, S. D.Sherlekar, and G. Venkatesh, “Synthesis of
multiplier-less FIR filters with minimum number of additions,” in
IEEE/ACM International Conference on Computer-Aided Design, San
Jose, CA USA, 1995, pp. 668–671.

[19] Y. Voronenko and M. Püschel, “Multiplierless multiple constant multi-
plication,” ACM Trans. Algorithms, vol. 3, no. 2, 2007.

[20] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Exact and approximate
algorithms for the optimization of area and delay in multiple constant

10

multiplications,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 6, pp. 1013–1026, 2008.

[21] S. White, “Applications of distributed arithmetic to digital signal
processing: A tutorial review,” IEEE ASSP Magazine, no. 3, pp. 4–19,
Jul. 1989.

[22] M. Kumm, K. Möller, and P. Zipf, “Dynamically reconfigurable FIR
filter architectures with fast reconfiguration,” in Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC). IEEE, Jul. 2013.

[23] “FIR suite,” http://www.firsuite.net/.
[24] B. Lopez, T. Hilaire, and L.-S. Didier, “Sum-of-products evaluation

schemes with fixed-point arithmetic, and their application to IIR filter
implementation,” in Design & Architectures for Signal & Image Pro-
cessing. IEEE, Oct. 2012.

