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A model for cost efficient Workforce Organizational Dynamics and its

optimization

Benôıt Perthame∗ Edouard Ribes† Karim Touahri‡ Delphine Salort§

July 14, 2017

Abstract

This paper presents a workforce planning model scalable to an entire hierarchical organization.
Its main objective is to design a cost optimal target which leverages flexible workforce solutions
while ensuring an efficient promotional flux. The value of this paper lies in its proposal of an
adequate flexibility rate using various solution types and in its discussion about external hiring
ratios. The mathematical structures of the models are analyzed and numerical simulations illustrate
the theoretical background.

Keywords and phrases. Workforce planning; Flexible workforce; Structured equations; Cost opti-
mization; Asymptotic analysis

1 Introduction

To our knowledge, human resource planning has mainly focused on providing insights on hiring and
training decisions. This has boiled down to questions of workforce planning & knowledge acquisition
[1, 2]. According to a recent review [3], these topics are becoming more and more workforce centric,
as firms try to integrate employee preferences in their decisions. This naturally raised the question of
career and employee lifecycle within the company and leads to the question of employee promotion
strategy [4, 5, 6].
The question of the employee lifecycle is complex, because it depends not only in the company purpose
and market landscape but also in the individual employee dynamics. We have therefore investigated
those dependencies within 3 complementary papers, and this paper is the first one of the series. More
precisely, the main objective of this article is to present a new partial differential equation model, per-
form its theoretical and numerical studies, in order to address the description and cost optimization
of workforce lifecycle from a company standpoint. In this perspective, we use the notion of workforce
flexibility and notably the use of temporary contracts to yield cost efficiency, which is standard among
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the operation research literature (see [8] for a recent review). However, in the present article, we
integrate a new continuous formalism which allows to integrate mixed approaches in complex envi-
ronment. The second paper focuses on turnover prediction and on identification of endogenous and
exogenous parameters that influence voluntary turnover decisions ([7]). The turnover rates are also
used in the model data in section 4. Finally the third paper, under preparation, adopts a mean field
game approach and tries to reconnect company policies with individual aspirations.

The article is organized as follows. In section 2, we build a dynamic organization representation
based upon recent researches in this field [5] by taking into account the time spent by personnel in
a job qualification class. While a simple model, which already use the idea of a waiting time before
promotion has been used, with a simple fixed time delay model in [6], in our model, we integrate a
more accurately control of this notion of waiting time, by adopting a continuous approach. In section
3, we determine theoretically the best strategy to adopt in order to minimize the total labor cost. To
this, we assume that the cost can be modulated via the recruitment of temporary contracts. Indeed,
the possible cost burden of having an organization which promotion waiting times are important will
be the center of this investigation. More precisely, a cost optimal solution leveraging a flexible work-
force will be proposed and fully characterized. In section 4, we illustrate our theoretical results via
numerical simulations. We first implement the organizational model with a strategy which allows to
reduce the external hiring with specific rules. In a second part, we test, via genetic algorithms, the
optimal strategy to minimize the labor cost. We show that a mix of ”floaters” and ”temporary work-
ers”(see [9] and [10] for examples of the individuals approaches), can be used to efficiently design a full
organizational footprint. Finally, in section 5, we finish our article by a conclusion an perspectives.

Important legal remarks The findings and opinions expressed in this paper are those of the
authors and do not reflect any positions from any company or institution. Finally, please bear in mind
that to protect confidentiality numbers have been disguised in a way that preserves the same analysis
and conclusions as the actual case study.

2 Organization dynamics

We begin with the main assumptions and model we use in order to describe the dynamic of the
workforce when employees may be promoted on several hierarchical jobs. We discuss several situations
with respect to the possibility of external hiring and we propose a theoretical study of this model,
in order to determine the well-posedness of the related system of equations, the possible stationary
states and the necessity of external hiring, depending upon parameter combinations, in order to to
obtain a well-posed problem. This model is the basis of the study of the optimization cost.

2.1 Organization model

We represent a company by a set of L jobs ordered in terms of level of responsibility from j = 1 to L.
We denote by ρj(t, s) the number of workers which at time t, have seniority s in their job class. We
assume that:

• in each job j ∈ {1, .., L}, the total number of workers in the job category j across seniority
categories is constant over time and equal to Nj > 0.
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• in each job j, workers can leave the company. We assume that worker turnover follows an
exponential law with parameter µj .

• workers can also stay in the same job category j and wait to be promoted from job j to j + 1
.The promotion can only occur if they have spent a time superior to τj ≥ 0 in their job j . The
associated promotion rate is defined as Pj .

• the company can also hire externally in each job j with a rate hj . We denote by hj(t)Nj the
number of external workers recruited externally for the job j.

These assumptions can be formalized using the following balance law for workers in each job j =
1, ..., L, which takes into account the seniority increase with time, as well as turnover and promotion:

∂tρj + ∂sρj + µjρj + Is≥τjPj(t)ρj(t, s) = 0, s ≥ 0, t ≥ 0, (1)

The next boundary condition describes the flux of workers in class j = 1, ...L that newly arrive either
by external hiring or internal promotion:

ρj(t, s = 0) = hjNj + Pj−1(t)Aj−1(t), (P0 = 0, PL = 0), (2)

with the notation

Aj(t) =

∫ +∞

s=τj

ρj(t, s)ds. (3)

Notice that for the first job class of job, only external hiring is possible. Thus the above condition
holds with P0 = 0. Also, for the last class, promotion is no longer possible and thus PL = 0. To
simplify the setting, we assume that retirement is included in the average departure rate µj . The
initial state is denoted by ρ0

j (s) > 0 and solutions remain positive. We recall that this type of system,
called renewal equations, is standard and well understood [11, 12, 13], and has previously been used
for workforce planning purposes [14].

As the number of workers in the job category j is assumed constant, the following constraint appears:

Nj =

∫ +∞

0
ρj(t, s)ds > 0 is given. (4)

Integrating equation (1), we find a consistency condition on the boundary

ρj(t, s = 0) = µjNj + PjAj(t). (5)

Combining the boundary condition (2) and the constraint (5) leads to ∀j = 1, ..., L:

µjNj + PjAj(t) = hj(t)Nj + Pj−1Aj−1(t), (P0 = PL = 0) (6)

At this stage, it has to be noticed that, because we have imposed the L constraints that the Nj ’s are
constant, we also need L Lagrange multipliers to fulfill the equality (6). These are to be chosen among
the 2L parameters Pj and hj and thus some degrees of freedom remain. In a first pass, a perfect
internal labor market will be considered. This means that no external hiring will exist except at the
first job layer j = 1 and that the L free parameters are h1, Pj for j = 1, ...L− 1. In a second pass, a
proportion of external hires among the various job layers will be introduced. It will be shown that it
results from a simple generalization of the first case.
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2.2 Organization behavior - no external hiring

Under the preliminary assumption of a perfect internal labor market, the company’s recruitment policy
prohibits external recruitment except for the first job layer. This means that hj = 0 for all j ≥ 2.
Therefore, the constraint (6) becomes:{

µjNj + PjAj(t) = Pj−1Aj−1(t), for j = 2, ..., L,

µ1N1 + P1A1(t) = h1(t)N1.
(7)

Promotional fluxes Assuming that these relation can be solved backward (that is Aj(t) > 0, for
all t ≥ 0 and j ∈ {1, ..., L− 1}), the equation (7) imposes that for the job level j = L:

µLNL = PL−1AL−1(t)

This means that the promotion flux PL−1AL−1 is independent of time. This can be further cascaded
down the organization layers with j = L− 1 to get:

µL−1NL−1 + PL−1AL−1 = PL−2AL−2,

and thus:

µL−1NL−1 + µLNL = PL−2AL−2.

Iterating the same process shows that:

L∑
l=j

µlNl = Pj−1Aj−1, ∀j, 2 ≤ j ≤ L.

Therefore, the promotion fraction Pj(t) only depends upon Aj(t) thanks to the relation:

Pj(t) =
Cnoj+1

Aj(t)
, Cnoj :=

L∑
l=j

µlNl. (8)

Departing from equations (1) and (2), this generates the following system of L nonlinear equations:

∂tρL + ∂sρL + µLρL = 0, ρL(s = 0, t) = µLNL, (9)

and for 1 ≤ j ≤ L− 1,

∂tρj + ∂sρj + µjρ+
Cnoj+1

Aj(t)
Is≥τjρj = 0, ρj(s = 0, t) =

L∑
l=j

µlNl. (10)

The boundary condition for j = 1 then states that h1N1 =
∑L

l=1 µlNl. The interpretation is clear:
the total number of hired workers at job level j = 1 should compensate the total number of workers
leaving the company.
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Well-posedness of equation (1), assuming (7) Conditions on the initial data are now computed.
This introduces a well posed problem for equation (1), when the parameters are chosen as in (7). This
leads us to describe the set of initial data such that Aj(t) > 0, for all t ≥ 0 and j ∈ {1, ..., L− 1}. The
following proposition therefore holds:

Proposition 2.1 Let ρ0
j (s) ∈ L1(R+) such that for all t ≤ τj

e−tµj
∫ τj

t
ρ0
j (s− t)ds+

1

µj
(1− e−µjt)

L∑
l=j

µlNl < Nj , (11)

Assuming that for all j = 1, ..., L− 1, the model parameters are such that:

Aj :=
µjNje

−µjτj − (1− e−µjτj )Cnoj+1

µj
> 0. (12)

Then, equation (10) is well posed. We have Aj(t) > 0 for all t ≥ 0 and Aj(t) = Aj for all t ≥ τj.

Remark 2.2 Let us mention that proposition 2.1 implies that equation (10) is linear as soon t ≥ τj
because Aj then becomes constant.

Proof of proposition 2.1 Estimating (11) with t = 0 is equivalent to choosing an initial data such
that Aj(0) > 0. Moreover, as long as Aj(t) > 0, using the explicit formula for the solution of equation
(10) via the method of characteristics, we find that for t ≤ τj ,

ρj(t, s) = ρ0
j (s− t)e−µjt if τj ≥ s ≥ t

and

ρj(t, s) =

L∑
l=j+1

µlNle
−µjs if s ≤ t ≤ τj .

Using the mass conservation, we obtain that for t ≤ τj :

Aj(t) = Nj −
∫ τj

0
ρj(t, s)ds = Nj − e−tµj

∫ τj

t
ρ0
j (s− t)ds−

1

µj
(1− e−µjt)

L∑
l=j

µlNl,

and so Aj(t) > 0 because of condition (11). Now, for t ≥ τj , with the method of characteristics, we
obtain that :

ρj(t, s) =
L∑
l=j

µlNle
−µjs if s ≤ τj

which implies that :

Aj =
µjNje

−µjτj − (1− e−µjτj )
∑L

l=j+1 µlNl

µj
, ∀t ≥ τj .

�
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Stationary states and convergence of the solution of Equations (9)–(10) The following
proposition expresses the fast convergence to a steady state

Proposition 2.3 Assume that for all j ∈ {1, ..., L− 1}, we have Aj > 0. Then, there exists a unique
stationary state of Equations (9)-(10) given by

ρL(s) = µLNLe
−µLs,

ρj(s) = e−µjs+Bj(τj−s)−

 L∑
l=j

µlNl

 .

Moreover, for initial data chosen as in proposition 2.1, there is a constant C such that for all j ∈
{1, ..., L} and t ≥ maxj τj∫ +∞

0
|ρj(t, s)− ρj(s)|ds ≤ Ce−µjt

∫ +∞

0
|ρj(0, s)− ρj(s)|ds.

Proof of proposition 2.3 Using that for t ≥ τj , Aj(t) = Aj , the stationary state of equation (1) is
the stationary state of the following linear equation:

∂tρj + ∂sρj + µjρ+BjIs≥τjρj = 0, ρj(s = 0, t) =
L∑
l=j

µlNl (13)

with Bj :=

∑L
l=j+1 µlNl

Aj
which leads to the formula of the stationary states given in Proposition 2.3.

To prove asymptotic convergence, we set mj = ρj(t, s)− ρj(s). We have for all j ∈ {1, ..., L}

∂t|mj |+ ∂s|mj |+ µj |mj | = 0.

Integrating this equation and using the Gronwall lemma, we find the result of convergence which ends
the proof of Proposition 2.3. �

2.3 Organization behavior - with external hiring

We remove the constraint hi = 0 and allow the external organization to source itself externally. We
adapt the method developed in the previous subsection to this situation with external sourcing and
we show that, with a more general condition on parameters, it yields similar results. Assuming again
that for all j, Aj(t) > 0, we introduce the hiring ratio αj > 1, for job class j according to the below
equation:

µjNj + PjAj(t) = Pj−1Aj−1(t) + hj .Nj = αj Pj−1Aj−1(t), 2 ≤ j ≤ L, (14)

This gives us the external hiring rate hj(t) through the relation:

αj = 1 +
hj(t)Nj(t)

Pj−1Aj−1(t)
. (15)

In other words, αj is an interesting parameter for the establishment of human resources policies as
αj − 1 represents the ratio of external over internal hires at level j.
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Promotional fluxes Following the argument in the previous subsection, we infer from (14), suc-
cessively for j = L and for j = L− 1,

µLNL = αLPL−1AL−1,

µL−1NL−1 + α−1
L µLNL = αL−1PL−2AL−2.

Iterating this process for 2 ≤ j ≤ L− 1, leads to

µjNj +

L∑
l=j+1

µlNl.(

l∏
k=j+1

1

αk
) = αjPj−1Aj−1,

that is also written

Cj :=

L∑
l=j

µlNl.(

l∏
k=j

1

αk
) = Pj−1Aj−1,

or also

Pj(t) =
Cj+1

Aj(t)
, j = 1, ..., L− 1.

This generates the following systems of L nonlinear equations:

∂tρL + ∂sρL + µLρL = 0, ρL(s = 0, t) = µLNL, (16)

and for 1 ≤ j ≤ L− 1,

∂tρj + ∂sρj + µjρ+
Cj+1

Aj(t)
Is≥τjρj = 0, ρj(s = 0, t) = µjNj + Cj+1 (= αjCj). (17)

Study of equations (16)–(17) The structure of equations (16)–(17) are exactly the same as equa-
tions (9)–(10). Hence, in this section, we just state our results without proofs since they follow exactly
the preceding section.
Given αj ≥ 1, we begin with conditions on the initial data to have a well posed problem for equations
(16)–(17). The following proposition holds:

Proposition 2.4 Let ρ0
j ∈ L1(R+), 1 ≤ j ≤ L, be such that for all t ≤ τj

e−tµj
∫ τj

t
ρ0
j (s− t)ds+

1

µj
(1− e−µjt)(µjNj + Cj+1) < Nj , (18)

Assume that for all j = 1, ..., L− 1, the model parameters are such that:

Ãj :=
µjNje

−µjτj − (1− e−µjτj )Cj+1

µj
> 0. (19)

Then equation (10) is well posed. We have Aj(t) > 0 for all t ≥ 0 and

Aj(t) = Ãj , ∀t ≥ τj .
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Remark 2.5 Let us mention that, given (τj)j∈{1,..,L−1}, (µj)j∈{1,..,L} and (Nj)j∈{1,..,L}, we can always

find (αj)j∈{1,..,L} such that for all j ∈ {1, .., L}, Ãj > 0. In the same way, given an initial data in L1

such that for all j ∈ {1, .., L}, Aj(0) > 0, we can always find (αj)j∈{1,..,L} such that Aj(t) > 0 for all
t ≥ 0.

Proposition 2.6 Assume that for all j ∈ {1, ..., L− 1}, we have Ãj > 0. Then, there exists a unique
stationary state of equations (16)-(17) given by:

ρ̃L(s) = µLNLe
−µLs,

ρ̃j(s) = e
−µjs−

Cj+1

Ãj
(s−τj)+

(µjNj + Cj+1) .

Moreover, for initial data chosen as in Proposition 2.4, there is a constant C such that for all j ∈
{1, ..., L} and t ≥ maxj τj∫ +∞

0
|ρj(t, s)− ρ̃j(s)|ds ≤ Ce−µjt

∫ +∞

0
|ρj(0, s)− ρ̃j(s)|ds.

Minimal external hiring A company may prefer to promote internally to capitalize on its own
workforce and provide its employees with better careers opportunities to minimize their turnover rate.
To do so, the procedure is to choose the ‘minimal values’ of the vector (α1, ..., αL) so as to impose

the constraint (19). This can be performed by a descending algorithm. Departing from ÃL−1 > 0, we
find :

CL :=
µLNL

αL
<
µL−1NL−1e

−µL−1τL−1

(1− e−µL−1τL−1)
,

αminL = max

(
1,

(1− e−µL−1τL−1)µLNL

µL−1NL−1e−µL−1τL−1

)
.

This allows to compute αminL−1 because we impose ÃL−2 > 0, which is

CL−1 :=
1

αL−1

[
µL−1NL−1 +

µLNL

αL

]
<
µL−2NL−2e

−µL−2τL−2

(1− e−µL−2τL−2)
,

Hence the formula for

αminL−1 = max

(
1,

1− e−µL−2τL−2

µL−2NL−2e−µL−2τL−2

[
µL−1NL−1 +

µLNL

αminL

])
.

3 Organization cost structure and flexible workforce

In the previous section, we have shown that it is possible to control the dynamic of an entire or-
ganization in a continuous framework. The aim of this section is to deliver a theoretical setting to
understand how to make the labor cost efficient and optimal. The problematic being that, for a given
position, permanent workers in an organization have an increasing salary with seniority. As such, it
may prove detrimental to have them waiting for a promotion. Flexible workforce solutions will there-
fore be discussed to minimize the overall labor cost burden of the organization. To this, we first study
the impact of the use of temporary workers in the labor cost and then integrate a mixed approach of
”floaters” and temporary workers.
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3.1 Leverage temporary workers to speed up the organization

General problem statement Using the notations in section 2, we consider that the population
Nj in each job j ∈ 1, ..., L can be divided in two subcategories:

• The permanent population Np
j > 0 which evolves within the organization with the same dynam-

ics as described earlier and which compete for promotion. The permanent population distribution
across seniority level at steady state will be referred to as ρpj (s).

• The temporary population N t
j > 0 which is used by the organization as a buffer to meet its

workload requirements and will not be used for promotion.

We denote by pj ∈ [0, 1] the proportion of the population Nj in level j under a permanent contract.
We may write

Nj = Np
j +N t

j = (1− pj)Nj + pjNj . (20)

The organization cost structure is supposed to obey the following rules at each level j:

• the cost of each position wpj (s) > 0 in the permanent population Np
j is growing with seniority s,

• the cost of each temporary contract wtj is assumed to be constant. We also assume that wtj >
wpj (0) to account that a temporary workforce may come at a premium over a freshly hired
permanent employee.

The overall operating cost of the organization Costorg is therefore defined as the sum of the operating
costs Costj at each level j,

Costorg =
L∑
j=1

Costj (21)

with

Costj = (1− pj)Nj w
t
j +

∫ ∞
0

ρpj (s)w
p
j (s)ds. (22)

Computing the organization cost According to Proposition 2.6 and Equation (17), we have

• ρpL(s) = µLNL pL.e
−µLs,

• ρpj (s) = (µjNj + Cj+1)e
−µjs+

Cj+1

Ãj
(τj−s)−

for 1 ≤ j < L,

where

Cj(pj , ..., pL) :=

L∑
l=j

µlNl.pl.
l∏

k=j

1

αk
,

Ãj =
µjNj .pj .e

−µjτj − (1− e−µjτj )Cj+1

µj
.

Therefore, we may define the optimal cost organization by:

Costoptorg = min
(p1,...,pL)∈[0,1]L

L∑
j=1

{
(1− pj)Nj w

t
j +

∫ ∞
0

ρpj (s)w
p
j (s)ds

}
. (23)
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Note that, similarly to the previous condition (19), we need to impose a limitation of the pj in order

to satisfy Ãj > 0, namely

pj >
(1− e−µjτj )Cj+1

µjNj .e−µjτj
=: pmin

j (24)

where pmin
j depends only upon pj+1, ..., pL.

Solution Approach In order to derive explicit formulae, we now assume that there is no external
hiring (αj ≡ 1) and that the cost of permanent employees grows exponentially with a limited rate r
(compared to attrition)

wpj (s) = w0
j e

rs, r < µj ,

Then, we can obtain explicitly the cost at level j with formula which can be implemented within a
standard optimization algorithm, see Section 4.2.

Proposition 3.1 The following expressions holds for the costs Costj,

Costj = (1− pj)Nj w
t
j +

w0
j (µjNjpj + Cj+1)

µj − r

[
1− µjCj+1e

rτj

(µj − r)αjCj + rCj+1eµjτj

]
, 1 ≤ j < L, (25)

CostL = (1− pL)NL w
t
L +

w0
LαLCL
µL − r

. (26)

Proof. These formulas are derived as follows for j < L. Note that we do not copy the calculation for
the case j = L. Departing from the formula for ρpj (s) in Section 3,

1
w0
j

∫ ∞
0

ρpj (s)w
p
j (s)ds = (µjNjpj + Cj+1)

∫ ∞
0

e
−µjs+rs+(r+

Cj+1
Aj

)(τj−s)−
ds

= (µjNjpj + Cj+1)[1−e−(µj−r)τj
µj−r + e−(µj−r)τj

µj−r+
Cj+1
Aj

]

Therefore, since µjÃj = e−µjτjαjCj − Cj+1, we have

µj − r
w0
j

∫ ∞
0

ρpj (s)w
p
j (s)ds = (µjNjpj + Cj+1)

[
1− e−(µj−r)τj +

(µj−r)Ãje−(µj−r)τj

e−µjτjαjCj−rÃj

]
= (µjNjpj + Cj+1)

[
1 + e−(µj−r)τj −(e−µjτjαjCj−rÃj)+(µj−r)Ãj

e−µjτjαjCj−rÃj

]
= (µjNjpj + Cj+1)

[
1− e−(µj−r)τj Cj+1

e−µjτjαjCj−rÃj

]
.

We end up with the expression:

µj − r
w0
j

∫ ∞
0

ρpj (s)w
p
j (s)ds = (µjNjpj + Cj+1)

[
1− µjCj+1e

rτj

µjαjCj − rαjCj + rCj+1eµjτj

]
.

This formula immediately yields (25).
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Optimality conditions The specific form of the cost in formula (26) has an ascending property
because Costj only depends on pj , ...pL. This allows us to write:

Costoptorg = min
pL

[
CostL + min

pL−1

[
CostL−1 + min

pL−2

[CostL−2...+ min
p1

Cost1...]
]]
.

Notice that this structure is conflicting with the descending structure for the minimal values of the αj .
For this reason analytical formula for a global minimizer in (pj , αj)j=1,...L is not possible. We exemplify
the choices of optimal proportions of permanent workers pj ’s in the next paragraph, assuming the αj ’s
are known.

A specific case of optimality conditions Computing the optimal conditions remains rapidly
very tedious, at least theoretically. But rather than providing directly numerical simulation results
(that are in any cases developed in the end of this paper), we will restrict our strategy of leverage of
temporary workers only in the first job or the two first jobs to derive and discuss closed formulas.

Case 1: Allow contractors only in the lowest hierachical level. In this setting, the cost function de-
pends only on the variable p1 because p2 = p3 = ... = pL = 1.. Because only C1, among the Cj ’s,
depends on p1, from (25), we then have to tackle the minimums with respect to the variable p1 of the
function

Cost1(r, p1) = (1− p1)N1w
t
1 +

w0
1α1C1

µ1 − r

[
1− µ1C2e

rτ1

(µ1 − r)α1C1 + rC2eµ1τ1

]
.

We have

Cost′1(r, p1) = N1

(
−wt1 +

w0
1µ1

µ1 − r
(
1− rµ1(C2)2e(r+µ1)τ1

((µ1 − r)α1C1 + rC2eµ1τ1)2

))
·

We deduce that

Cost′′1(r, p1) =
2N1w

0
1rµ

2
1(C2)2e(r+µ1)τ1

((µ1 − r)α1C1 + rC2eµ1τ1)3
> 0 on ]0, 1[.

Hence, Cost1 is a strictly convex function with respect to the variable p1 and there exists a unique
minimum p∗1 of Cost1 on [0, 1]. Moreover, if p∗1 ∈]0, 1[, we have Cost′1(r, p∗1) = 0. We can further
analyze the optimal choice of p1.The optimality condition Cost′1(r, p1) = 0 gives us :

1− µ1 − r
µ1

wt1
w0

1

=
rµ1(C2)2e(r+µ1)τ1(

(µ1 − r)p1µ1N1 + C2(reµ1τ1 + µ1 − r)
)2 < r

µ1
e(r−µ1)τ1

because we have assumed from (24) that p1µ1N1 > (eµ1τ1 − 1)C2 (a relation written as p1 > pmin
1 ).

Therefore:
• when wt1 is low the optimal cost is achieved with the smaller tenure rate p∗1 = pmin

1 which allows to
ensure internal promotion for level 2 (see (24)),
• when wt1 is large, the minimal cost is also reached by saturating the constraint, but now on the other
extreme p∗1 = 1 which means that there is no temporary workers,
• the middle range where the optimal hiring rate satisfies pmin

1 < p∗1 < 1 occurs when the parameters
are such that:

rµ1(C2)2e(r+µ1)τ1(
(µ1 − r)µ1N1 + C2(reµ1τ1 + µ1 − r)

)2 < 1− µ1 − r
µ1

wt1
w0

1

<
r

µ1
e(r−µ1)τ1 .
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Case 2: Allow contractors only in the two first levels. In this setting, we assume that p3 = ... = pL =

1. This case is much more complex to deal with, for instance, conversely to the previous case, convexity
of the cost function costorg is lost, even in the simpler situation where L = 2. Hence, here, we restrict
our analysis to the derivation of the relations leading to a critical point, that is ∇Costorg = 0.

As before, because only C1, among the Cj ’s, depends on p1, from (25), we obtain the first order

optimality condition
∂Costorg
∂p1

= 0 with the relation:

(µ1 − r)N1w
t
1 = w0

1µ1N1

[
1− rµ1(C2)2e(r+µ1)τ1

((µ1 − r)α1C1 + rC2eµ1τ1)2

]
. (27)

The next first order optimality condition
∂Costorg
∂p2

= 0 is written

N2w
t
2 = µ2N2

{
w0

1
µ1−r

[
1− µ1(C2+α1C1)erτ1

(µ1−r)α1C1+rC2eµ1τ1
+ α1C1

µ1C2erτ1
(

(µ1−r)+reµ1τ1
)(

(µ1−r)α1C1+rC2eµ1τ1
)2
]

+
w0

2
µ2−r

[
1− µ2C3erτ2

(µ2−r)α2C2+rC3eµ2τ2
+ α2C2

(µ2−r)µ2C3erτ2(
(µ2−r)α2C2+rC3eµ2τ2

)2
]}

,

which,using the first condition, can be simplified as

N2w
t
2 = µ2N2

{
wt1
µ1

+
w0

1
µ1−r

[
− µ1α1C1erτ1

(µ1−r)α1C1+rC2eµ1τ1
+ α1C1

µ1C2erτ1reµ1τ1(
(µ1−r)α1C1+rC2eµ1τ1

)2
]

+
w0

2
µ2−r

[
1− µ2C3erτ2

(µ2−r)α2C2+rC3eµ2τ2
+ α2C2

(µ2−r)µ2C3erτ2(
(µ2−r)α2C2+rC3eµ2τ2

)2
]}

.

(28)

These two relations (27), (28) define the possible critical points p1, p2 of the cost function in this
case.

3.2 Add floaters to account for task specificities

In the previous subsection, it was shown that the use of a temporary workforce can be optimized
across all organizational levels to yield more cost efficiency by reducing the organization idleness and
its associated costs. We now complete our model by adding a final layer to achieve what we expect to
be a realistic description of an entire organization.

Final problem statement Building on all the previous sections, assume that a company is actually
the sum of K business units. In each business unit k ∈ [1,K], the workforce is organized around the
same level structure j ∈ [1, L] and we assume it is now structured in 3 parts (see Figure 1)

• a k business unit specific permanent population in level j noted Np,k
j which follows the same

dynamics as described earlier and which compete for promotion within the business unit.

• a temporary population N t,k
j which is used by the business units as buffer to meet its workload

requirement and is not used for promotion.

12



• a permanent ”floater” population Nfloat
j that is not business unit specific and does not compete

for promotion.

The introduction of ”floaters” is of interest because it represents another type of workforce, where
workers tend to be generalists that ripe the benefits of an organizational knowledge without competing
for promotion. It also illustrates how an organization can benefit from transversal moves on top of
vertical ones.
Noting pkj ∈ [0, 1] the proportion of the population Nk

j at level j in business unit k that is under a

permanent contract and gkj ∈ [0, 1] the proportion of floaters, the following arises:

Nk
j = Nk

j p
k
j︸ ︷︷ ︸

permanent

+Nk
j .g

k
j︸ ︷︷ ︸

floaters

+Nk
j .(1− pkj − gkj )︸ ︷︷ ︸

temporary

, pkj + gkj ≤ 1, Np,k
j := Nk

j p
k
j , (29)

and we may define for j ∈ [1, L],

Nfloat
j :=

K∑
k=1

Nk
j .g

k
j . (30)

From a cost standpoint, the following rules at each level j and business unit k apply:

• the cost of each position wp,kj (s) > 0 in the permanent populationNp,k
j is growing with seniority s,

• the cost of each temporary contract wt,kj is assumed to be constant. We also assume that

wt,kj > wp,kj (0) to account that a temporary workforce may come at a premium over a freshly
hired permanent employee,

• the cost of the ”floaters” wfloatj (s) > 0 is growing with seniority s.

This leads to a cost optimization program that is similar to (23),

Costoptorg =min pkj + gkj ≤ 1,
k ∈ [1,K], j ∈ [1, L]

K∑
k=1

L∑
j=1

{
Nk
j .(1− pkj − gkj ).wt,kj +

∫
Nk
j .g

k
j .w

float
j (s)e−µjsds

+

∫
wp,kj .ρp,kj (s)ds

}
.

(31)

Figure 1: Representation of a company structure with temporay employees and floaters.
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Solution Aapproach We may analyze this cost functional and introduce the floaters averaged cost
wfaj =

∫
wfloatj (s)e−µjsds and we obtain from (31)

Costoptorg = min
pkj + gkj ≤ 1,

k ∈ [1,K], j ∈ [1, L]

K∑
k=1

L∑
j=1

{
Nk
j .
[
(1− pkj − gkj ).wt,kj + .gkj .w

fa
j

]
+

∫
wp,kj .ρp,kj (s)ds

}
.

We first minimize over gkj with the constraint 0 ≤ gkj ≤ 1−pkj . Because the functional depends linearly

on gkj it is attained either with gkj = 0 or gkj = 1 − pkj depending on the values of wt,kj and wfaj . We
find the simplified formula:

Costoptorg = min
pkj ≤ 1,

k ∈ [1,K], j ∈ [1, L]

K∑
k=1

L∑
j=1

Nk
j .
[
(1− pkj ).min(wt,kj , .wfaj ) +

∫
wp,kj .ρp,kj (s)ds

}
.

We are back to a problem, similar to the case of temporary workers in section 3.1, with the additional
complexity of the business units.

4 Algorithms, simulations & results

It is possible to determine numerically the solution of the organizational model (1)–(2) with the
size constraint (6) for each job class. It allows either to minimize external hiring or to implement
practically the above strategies. Either we determine the highest possible internal promotion rates
Pj(t), j = 1, ..., L− 1 and, when there is not enough workers ready to be promoted, minimal external
hiring is used to compensate the gap. Or, we impose a proportion of external hiring. The method we
use is to solve the system (1)–(2), after re-writing it under the form{

∂tρj + ∂sρj + µjρj + Pj(t)ρj(t, s) = Is<τjPj(t)ρj(t, s),

ρj(t, s = 0) = (µj + Pj)Nj + PjBj(t), Bj(t) = Pj(t)
∫ τj

0 ρj(t, s)ds,
(32)

with the coefficients Pj and hj as in (6).

4.1 Optimal organizational model (external hirings)

The advantage of this form comes from the explicit-implicit discrete version which is both stable and
easy to implement:

ρk+1
j,i −ρ

k
j,i

∆t +
ρkj,i−ρkj,i−1

∆s + (µj + P kj ) ρk+1
j,i = P kj Isi<τj ρkj,i, i ≥ 1,

ρkj,0 = (µj + P kj )Nj + ∆s P kj
∑

0<si≤τj ρ
k
j,i.

(33)

Here we have used a time step ∆t, a s-step ∆s and the superscript refers to time tk = k∆t, the subscript
i refers to the seniority si = i∆s. The only stability condition comes from the CFL restriction on ∆t,
namely ∆t ≤ ∆s. We have used here a standard upwind scheme for discretizing the s derivative [15, 16].
Notice that, assuming by iteration the constraint,

∆s
∑
i

ρkj,i = Nj , (34)
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we find:

∆s
∑
i≥1

ρk+1
j,i −Nj + ∆t(µj + P kj )∆s

∑
i≥1

ρk+1
j,i = ∆tρkj,0 + ∆t∆s P kj

∑
0<si≤τj

ρkj,i.

This also gives:

∆s
∑
i≥1

ρk+1
j,i + ∆t(µj + P kj )∆s

∑
i≥1

ρk+1
j,i = Nj + ∆t(µj + P kj )Nj ,

the solution of which is ∆s
∑

i≥1 ρ
k+1
j,i = Nj . This means that the discretization (33) preserves the

discrete version (34) of the constraint (6).
It remains to determine the hiring rates hk+1

j , P k+1
j . To do so, we argue backward on the job

index j. After computing ρk+1
j,i , and departing from j = L and P k+1

L = 0, we impose until j = 1 with

P k0 = 0,

hk+1
j Nj + P k+1

j−1 A
k+1
j−1 = µk+1

j Nj + P k+1
j Ak+1

j , Ak+1
j := Nj −∆s

∑
0<si≤τj

ρk+1
j,i . (35)

As observed previously, these are 2L−1 parameters for L constraints and several options are possible.

Maximize the internal promotion To achieve this goal, one can choose to take the largest value
P k+1
j−1 satisfying (35), imposing however that P k+1

j−1 ≤ Pmax in order to avoid the subtle interpretation

of P k+1
j−1 = +∞. This yields the following formula:

P k+1
j−1 = min

(
Pmax,

µk+1
j Nj + P k+1

j Ak+1
j

Ak+1
j−1

)
.

If P k+1
j−1 < Pmax, we choose hk+1

j = 0. If P k+1
j−1 = Pmax, we choose hk+1

j−1 in order to achieve the
equality (35).

Impose a proportion of external hiring We may also choose to impose a given minimal pro-
portion α of external hirin. This means hk+1

j = αP k+1
j−1 + δk+1

j , with δk+1
j−1 ≥ 0 nonnegative being used

when the α-strategy is not enough to fill the job level j − 1. Then, we obtain the formula:

P k+1
j−1 = min

(
Pmax,

µk+1
j Nj + P k+1

j Ak+1
j

(1 + α)Ak+1
j−1

)
.

If P k+1
j−1 < Pmax, we choose hk+1

j = αP k+1
j−1 . If P k+1

j−1 = Pmax, we choose δk+1
j in order to achieve the

equality (35).

Numerical examples We have tested the algorithm with data describing an internal labor market
with a low attrition rate. We concentrate ourselves on its steady state. The Table 1 gives the data
Nj , τj and the corresponding maximal internal promotion rate Pj . We also compute the proportion of
employees ready to be promoted RPj = Aj/Nj and the average promotion when ready to be promoted

Tj = ∆s
∑
si>τj

siρ
k
j,i.

With low attrition, external hiring can be avoided.

Table 2 gives the results with a higher attrition rate and external hiring is needed.
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4.2 Numerical simulation of a cost optimal structure with flexible workers

Under the proposed organizational model described in section 3.1, it is possible to minimize a company
labor cost footprint. The main question behind the minimization problem is about understanding the
value of paying a flat premium to outsource some activities versus having to support constant cost
increases due to a pay for tenure type of wage scheme. As previously mentioned, this problem is
difficult to solve and does not lead to closed formulas. In order to numerically approximate the cost
optimal state of the organization, genetic algorithms (referred to as GAs) have been used.
GAs consist in search heuristics inspired by the basic principles of biological evolution [17]. In a nut-
shell, they start with a set of candidate solutions (population), and for each iteration (generation), the
better solutions are selected (parents) and used to generate new solutions (offspring). The generation
of new solutions can follow a variety of pattern: parent information can be recombined (crossover) or
randomly modified (mutation) etc The offspring are then used to update the population (evolution)
and replace its weakest members. After each iteration, the overall population gets closer to a mini-
mum. GAs have empirically proven useful to reach global minimum in a number of iterations that is
quadratic in the number of sought parameters (see [18] for a review).
In the case at hand, a generic GA implementation in the software R leveraging the genalg package
[19] was used. Once natural boundaries were selected for the parameters of interest (namely αj&pj),
a population size of 200 individuals and a total of 250 iterations were fixed with the default imple-
mentation of the algorithm. Note that we specified a mutation chance of 10%. The organization
parameters that were used are described in Table 3 and echo the previous subsection’s simulations.
As per wage scheme, a 40% increase per hierarchical level was assumed based on a 35$/h salary at
the lowest organizational level (j = 1). For the sake of simplicity, the wage increase rate associated to
tenure r will be assumed at 4%. In the developed example, a uniform premium B was assumed across
all levels so that

wtj = (1 +B).wpj , j = 1, ..., 5.

We have tested three cases, B = 5%, B = 10% and B = 20% which we have compared to the
no-contractor scenario, i.e., B =∞. Results are displayed in the Table 4.

The organizational footprint that is being discussed here can build upon itself internally for a total
of 1,13M$/h, but does not reach optimality if no flexibility is considered. Leveraging an internal
labor market however leads to a certain degree of stagnation. As such leveraging flexible workforce
solutions becomes financially interesting under the previous assumption for a premium B < 20%. The
associated financial gain is of course increasing as the contractor premium B gets lower. As such a 5%
premium yields more than 12% in savings. Finally note that, in all our experiments, the top of the
organization (j = 5) never gets outsourced. However the proportion of external vs internal sourcing
(represented by α) increases at level 4 when flexible workforce solutions are cheap.

5 Conclusion and perspectives

In this paper, a scalable hierarchical organization model was built. Its main features were to account
for employee promotional readiness while controlling labor costs. The model shows that organizational
inertia may come at a cost depending in its set up. Because of the organization needs and design,
employees are indeed potentially waiting for a new internal opportunity while performing the same
task. This occurs in situations with low turnover rates and is detrimental for both the company that
pay them to stay (henceforth increasing its operational costs) and for the individual.
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The proposed solution investigates the notion of temporary labor. Rather than using flexibility to
adapt to a volatile workload, the ideas developed in this paper are to optimally contract a part of
this organization to create a lean and cost optimal environment for the individuals that belong to the
company. The main results shows that it is possible to do so with various flexibility solutions (floaters,
temporary workers) and with different model of employee commitment (employee grown internally vs
brought from the outside).

If the proposed method is helpful in setting up an organization target, its operationalization would
have to be discussed. The primary question that arises lies in the potential use of huge chunks of
flexible workers. Activities may not necessarily be available for outsourcing (ex: proprietary methods
or processes). Behind this potential core versus non-core activities discussion, the introduction of
flexible workers may not call for the same type of workers in the core activities. For instance, for
permanent people manager will have to deal with important workforce changes. While coaching
their team members, they will have to adapt their efforts between permanent and flexible workers.
This organizational method also calls for a robust succession process especially in the promotion
attributions that is not described in this paper. We believe this discussion should be skill based and
requires the definition of company-wide standards. To this extent, note that a lot of ground has
already been covered by principal-agent theoretical approaches (see [20] for example). Finally another
potential operational issue is about performance and productivity. Creating change in the workforce
to optimize costs may come at a performance loss if not managed correctly. This calls for caution in
potential implementation as the resulting balance may not beneficial to the organization.
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j 1 2 3 4 5

Nj 5500 5200 3800 1800 500
µj 0.8 0.8 0.8 0.8 5.
τj 4 4 4 4 4
Pj 4.42 0.52 0.28 0.54 –
hj 0.28 0. 0. 0. 0.
Tj 0.33 1.78 2.9 1.72 2.1
RPj 0.045 0.26 0.38 0.26 0.14

Table 1: (Low turnover) The promotion rates Pj , ready to be promoted ratio RPj and waiting for
promotion times Tj for a company with 5 class jobs of size Nj (in thousands of employees), attrition
rate µj = 0.08 per year, and waited to be promoted time τj in years. Internal hiring is sufficient.

j 1 2 3 4 5

Nj 8000 4000 2500 1000 500
µj 1.6 1.6 1.6 1.6 5.
τj 4 4 4 4 4
Pj 3.37 5. 2.32 5. –
hj 0.32 0. 0.05 0. 0.1
Tj 0.39 .30 .51 .30 2.1
RPj 0.05 0.03 0.07 0.03 0.14

Table 2: (High turnover) The company has to recruit externally at some job levels. The maximum
internal hiring rate has been fixed to be Pmax = 5. See Table 1 for notations.

Org. Level j 1 2 3 4 5

Nj 5500 5200 3800 1800 500
µj [%] 8 8 8 8 20

τj [Years] 4 4 4 4 4
w0
j [$/h] 35 49 69 96 134

Table 3: Organization model parameters.

Contractor premium Org. Level j 1 2 3 4 5 Optimal Org. Cost [M$/h]

B =∞ αj - 1.00 1.00 1.00 1.00 1,13

B = 20% αj - 1.32 1.04 1.02 1.00
pj 0.23 0.22 0.22 0.39 0.99 1,10

B = 10% αj - 3.89 1.02 1.851 1.29
pj 0.02 0.075 0.07 0.20 0.99 1,04

B = 5% αj - 2.31 1.08 1.75 1.42
pj 0.03 0.06 0.07 0.18 0.99 0,99

Table 4: Simulation results with temporary hirings.

19


	Introduction
	Organization dynamics
	Organization model
	Organization behavior - no external hiring
	Organization behavior - with external hiring

	Organization cost structure and flexible workforce
	Leverage temporary workers to speed up the organization
	Add floaters to account for task specificities

	Algorithms, simulations & results
	Optimal organizational model (external hirings)
	Numerical simulation of a cost optimal structure with flexible workers

	Conclusion and perspectives

