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Abstract—Linear Time Invariant (LTI) filters are often spec-
ified and simulated using high-precision software, before being
implemented in low-precision fixed-point hardware. A problem is
that the hardware does not behave exactly as the simulation due
to quantization and rounding issues. This article advocates the
construction of LTI architectures that behave as if the compu-
tation was performed with infinite accuracy, then rounded only
once to the low-precision output format. From this minimalist
specification, it is possible to deduce the optimal values of many
architectural parameters, including all the internal data formats.
This requires a detailed error analysis that captures not only the
rounding errors but also their infinite accumulation in recursive
filters. This error analysis then guides the design of hardware
satisfying the accuracy specification at the minimal hardware
cost. We detail this generic methodology for the case of low-
precision LTI filters in the Direct Form I implemented in FPGA
logic. This approach is demonstrated by a fully automated and
open-source architecture generator tool, and validated on a range
of Infinite Impulse Response filters.

I. INTRODUCTION

This article addresses the automatic implementation of
Linear Time Invariant (LTI) digital filters. Such filters are
ubiquitous in signal processing and control, and are typically
defined in the frequency domain as a transfer function H(z):

H(z) =

nb∑
i=0

biz
−i

1 +
na∑
i=1

aiz−i
, ∀z ∈ C. (1)

where na ≥ nb and na is the order of the filter.
In the time domain, a filter specified with H(z) may be

evaluated with various algorithms [1]. In this work we consider
the Direct Form I (DFI) [1] algorithm that relates the output
signal y(k) and the input signal u(k) in the following way:

y(k) =

nb∑
i=0

biu(k − i)−
na∑
i=1

aiy(k − i). (2)

The DFI algorithm is the simplest algorithm for the evalua-
tion of Infinite Impulse Response (IIR) filters, since it directly
uses the coefficients of the transfer function. Small-order
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Fig. 1. Interface of the proposed tool.

DFIs are often used as basic building blocks for second-order
sections algorithms [1]. Due to its high numerical sensitivity,
DFI is rarely used for high order filters. A contribution of
this article is a methodology that protects designers from such
sensitivity issues. This methodology is not restricted to DFI
and could be applied to other filter algorithms (cascade and/or
parallel decomposition, state-space, ρ-operator forms [2], etc.).
This article focuses on DFI because of its simplicity.

Equation (1) or (2), along with a definition of each coef-
ficient ai and bi, constitute the mathematical specification of
the filter. This article deals with the implementation of such
a specification as fixed-point hardware operating on low- to
moderate-precision data (typically 8 to 24 bits).

To specify such an implementation, a designer needs to
define several parameters on top of the mathematical spec-
ification. Obviously, he needs to define the finite-precision
input and output formats. He also needs to make several
architecture choices, some of which will impact the accuracy
of the computation.

For instance, each real-valued coefficient must be rounded to
some internal machine format. A naive choice is to round the
coefficients to the input/output format, but then, for sensitive
filters, the result can become very inaccurate. Some design
tools for filter synthesis let the designer chose an extended
internal precision. The risk is then to obtain an architecture
that internally computes more accurately than it can output,
thus wasting area, time and power.

The main contribution of this article is to show that such
design decisions can be automated into a push-button tool with
the minimalistic interface from Figure 1.

The method for this is to generate DFI architectures which
obey the following specification: they behave as if the com-
putation was performed with infinite accuracy with respect
to (2), then rounded only once to the low-precision output
format. This is achieved by a complete and rigorous analysis
of the rounding errors and their propagation through the



2

feedback loop. This error analysis enables the computation
of architectural parameters that ensure the specification at the
minimal hardware cost.

With such a tool, the designer may focus on those design
parameters which are relevant: the (real) coefficients, and the
input/output formats.

All the above is demonstrated in this paper as an open source
tool that builds DFI implementations optimized for a particular
hardware target: FPGAs based on Look-Up Tables (LUTs).
Built upon the FloPoCo project1, this tool automatically gen-
erates VHDL for DFI filters from the specification of Fig. 1.

The automated and reliable error analysis builds upon recent
work on bounding error propagation through filters [3], [4].

This new tool also incorporates several architectural nov-
elties. The constant multipliers are built using an evolution
of the KCM algorithm [5], [6] that manages multiplications
by a real constant without needing to truncate it first [7].
The summation is efficiently performed thanks to the BitHeap
framework recently introduced in FloPoCo [8], [9]. These
technical choices lead to logic-only architectures suited even to
low-end FPGAs, a choice motivated by work on implementing
the ZigBee protocol standard [10]. However, the same philos-
ophy could be used to build other architecture generators, for
instance exploiting embedded multipliers and DSP blocks.

Section II provides some prerequisites on the target arith-
metic and error models. A complete methodology on the
rigorous error analysis is presented in the Section III. Sec-
tion IV gives details on the architecture of the arithmetic
units and their rounding error analysis. Finally, Section V
demonstrates implementation results, and Section VI discusses
the perspectives of this work.

II. DEFINITIONS AND NOTATIONS

A. Fixed-point formats

There are many standards for representing fixed-point data.
The one we use in this work is inspired by the VHDL sfixed
standard. For simplicity we only deal with signed fixed-point
numbers, classically represented in two’s complement. As
illustrated by Figure 2, a fixed-point format is then fully
specified by two integers (m, `) that denote the positions of
the most and least significant bits (MSB and LSB) respectively.
Both m and ` can be negative if the format includes fractional
bits. The weight of the bit at position i is always 2i, except
for the bit at position m, whose weight is −2m (due to two’s
complement representation). The LSB position ` denotes the
precision of the format. The MSB position denotes its range.
The wordlength of the fixed-point number in the format (m, `)
is m − ` + 1. Notate, that the range of numbers that can be
represented with the format (m, `) is [−2m, 2m − 2`]. For
instance, for a signed fixed-point format representing numbers
in (−1, 1) on 16 bits, we have one “sign bit” to the left of the
point and 15 bits to the right, so (m, `) = (0,−15). Then, we
can represent numbers in [−1, 1− 2−15] with a step 2−15.

1http://flopoco.gforge.inria.fr/, version 4.1.3.

s

bit position -8-7-6-5-4-3-2-101234567

bit weight −2
m

2m−1

20 2`

Fig. 2. The bits of a two’s complement fixed-point format,
here (m, `) = (7,−8).

Hu(k) y(k)

H̃u(k) /
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ỹout(k)/
(mout, `out)

Fig. 3. The ideal filter (top) and its implementation (bottom)

B. Approximations and errors
Due to the finite precision implementation, the exact filterH,

with exact output y, cannot usually be synthesized. An actually
implemented filter will produce a finite precision output ỹout
(see Fig. 3). The overall error, noted εout, of an architecture that
outputs a fixed-point result ỹout is defined as the difference be-
tween the computed value and its mathematical specification:

εout(k) = ỹout(k)− y(k). (3)

More generally, throughout the article, we denote ε (with
some subscript) an error, which is always defined as the
difference between a more accurate term and a less accurate
one.

We also try to use tilded letters (e.g. ỹout above) for
approximate or rounded terms. This is but a convention, and
the choice is not always obvious. For instance, the u(k) in (2)
are fixed-point inputs, and most certainly the result of some
approximate measurement or computation. However, from the
point of view of the architecture, inputs are given, so they are
considered exact.

In all the following, we also note ε a bound on ε(k), i.e.
the maximum value of |ε(k)| over time.

C. Perfect rounding vs. last-bit accuracy
The rounding of a real such as our ideal output y to the near-

est fixed-point number of precision ` is denoted ◦`(y). In the
worst case, it entails an error | ◦` (y(k))− y(k)| ≤ 2`−1, ∀k.
For instance, rounding a real to the nearest integer (` = 0)
may entail an error up to 0.5 = 2−1. This is a limitation
of the format itself. Therefore, the best we can do, when
implementing (2) with a precision-` output, is a perfectly
rounded computation with an error bound εout = 2`−1.

Unfortunately, reaching perfect rounding accuracy may re-
quire arbitrary intermediate precision. This is not acceptable
in an architecture. We therefore impose a slightly relaxed
constraint: εout < 2`. We call this last-bit accuracy, because
the error must be smaller than the value of the last (LSB) bit
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of the result. It is sometimes called faithful rounding in the
literature.

Considering that the output format implies that εout ≥ 2`−1,
it is still a tight specification. For instance, if the exact y
happens to be a representable precision-` number, then a last-
bit accurate architecture will return exactly this value.

The main reason for chosing last-bit accuracy over perfect
rounding is that, as will be shown in the sequel, it can be
reached with very limited hardware overhead. Therefore, in
terms of cost and efficiency, an architecture that is last-bit-
accurate to ` bits makes more sense than a perfectly rounded
architecture to `− 1 bits, for the same accuracy bound 2`.

The main conclusion of this discussion is the following:
specifying the output precision (`out on Fig. 1) is enough to
also specify the accuracy of the implementation.

This is a huge improvement over classical approaches, such
as the various Matlab toolboxes that generate hardware filters.
In such approaches, one must provide `out and various other
parameters that impact the accuracy, then measures the result-
ing accuracy using simulation-based techniques whose relia-
bility is highly input-dependant, and iterate until a satisfactory
implementation has been reached. Not only is the proposed
interface simpler, it also enables architecture optimization
under a strict accuracy constraint. An optimal architecture will
be an architecture that is accurate enough, but no more.

D. Worst-case peak gain of an LTI filter
To determine the MSB position of the output (mout) and

to perform the roundoff analysis, we need to capture the
amplification of a signal by an LTI filter. This amplification
can be computed using the so-called Worst-Case Peak-Gain
(WCPG) [11], [12] measure through the following theorem.

Theorem 1 (Worst-Case Peak Gain). Let H be a stable2

single-input single-output LTI filter. If for all possible k ≥ 0
an input signal u(k) is bounded in magnitude by ū, then the
output y(k) is bounded:

∀k, |y(k)| ≤ ȳ = 〈〈H〉〉 ū (4)

where 〈〈H〉〉 is the Worst-Case Peak Gain [11], [12] of the
system. It can be computed as the `1-norm of the system’s
impulse response h(k):

〈〈H〉〉 = ||h||1 =

∞∑
k=0

|h(k)| (5)

Proof: The proof of the theorem comes directly from the
expression of the filter’s output through the convolution as

y(k) =

k∑
l=0

h(l)u(k − l). (6)

Remark 1. The bound 〈〈H〉〉u on the output is quite conser-
vative in practice, but for any filter it is possible to construct

2i.e. poles of H(z) are strictly in the unit circle.

a finite input signal {u(k)}0≤k≤K that yields an output that
approaches the 〈〈H〉〉 ū up to any arbitrarily small distance.

Indeed, in

|y(k)| =

∣∣∣∣∣
k∑
l=0

h(l)u(k − l)

∣∣∣∣∣ ≤ ū
∞∑
k=0

|h(k)| (7)

we obtain the equality if the input u(k) is such that

u(k) = ū · sign(h(K − k)), (8)

where sign(x) returns ±1 or 0 depending on the sign of x.

In this work, we compute WCPGs with arbitrary precision
using the reliable algorithm presented in [3] and its fast but
rigorous implementation3.

III. ERROR ANALYSIS OF DIRECT-FORM LTI FILTER
IMPLEMENTATIONS

This section shows how to obtain an implementation of the
mathematical definition (2) in fixed-point with last-bit accuracy
on the computed result with respect to this mathematical
definition. The two filters are exhibited on Fig. 3.

We remind the reader that since the considered filters are
linear, we assume without loss of generality that the MSB of
the input is equal to 0. Based on the Theorem 1, the MSB of
the output mout is defined by:

mout = dlog2 〈〈H〉〉e . (9)

Technically, it may happen, rarely, that rounding errors propa-
gate all the way to the MSB. Since these errors will be bounded
by 2`out−1, the formula to be used is actually

mout =
⌈
log2

(
〈〈H〉〉+ 2`out−1

)⌉
(10)

In addition, using the algorithm from [4], the computed
MSB position may be guaranteed to never be underestimated.

In fixed-point arithmetic, instead of computing output y(k),
we will compute an approximation ỹ(k) of the involved Sum
of Product by Constants (SOPC) using some internal format
(mout, `ext)

ỹ(k) ≈
nb∑
i=0

biu(k − i)−
na∑
i=1

aiỹ(k − i) (11)

and the final output ỹout(k) will be some rounding of this
intermediate value ỹ(k).

Remark 2. Here we set the MSB of the internal format to
be the same as that of the result (mout). Some overflows may
occur in the internal computation, but since the computation
is performed modulo 2mout , the final result will be correct.

This computational scheme is summed up by the abstract
architecture of Figure 4.

Formally, we refine the definition of the overall evaluation
error as

εout(k) = ỹout(k)− y(k) (12)

3https://scm.gforge.inria.fr/anonscm/git/metalibm/wcpg.git
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/
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-
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-
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+
-

ỹ(k − 3)

Fig. 4. Abstract architecture for the direct form realization of an LTI filter

Our goal is to detect all sources of errors and express them
in terms of the choices of LSB positions. Then, under the
constraints of the last-bit accuracy, i.e. εout(k) < 2`out , we will
look for the optimal internal format.

Let us first decompose this error into its sources.

A. Final rounding of the internal format
The architecture needs to internally use a fixed-point format

that offers extended precision with respect to the input/output
format. This extended format (mout, `ext) offers additional LSB
bits (sometimes called guard bits) in which rounding errors
may accumulate without touching the output bits. The sequel
will show more formally how to compute this extended format
in an optimal way. Eventually we need to round the interme-
diate result in this extended format to the output format (in
the “final round” box on Figure 4). This entails an additional
error εf, formally defined as

εf(k) = ỹout(k)− ỹ(k) . (13)

This error may be bounded by εf = 2`out−1, as round to nearest
is easy to achieve here.

Remark that we feed back the intermediate result ỹ(k)
(on the extended format), not the output result ỹout(k). This
prevents an amplification of εf(k) by the feedback loop that
could compromise the goal of last-bit accuracy.

B. Rounding and quantization errors in the sum of products
As the coefficients ai and bi are real numbers, they must

be rounded to some finite value (quantization) before the
multiplication can take place. Then, the multiplication and the
summation may themselves involve rounding errors. Managing
all these rounding errors will be the subject of section IV,
which will show how to build an architecture that achieves a
given accuracy goal at the minimum cost. For now, we may
summarize all these errors in a single term εr(k) mathemati-
cally defined as

εr(k) = ỹ(k)−

(
nb∑
i=0

biu(k − i)−
na∑
i=1

aiỹ(k − i)

)
(14)

This equation should be read as follows: εr(k) measures
how much a result ỹ(k) computed by the SOPC architecture
diverges from that computed by an ideal SOPC (that would
use the infinitely accurate coefficients ai and bi, and be free
of rounding errors), this ideal SOPC being applied on the same
inputs u(k − i) and ỹ(k − i) as the architecture.

C. Error amplification in the feedback loop

The input signal u(k) can be considered exact, in the sense
that whatever error it may carry is not due to the filter under
consideration. However, the feedback signal ỹ(k) that is input
to the computation (see Figure 4) differs from the ideal y(k).
Let us define εt(k) as the error of ỹ(k) with respect to y(k):

εt(k) = ỹ(k)− y(k). (15)

This error is potentially amplified by the architecture.
Using (15), let us rewrite ỹ(k− i) in the right-hand side of

(14):

εr(k) = ỹ(k)−
nb∑
i=0

biu(k − i) +

na∑
i=1

aiy(k − i)

+

na∑
i=1

aiεt(k − i)

= ỹ(k)− y(k) +

na∑
i=1

aiεt(k − i) (using (2))

= εt(k) +

na∑
i=1

aiεt(k − i) (using (15)). (16)

If we rewrite equation (16) as

εt(k) = εr(k)−
na∑
i=1

aiεt(k − i) (17)

we obtain the equation of an IIR filter inputting εr(k) and
outputting εt(k), whose transfer function is

Hε(z) =
1

1 +
∑na

i=1 aiz
−i . (18)

Figure 5 illustrates this relationship between the ideal output
y, the implemented output ỹout and the different error terms.

We can now apply the Worst-Case Peak-Gain theorem to
Hε with input εr in order to bound εt by

εt = 〈〈Hε〉〉 εr . (19)

Therefore, we can also keep εt as low as needed by
increasing the internal precision `ext to reduce εr.
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H
u(k) y(k)

Hε
εr(k) εt(k)

+
ỹ(k)

+
ỹout(k)

εf(k)

Fig. 5. A signal view of the error propagation with respect to the ideal filter

D. Putting it all together

Using above considerations, we can put all errors together
and rewrite (12) as

εout(k) = ỹout(k)− ỹ(k) + ỹ(k)− y(k)

= εf(k) + εt(k). (20)

Hence,

εout = εf + 〈〈Hε〉〉 εr (21)

The objective of the last-bit accuracy of the architecture
translates into the constraint εout < 2`out . Taking into account
the final rounding (which implies the error εf = 2`out−1),
we obtain the constraint on the error εr of the SOPCs that
is required to satisfy the last-bit accuracy of the overall
architecture:

εr <
2`out−1

〈〈Hε〉〉
. (22)

This constraint finally translates to the LSB `ext of the in-
termediate result as follows. As we stated in the Section III-B,
we assume that we may build an SOPC last-bit accurate to
any value of `ext: for this SOPC we will have εr < 2`ext .

Using (22), we obtain that the optimal value of `ext that
ensures this constraint is

`ext = `out − 1− dlog2 〈〈Hε〉〉e . (23)

The implementation of this error analysis actually uses a
guaranteed overestimation of 〈〈Hε〉〉 [3]. This ensures that
rounding errors in the the computation of 〈〈Hε〉〉 itself do not
jeopardize the accuracy. Because of this overestimation, very
rarely, we might compute on one bit more than it was necessary
by (23). This rare one-bit overestimation of the datapath size
has no impact in practice.

IV. SUM OF PRODUCTS COMPUTING JUST RIGHT

A. Problem statement

In this section, we address the sub-problem of building a
last-bit accurate Sum of Product by Constants (SOPC), i.e. an
architecture computing

r =

N∑
i=1

cixi (24)

accurate to 2`r , for a set of real constants ci, and a set of
fixed-point inputs xi.

In previous work [13], all the xi shared the same format,
as is the case in an FIR filter. In the context of an IIR filter,
this is no longer true: on Figure 4, we have a single SOPC
where the ci may be ai or bi, and the xi may be either some
delayed ui, or some delayed yi. The format of the yi, as
determined by previous section, is in general different from
that of the ui. Therefore, the present work uses a more generic
interface to the SOPC generator, where the format of each
input may be specified independently. This interface is shown
on Figure 6. The input LSBs are provided as `i. For the input
MSBs, instead of mi, the interface uses the maximum absolute
value xi of each xi, which provides a finer information that
will be exploited in the sequel. In the context of an IIR filter,
the output precision will be `r = `ext, this value being defined
by the error analysis of previous sections.

Another difference with [13] is that the output MSB mr

is input to the generator. An overestimation of mr could be
computed out of the ci and the input formats, as in [13].
However, the worst case peak gain of an IIR filter provides
a finer value of mr, and in this case we want to provide this
value to the SOPC generator.

Here again, the weight `r of the least significant bit of
the SOPC output also specifies the accuracy of this SOPC:
the present section shows how to build an SOPC accurate to
2`r . This is what was assumed in the previous section with
`r = `ext.

B. Error analysis for a last-bit accurate SOPC

The fixed-point summation of the various terms cixi is
depicted on Fig. 7. For this figure, we take as an example the
4-input SOPC of an IIR of order 2 with arbitrary coefficients:
it is a smaller version of the one depicted on Figure 4, where
x0 and x1 are respectively u(k) and u(k − 1), while x2 and
x3 are respectively ỹ(k − 1) and ỹ(k − 2). The output r will
become ỹ(k).

As shown on the figure, a real ci may have an infinite
number of bits. Therefore, even though the xi are finite, each
product cixi potentially also has an infinite number of bits.

The MSB of each product cixi is easily determined out of
the value of ci itself and xi: |xi| ≤ xi, therefore |cixi| ≤ cixi,
so the MSB of cixi will be dlog2(|cixi|)e. Here, using xi
instead of an MSB specification for xi can save one bit. As
previously, to anticipate possible overflows due to rounding,
the implementation must add, before taking the log2, an upper
bound of its rounding error. This bound will be detailed in the
sequel.

SOPC
architecture
generator

(ci)1≤i<N

input formats (xi, `i)1≤i<N

output format (mr, `r)

.vhdl

Fig. 6. Interface to a sum-of-product-by-constant generator
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x0 =
x1 =
x2 =
x2 =
c0 =
c1 =
c2 =
c3 =

00000000100011 11110010100
00001101011101111111 00001000110
100010010100110111 10101101101
0100101001010001 01101011000

p̃0 ≈ c0x0
+p̃1 ≈ c1x1
+p̃2 ≈ c2x2
+p̃3 ≈ c3x3
= r̃ext

r̃ = dr̃extc
2`r 2`r−g

Fig. 7. Alignment of the cixi for fixed-point xi and real ci

Negative cixi must have have their sign extended to the
MSB of the sum, so it could seem that Figure 7 only shows
the cases when all the cixi are positive. Here we must explain
another technicality. The sign extension ss...ssxxxxxxx of
a signed number sxxxx, where s is the sign bit, may be
performed as follows [14]:

00...0sxxxxxxx
+ 11...110000000
= ss...ssxxxxxxx

Here s is the boolean complement of s. The reader may
check this equation in the two cases, s = 0 and s = 1. Now the
variable part sxxxxxxx has the same MSB as in the positive
case, and this is what Figure 7 shows.

This transformation is not for free: we need to add the
constant 11...110000000. Fortunately, in the context of a sum-
mation, we may add in advance all these constants together.
Thus the overhead cost of two’s complement in a summation is
limited to the addition of one single constant. In the following,
we will use another trick that allows to merge this addition for
free in the computations of one of the cixi.

Performing all the internal computations to the output pre-
cision `r would in general not allow the last-bit accuracy to
precision `r, due to the accumulation of rounding errors. The
solution is, as previously, to use a slightly extended precision
`r − g for the internal computation: g is a number of “guard”
bits. As this extended precision will require more hardware,
we now discuss how to compute the extended precision that
will minimize this hardware overhead.

We assume that we are able to build hardware constant
multipliers that compute some approximation

p̃i = cixi + εi(g) (25)

of the mathematical product cixi such that the LSB of each p̃i
is `r−g (see Figure 7), and we assume that the rounding error
εi of each of these multipliers is bounded by some εi(g):

|εi(g)| < εi(g) . (26)

The value of εi(g) depends on the constant: multiplication
by zero will be exact, as will be, under some conditions,

multiplications by powers of two and by other constants that
can be written in binary on few bits. In the general case where
ci is real, the multiplier will entail a rounding error which
depends on the multiplier technique used (a detailed example
will be shown in the sequel). However, whatever the technique,
this error bound can be made as small as needed by increasing
g (in other words, by computing more accurately).

The output value r̃ is computed in an architecture as the
sum of the p̃i. This summation, as soon as it is performed
with adders of the proper size, will entail no error (Figure 7).
Indeed, fixed-point addition of numbers of the same format
may entail overflows (these have been taken care of), but no
rounding error. This enables us to write

r̃ext =

N−1∑
i=0

p̃i, (27)

therefore the total rounding error of the sum of product is
defined as

εSOPC =
N−1∑
i=0

p̃i −
N−1∑
i=0

cixi =
N−1∑
i=0

εi(g) (28)

and thanks to (26) can be bounded as follows:

εSOPC <

N−1∑
i=0

εi(g) . (29)

As each εi(g) can be made arbitrarily small by increasing
g, there exists some g such that

N−1∑
i=0

εi(g) < 2`r−1 . (30)

The intermediate result now has g more bits at its LSB than
we need (Figure 7). It therefore needs itself to be rounded
to the target format. This is easy, using the identity ◦(x) =
bx+ 1

2c: rounding to precision 2−`r is obtained by first adding
2`r−1 (this is a single bit) then discarding bits lower than 2−`r .
However, in the worst case, this will entail an error εfinal rounding
of at most 2`r−1.

To sum up, the overall error of a last-bit accurate SOPC
architecture is

r̃ −
N−1∑
i=0

cixi = εfinal rounding + εSOPC (31)

< 2`r−1 + 2`r−1 = 2`r . (32)

All the previous is quite independent of the target technol-
ogy. However, the actual computation of the optimal g out of
constraint (30) will depend on the multiplier technique chosen.
This is the reason why we do not give a generic formula
providing g.

However, for illustration and completeteness, the remainder
of this section focusses on a particular technology: LUT-based
SOPC architectures for FPGAs. It explores architectural means
to reach last-bit accuracy at the smallest possible cost on this
technology.
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C. Perfectly rounded constant multipliers
On most FPGAs, the basic logic element is the look-up-table

(LUT), a small memory addressed by α bits. For the current
generation of FPGAs, α = 6.

As we have a finite number of possible values for xi, it
is possible to build a perfectly rounded multiplier by simply
tabulating all the possible products. The precomputation of
table values must be performed with large enough accuracy
(using multiple-precision software) to ensure the correct round-
ing of each entry. This even makes perfect sense for small
input precisions on recent FPGAs: if xi is a 6-bit number,
each output bit of the perfectly rounded product cixi will cost
exactly one 6-input LUTs. For 8-bit inputs, each bit costs only
4 LUTs. In general, for (6+k)-bit inputs, each output bit costs
2k 6-LUTs: this approach scales poorly to larger inputs.

Perfect rounding to precision `r+g means a maximum error
smaller than an half-LSB: εi = 2`r−g−1. Note that for real-
valued ci, this is more accurate than rounding the result of a
multiplier inputting ◦`r (ci): the latter would accumulate two
successive rounding errors.

D. Table-based constant multipliers for FPGAs
For larger precisions, we may use a variation of the KCM

technique, due to Chapman [5] and further studied by Wirthlin
[6]. The original KCM method addresses the multiplication
by an integer constant. We here present a variation called
FixRealKCM that performs the multiplication by a real con-
stant.

This method consists in breaking down the binary decom-
position of an input xi into D chunks dik of α bits. With the
input size being mi − `i + 1, we have

D = d(mi − `i + 1)/αe (33)

(for instance D = 3 on Figure 8). Mathematically, this is
written

xi =

D∑
k=1

2−kαdik where dik ∈ {0, ..., 2α − 1} . (34)

Another point of view is that the input xi is considered as a
radix-2α number, the dik being its digits. For instance with
α = 4 we obtain the classical hexadecimal writing of xi.

xi = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18

Ti1 : ◦`r (ci × di1)

di1

Ti2

di2

Ti3

di3

+

/qi + g

t̃i1

/qi − α+ g

t̃i2

/qi − 2α+ g

t̃i3

/qi + g

p̃i ≈ cixi

Fig. 8. The FixRealKCM method when xi is split in 3 chunks

t̃i1 ≈ cidi1 xxxxxxxxxxxxxxxxxxxxxxxxxx...

t̃i2 ≈ cidi2 xxxxxxxxxxxxxxxxxxxx...

t̃i3 ≈ cidi3 xxxxxxxxxxxxxx...

2`r−gα bitsα bits

Fig. 9. Aligment of the terms in the KCM method

The product becomes

cixi =

D∑
k=1

2−kαcidik . (35)

Since each chunk dik consists of α bits, where α is the LUT
input size, we may tabulate each product cidik in a look-up
table that will consume exactly one α-bit LUT per output bit.
This is depicted on Figure 8. Of course, cidik has an infinite
number of bits in the general case: as previously, we will round
it to precision 2−`r−g . In all the following, we define t̃ik =
◦`r−g(cidik) this rounded value (see Figure 9).

Contrary to classical (integer) KCM, all the tables do not
consume the same amount of resources. The factor 2−kα in
(35) shifts the MSB of the table output t̃ik, as illustrated by
Figure 9.

Here also, the fixed-point addition is errorless. The error of
such a multiplier therefore is the sum of the errors of the D
tables, each perfectly rounded:

εi < D × 2`r−g−1 . (36)

This error is proportional to 2−g , so can made as small as
needed by increasing g.

E. Computing the sum
Instead of considering each KCM in isolation, it is better to

consider the summation at the SOPC level. Indeed, our SOPC
result is now obtained by computing a double sum:

ỹ = ◦p

(
N−1∑
i=0

D∑
k=1

2−kαt̃ik

)
(37)

There, the errors of each t̃ik add up into an overall SOPC
error, out of which the value of g can be computed.

Before that, let us also observe that it is often possible to
use a finer bound than (36). Indeed, some constant multipliers
entail no error: it is for instance the case for multiplication by
0 and by 1. Such trivial cases will happen quite often if the
proposed SOPC generator is used as a backend for a larger
architecture generator, as is the case in the present article.
Besides, such trivial cases deserve specific treatment since their
implementation is much simpler than the generic case.

Therefore, the implementation first invokes, for each con-
stant, a method that returns the maximum error that will be
entailed by a multiplier by this constant. This error is expressed
in units in the last place (ulp), whatever the value of g will
be. The implementation sums these errors, then uses this sum
to compute the value of g that will enable last-bit accuracy.
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Once this g has been determined it may proceed with the actual
construction of the multipliers.

Here is the list of cases currently managed by the imple-
mentation:
• if ci = 0, then εi = 0.
• if |ci| = 1 or more generally if |ci| = 2k, then εi = 0

if k + li ≥ `r (shift of xi such that all the bits will be
kept), otherwise εi = 1 (shift to the right, losing some
bits due to truncation). Here we may overestimate the
error, because the test should be if k + li ≥ `r − g, but
we don’t know g yet.

• In the general case when we use the generic KCM
architecture, εi = D/2 (we have D tables, each entailing
one half-ulp of error).

One final technicality: we have so far assumed that the
number of tables D is computed out of the input size, using
(33). However, for small constants, it may happen that the con-
tribution of the lower tables can be neglected. To understand
this, consider Figure 9: each table output is shifted right if ci is
small. Therefore, the implementation will not generate a table
if its MSB is smaller than `r−g−1. The error analysis remains
valid in this case, although the source of the error is no longer
the rounding of the table, but its being neglected altogether. If
more than one table is fully neglected, this error analysis was
slightly pessimistic (we could have a single half-ulp for all the
neglected tables), but it remains safe.

F. Computing the sum
In FPGAs, each bit of an adder also consumes one LUT.

Therefore, in a KCM architecture, the LUT cost of the sum-
mation is expected to be roughly proportional to that of the
tables. However, using the associativity of exact fixed-point
addition, this summation can be implemented very efficiently
using compression techniques developed for multipliers [14]
and more recently applied to sums of products [15], [16]. In
this work, we may use the bit heap framework introduced in
[8]. Each table throws its t̃ik to a bit heap that is in charge
of performing the final summation. The bit heap framework
is naturally suited to adding terms with various MSBs, as
is the case here. It also manages two’s complement numbers
efficiently – the interested reader is referred to [8] for details.

Figures 10 and 11 show examples of bit heaps obtained by
the proposed method. On these figures (which are generated
by the tool), we have binary weights on the horizontal axis,
and the various terms to add on the vertical axis. Roughtly
speaking, the height of a bit heap is proportional to the number
of non-zero coefficients. The width shows the needed internal
precision computed by the tool to ensure both filter stability
and last-bit accuracy: on the figures, the vertical lines mark the
bit weights `out and `ext: they illustrate the 1 + dlog2 〈〈Hε〉〉e
extra bits needed to manage the error amplification on the
feedback loop (see equation (23)), as well as the g extra bits
needed to absorb the rounding errors in each KCM table.

The current FixRealKCM implementation properly manages
trivial constants such as zero and powers of two. A mul-
tiplication by 0 will add nothing to the bit heap, while a
multiplication by a power of two will just add to the bit heap

12 bits 5 bits

Fig. 10. The bit heap of a narrowband 12-bit filter (example 2 of section V
with ωp = 0.5). In this case the tool has computed − log2 〈〈Hε〉〉 = 12 and
g = 5.

Fig. 11. The bit heaps of two 12-bit Butterworth filters (the extreme cases of
example 1 of section V). On the left, order 4, − log2 〈〈Hε〉〉 = 3 and g = 4.
On the right, order 20,− log2 〈〈Hε〉〉 = 19 and g = 7

the (properly shifted and possibly truncated) input. The next
step will be to similarly optimize constants that fit on a few
bits, such as those produced by quantization tools. This can
significantly change the bit heap shapes.

The previous figures only illustrate the initial bit heap.
FloPoCo also generates an architecture that computes the sum
of all these bits. The current version still uses the greedy
heuristic of [8]. The state of the art is to compute an optimal
architecture using Integer Linear Programming techniques [8],
and will be used soon.

G. Final rounding by truncation

There is one more term to add to the summation of (37):
the rounding bit 2`r−1, necessary for the final rounding by
truncation. Its value is added to one of the tables.

Finally, the typical architecture generated by our tool is
depicted by Figure 12.
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Bit-heap based
summation architecture

x0

T01

/α

T02

/α

T03

/α

x1

T11

/α

T12

/α

T13

/α

x2

T21

/α

T22

/α

T23

/α

x3

T31

/α

T32

/α

T33

/α

/`
y

Fig. 12. KCM-based SOPC architecture for N = 4, each input being split
into 3 chunks

V. IMPLEMENTATION AND RESULTS

The method described in this paper is implemented as
the FixIIR operator of FloPoCo. FixIIR offers the inter-
face shown on Fig. 1, and inputs the coefficients ai and bi
as arbitrary-precision numbers or mathematical expressions.
FixIIR, like most FloPoCo operators, was designed with a
testbench generator [17]. Operators reported here have been
checked for last-bit accuracy by extensive simulation.

The results below were obtained after place and route for
Kintex-7 (7k70tfbv484-3) using Vivado 2016.4. The reported
timings don’t include the IBUF/OBUF delay.

Various possible use-cases are possible for the proposed
tool. For instance, one can easily explore a large quantity of
filter implementation settings. We demonstrate our tool on two
different families of bandpass digital filters. These experiments
all target implementations with 12 fractional bits on the output.

Example 1: fixed passband, moving stopbands. We con-
sider implementation of 23 bandpass filters that have the
following specifications w.r.t. the normalized Nyquist frequen-
cies:
• passband [0.45, 0.55] with the maximum passband ripple

1dB
• stopbands [0, 0.43 − 0.01k] and [0.57 + 0.01k, 1] with

the parameter k = 0, 1, . . . , 22; minimum attenuation is
20dB for each band.

Each filter in this family is a Butterworth filter designed with
Matlab. Figure 13 shows three different transfer functions from

0.2 0.3 0.45 0.55 0.7 0.8

-20

Am
pl

itu
de

Normalized Frequency
1

0

Fig. 13. Example 1, family of filters with fixed passband and increasing
transition band. Here, three different transfer functions of this family.
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Fig. 14. Example 1, area and delay of implementations as a function of the
width of transition band.
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Fig. 15. Example 1, dependency of area on 〈〈Hε〉〉.

this family.
Fig. 14 gives the area (in FPGA LUTs) and delay of obtained

implementations as functions of the width of the transition
band (which varies between 0.02 and 0.24).

On this example we can observe how the hardware cost of
the filters decreases with the increase of the width of transition
bands. The first filter in this family (i.e. k = 0) has an
extremely narrow transition band, and the highest hardware
cost. To ensure that the output of this filter is last-bit accurate
to 12 fractional bits, the tool added g = 7 guard bits for
the evaluation of the SOPC, then 19 more bits to absorb the
amplification of errors in the feedback loop. Fig. 11 (right hand
side) shows the bit heap that corresponds to this filter.

Classically, increasing the transition band simplifies the
implementation: the filter’s orders decrease and the rounding
errors have less impact on the output, i.e. 〈〈Hε〉〉 decreases. The
proposed tool allows a designer to quantify this effortlessly and
precisely.

A useful rule of thumb, illustrated by Fig. 15, is that the area
is roughly linear in the number of bits of the internal format.

Example 2: sliding passband. In this setting we con-
sider implementations of bandpass filters that have a very
narrow passband and narrow transition band. Such filters are
frequently used in Software Defined Radio [18], biomedical
circuit design [19], digital television, etc. Classically, im-
plementation of such bandpass filters is more complicated
when the passband is near the the bounds of the frequency
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Fig. 16. Example 2, family of filters with fixed passband and transition bands
with sliding parameter ωp. Here three transfer functions of this family.
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Fig. 17. Example 2, area and delay of implementations as a function of the
parameter ωp.

domain [1]. To illustrate how the proposed tool may quantify
this effect, we fix the widths of the passband and the transitions
bands to 0.01 and “slide” the passband through the normalized
frequency interval [0, 1]. Formally, we consider the following
family of filters:
• passband [ωp, ωp + 0.01] with passband ripple 1dB
• stopbands in [0, ωp − 0.01] and [ωp + 0.02, 1] with

minimum attenuation 20dB
where ωp = 0.05 + 0.01k, k = 0, 1, . . . , 94. Each filter in
this family is an elliptic filter designed with Python Scipy. All
filters are of the same order 4, except for k ∈ [92, 94] where
the order increased to 6.

Fig. 17 gives the area and delay with respect to the position
of ωp ∈ [0.05, 0.97]. It can be clearly observed that narrow
bandpass filters have smaller complexity when the normalized
passband frequency ωp approaches 0.5. The bit heap corre-
sponding to the implementation with ωp = 0.5 is given on
Fig.10.

Interestingly, the last three filters (k ∈ [92, 94]) are consid-
erably more sensitive to rounding errors (i.e. 〈〈Hε〉〉 increases
for them), thus require more area to ensure the output accurate
to 12 fractional bits.

Such phenomena for the narrow-band bandpass filters is
well known. However, in general case, overcoming difficulties
in the implementation of the recursive filters is usually not
straightforward and might require specific knowledge from
the designer. The proposed approach automatically provides
accurate implementations of even the most sensitive filters at

the minimal cost, and the designer is informed of the cost of
this accuracy.

VI. CONCLUSION AND PERSPECTIVES

This article advocates a very simple specification for low-
precision architectures of digital filters: whatever the inputs,
the difference between the results computed by the architecture
and the result computed by an infinite precision machine
should be less than the weight of the least significant bit of the
output. This specification brings safety to designers who can
trust that the architecture behaves as, e.g., a double-precision
Matlab simulation. It also defines a universal rule of the game
by which different architectures can be fairly compared.

This work demonstrates this approach through an end-to-end
open-source tool that generates the VHDL code of a Direct
Form I implementation from its mathematical coefficients. It
explores architectural choices in the family of Direct Form I
filters, and selects the architecture that, while guaranteeing the
respect of the above specification, has minimal-size internal
formats.

An important observation is that even for simple, low-order
filters, the intermediate format needs to be significantly larger
than the input/output format: in our experiments, we never
need less than 4 extra bits on the internal format to achieve
the specification. For higher-order or unstable filters, several
tens of extra bits may be needed, even if the output format is
only 8, 12 or 16 bits. This overhead depends on the worst-case
peak gain of the error filter: it is mostly independant from the
output format.

This work, however, does not claim to close the subject of
digital filter architecture generation.

Future work first includes several technical improvements
to the current implementation, such as the exploitation of
symmetries in the coefficients, or a better bit heap compression
algorithm.

Beyond that, this work is a solid foundation on which to
build future research. Here are some directions.

In this work we have assumed real coefficients. We may now
address the issue of coefficient quantization from a new point
of view. If a designer manages to quantize coefficients on very
few bits and still obtain a stable filter with acceptable transfer
function, the proposed technique will work without change:
quantized coefficients are also real coefficients. Therefore, the
proposed approach enables a clear decoupling of the issue
of coefficient quantization from the issue of intermediate
rounding in the architecture.

However, quantized coefficients will also enable further
optimizations. Indeed, the product of a quantized coefficient
by an input (or by a subword of the input in the case of KCM
multipliers) will have a finite number of bits. This potentially
improves both error analysis and architecture generation: if
these bits are all within the internal bit range determined by the
tool, the product becomes exact, while the corresponding table
output becomes smaller than in the case of a real coefficient,
also leading to smaller bit heaps. In addition, with quantized
coefficients, it also becomes relevant to compare with shift-
and-add implementations of constant multipliers [20].
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The next step is to explore filter structures that are more
interesting than the DFI, for instance the decomposition into
second-order sections [1]. In this structure a filter is decom-
posed into a cascade of biquad filters, each of which can be
implemented with a DFI algorithm. An advantage of such a
decomposition is smaller sensitivity towards rounding errors.
Quantitatively, each section of the cascaded system may be
analyzed independently using the worst-case peak gain and
require different number of additional bits `ext. However, it
is not completely straightforward how to choose the rounding
strategy: on the one hand, rounding the output of each section
to some ỹouti increases the overall output error; on the other
hand, direct propagation of ỹ(k) without rounding will increase
the size of subsequent SOPCs. A trade-off might be achieved
by a clever choice of section ordering [21].

It would be also interesting to consider other filter structures,
such as Direct Form II (transposed or not), state-spaces,
cascade and/or parallel decomposition, ρ-operator based struc-
tures [2], Lattice Wave Digital filters [22], etc. These al-
gorithms are less sensitive to finite precision effects [22]
(coefficient quantization and roundoff errors) and, even if some
of them require more computations than the DFI, the total
area (LUT) to achieve just right computing may be reduced.
This work will allow one to quantify this, although it will
not be completely straightforward: these structures have many
intermediate formats, whose sizes also have to be determined
and minimized. A unifying filter representation called SIF [23]
could be the key to generalize the approach of the present
article.

REFERENCES

[1] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. NJ, USA: Prentice Hall Press, 2009.

[2] G. Li and Z. Zhao, “On the generalized DFIIt structure and its state-
space realization in digital filter implementation,” IEEE Trans. on
Circuits and Systems, vol. 51, no. 4, pp. 769–778, April 2004.

[3] A. Volkova, T. Hilaire, and C. Lauter, “Reliable evaluation of the
worst-case peak gain matrix in multiple precision,” in 2015 IEEE 22nd
Symposium on Computer Arithmetic, June 2015, pp. 96–103.

[4] ——, “Determining fixed-point formats for a digital filter implementa-
tion using the worst-case peak gain measure,” in 2015 49th Asilomar
Conference on Signals, Systems and Computers, Nov 2015, pp. 737–
741.

[5] K. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993 design
idea winner),” EDN magazine, no. 10, p. 80, May 1993.

[6] M. Wirthlin, “Constant coefficient multiplication using look-up tables,”
Journal of VLSI Signal Processing, vol. 36, no. 1, pp. 7–15, 2004.

[7] F. de Dinechin, H. Takeugming, and J.-M. Tanguy, “A 128-tap complex
FIR filter processing 20 giga-samples/s in a single FPGA,” in 44th
Asilomar Conference on Signals, Systems & Computers, 2010.

[8] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. Illyes, and B. Popa,
“Arithmetic core generation using bit heaps,” in Field-Programmable
Logic and Applications, Sep. 2013.

[9] M. Kumm and P. Zipf, “Pipelined compressor tree optimization using
integer linear programming,” in Field Programmable Logic and Appli-
cations (FPL), Sept 2014.

[10] IEEE Std 802.15.4-2006, IEEE Standard for Information technology–
Telecommunications and information exchange between systems– Local
and metropolitan area networks– Specific requirements– Part 15.4:
Wireless Medium Access Control (MAC) and Physical Layer (PHY)

Specifications for Low-Rate Wireless Personal Area Networks (WPANs),
2006.

[11] V. Balakrishnan and S. Boyd, “On computing the worst-case peak gain
of linear systems,” Systems & Control Letters, vol. 19, pp. 265–269,
1992.

[12] S. P. Boyd and J. Doyle, “Comparison of peak and RMS gains for
discrete-time systems,” Syst. Control Lett., vol. 9, no. 1, pp. 1–6, June
1987.

[13] F. de Dinechin, M. Istoan, and A. Massouri, “Sum-of-product
architectures computing just right,” in Application-Specific Systems,
Architectures and Processors (ASAP). IEEE, 2014. [Online]. Available:
http://hal.inria.fr/hal-00957609

[14] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[15] H. Parendeh-Afshar, A. Neogy, P. Brisk, and P. Ienne, “Compressor tree
synthesis on commercial high-performance FPGAs,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 4, no. 4, 2011.

[16] R. Kumar, A. Mandal, and S. P. Khatri, “An efficient arithmetic sum-of-
product (SOP) based multiplication approach for FIR filters and DFT,”
in International Conference on Computer Design (ICCD). IEEE, Sep.
2012, pp. 195–200.

[17] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, Jul. 2011.

[18] L. Tsoeunyane, S. Winberg, and M. Inggs, “Software-defined radio
FPGA cores: Building towards a domain-specific language,” Int.
J. Reconfig. Comp., vol. 2017, pp. 3 925 961:1–3 925 961:28, 2017.
[Online]. Available: https://doi.org/10.1155/2017/3925961

[19] K. Limnuson, H. Lu, H. J. Chiel, and P. Mohseni, “FPGA implementa-
tion of an IIR temporal filtering technique for real-time stimulus artifact
rejection,” in 2011 IEEE Biomedical Circuits and Systems Conference
(BioCAS), Nov 2011, pp. 49–52.
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