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Edouard Belin, 31401 TOULOUSE CEDEX 09, France

The failure initiation of a brazed structure made of Silicon Carbide components is analysed by means of a two-scale analysis and a twofold 
failure criterion using both a maximum released energy and a maximum tensile stress conditions. In a first step, two asymptotic 
expansions are settled to describe the perturbation caused by the emergence of the thin solder layer on the free edge surface of the 
structure, at the macro and micro levels. The resulting far field evidences a logarithmic term. This is mainly due to different elastic prop-
erties of the two materials leading to a conflicting necking effect. In a second step, the fail-ure criterion is established; the two conditions 
lead to two branches depending on the thickness of the solder layer, one is governed by the energy condition and the other by the stress 
condition. Predictions agree almost well with experiments carried out at room temperature on brazed specimens of SiC with different 
Silicon based solders.

1. Introduction

Silicon Carbide (SiC) based structures are widely used in
the space industry (Bath et al., 2005) thanks to the mechan-
ical and thermal properties of this material and its chemical
stability. They are now used in high temperature heat
exchangers for energy conversion or in chemical reactors
(Lewinsohn et al., 2000; Rodriguez et al., 2007). However,
the manufacturing process (sintering) does not allow the
production of very large elements such as mirrors for satel-
lite (Herschel mirror for instance) or very complex geome-
tries. Therefore it is necessary to build piece by piece and
to use an assembly method. Brazing currently seems the
most appropriate, using a filler material with properties as
close as possible to the substrates to avoid incompatibility

problems (Katoh et al., 2000; Riccardi et al., 2002a). The pro-
cess called BraSiC�uses Silicon combinedwith ametal com-
ponent as filler, the bonding is made at high temperature
(�1400 �C) and impregnation is achieved by gravity/capil-
larity (Gasse, 2003; Gasse et al., 2003).

For the safety of these facilities, the most important
question that arises is the mechanical resistance of the
assembly. To this aim, a 4-point bending test campaign on
bars assembled end-to-endwas conducted at room temper-
ature. It led to analyze the role of a key parameter: the thick-
ness of the butt joint which was varied from 3 to 200 lm.

This experimental work was accompanied by a theoret-
ical model based on the use of a failure coupled criterion
(Leguillon, 2002) (i.e. using both energy and stress condi-
tions). It was exploited to highlight the role of the thick-
ness of the solder joint in tests on brazed bars, resulting
in a very simple formula in perfect agreement with the
experimental results: strength is proportional to the in-
verse of the square root of the solder joint thickness.

The present paper is devoted to a brief description of the
experiments and to a theoretical model of fracture. This
model relies on an asymptotic approach which allows get-
ting rid of time consuming finite element computations car-
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ried out on strongly refined meshes within and around the
joint (Nguetseng and Sanchez-Palencia, 1985; Leguillon,
1995; Leguillon and Abdelmoula, 2000; Haboussi et al.,
2001). The fracture criterion is based on a twofold condition
in energy and stress (Leguillon, 2002). It splits into two
branches, one is governedby the energy condition, it is asso-
ciated with the thinner solder layers. The other one, gov-
erned by the stress condition, corresponds to thicker
layers. The predictions agree almost well with the experi-
mental measures derived from the experiments carried
out on various grades of brazing material.

A point is not studied here, taking into account the ther-
mal residual stresses due to the process used for making
the joint. Tests conducted at high and low temperatures
failed to clearly demonstrate their role as several authors
have found (Singh, 1997; Riccardi et al., 2002b; Cockeram,
2005; Nguyen, 2011) even if thermal expansion coeffi-
cients are significantly different. Anyway, these thermal
stresses remain transparent to the identification procedure
necessary to the failure prediction we use.

2. The experiments – 4-point bending tests

According to the standards NF EN 843-1 (2007) and
ASTM C1211-02 (2008) for flexural monolithic ceramics,
we used a specially designed fixture to avoid friction and
alignment problems (Fig. 1). The load rate was set to
0.5 mm/min and data collection was performed using Test-
works software. The peak load reported by the softwarewas
used to calculate the flexural strength. The outer and the in-
ner span lengths were 40 mm and 20 mm, respectively.

The test specimens were made of two bars of SiC joined
together by using 2 different grades of brazing material
BraSiC� baptized CEA1 and CEA2. The Young modulus of
SiC was taken from the literature E = 416 GPa and that of
the brazing material was determined by nano-indentation
E = 154 ± 8 GPa for CEA1 and E = 171 ± 23 GPa for CEA2. An
average value E = 160 GPa was selected for the numerical
simulations.

Specimens for bending tests were machined from butt
joined plates. The joint was located in the middle of the
flexure bars. Dimensions of specimens were respectively
4 � 3 � 46 mm3. The thickness of the joint was varied from
3 ± 1 lm to 200 ± 10 lm. Then, all surfaces were grinded

and small chamfers were made on the edges of the tensile
surface of the specimen. However, specimens without
chamfer were also used and it was verified that this had
no influence on the fracture results. The stress T acting
along the tensile surface was calculated from the classical
(1) corresponding to the bending of a beam submitted to
a homogenous 4-point bending remote load

T ¼ 3FðL� lÞ
2bh2

ð1Þ

where F is the maximum load (N), L the outer span distance
(mm), l the inner span distance (mm), b the beam width
(mm) and h the beam thickness (mm) (Fig. 2(a)). A mini-
mum of 7 specimens were tested for each bond thickness
at room temperature in air. After testing, fracture surfaces
were examined by optical and scanning electron micros-
copy to identify the failure origin.

The room-temperature flexural strengths of brazed SiC
specimens are shown in Section 8, Figs. 9 and 10. They ex-
hibit a flexural strength close to the bulk tensile strength of
SiC (around 496 ± 91 MPa) for very thin joints and a big
significant change as a function of the joint thickness e.

For CEA1, a rapid decrease of the bending strength to
194 ± 42 MPa was recorded when thickness varies from
3l to 19l. For a joint thickness around 93 lm, flexural
strength decreases to 115 ± 42 MPa with a smaller slope.

Under similar test conditions, the joinedCEA2 specimens
with different thickness of joint of 3 lm, 18.6l, 91 lm had
bending strengths of 368 ± 72 MPa, 148 ± 23 MPa and
123 ± 24 MPa, respectively. The CEA1 joint shows a better
strength than CEA2, especially for small thicknesses.

For very thin joints (3 ± 1 lm), there are 5 and 11 out of
14 tested specimens (respectively for CEA1 and CEA2 sol-
ders) for which failure occurs in the brazing joint (we
called failure in the brazing joint when failure occurs with-
in the joint or along its interfaces with the SiC substrate).
The other failures occur at the loading rollers or close to
them. Obviously, resistance of thin joints is almost as
strong as SiC and the standard deviations overlap, thus
possibility of failure either in the joint or in the SiC sub-
strate likely depends where the most critical defect is.

3. The theoretical model and a first step in the matched

asymptotic procedure

As is desired in industrial processes, the joint thickness
e must be small compared to the overall dimensions of the
samples (e� h beam thickness, e� L beam length, Fig. 2).
Considering these joints in a finite elements analysis (FEA)
implies the use of strongly refined meshes inside and in
their vicinity. This section and the next two are devoted
to the description of a matched asymptotic procedure with
respect to e which allows getting rid of this drawback. It is
based on a two-scale approach. In the so-called outer or
macro one the joint thickness is neglected, as it is tempting
to do because of it smallness, whereas in the inner or micro
approach the joint has a finite thickness but the exact
geometry of the samples is neglected. Moreover the latter
problem can be solved once and for all, whatever the global
geometry of the specimen and whatever the mode of

Fig. 1. The 4-point bending device according to standards NF EN 843-1

and ASTM C1211-02 and the butt jointed SiC sample (the scale is not fully

respected).
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loading and its intensity. In addition, this two-scale
approach allows evidencing some significant parameters
which intervene in the fracture process.

We consider specimens made of two parts of a stiff elas-
tic material with Lamé’s coefficient kS = 84.4 GPa and
lS = 179.3 GPa (the index S denotes the two SiC bars with
E = 416 GPa, m = 0.16). They are bonded together by a thin
solder layer with thickness e (assumed to be far smaller
than the specimen size e� L and e� h) and Lamé’s coeffi-
cient kL = 228.6 GPa and lL = 57.2 GPa (the index L corre-
sponds to the BraSiC

�

layer with E = 160 GPa, m = 0.4).
They form the domain Xe (Fig. 2a). In the experiments,
they are submitted to a 4-point bending loading (Fig. 2)
but it is clear that the same reasoning works for any other
problem, a tensile loading for instance.

Under plane strain assumption, the solution to the elas-
tic problem inXe is searched in the form of a so-called out-
er expansion (Nguetseng and Sanchez-Palencia, 1985)

Ueðx1; x2Þ ¼ U0ðx1; x2Þ þ eU1ðx1; x2Þ þ e2U2ðx1; x2Þ þ � � � ð2Þ

where the dots � � � hold for terms smaller than e2. The
successive terms are solution to problems settled on the
simplified domain X0 = lime?0X

e where the bonding layer
is not visible (Fig. 2b). Obviously, such an approximation is
valid only out of a vicinity of the virtual interface C, which
explains the name ‘‘outer’’.

The first term U0(x1,x2) is continuous through the line C
and fulfils the classical set of equations of a 4-point bend-
ing test on a homogenenous isotropic sample (Fig. 2(b)).
The solution can be either approximated analytically (Eq.
(1)) or easily solved by a FEA without special requirements
on the mesh.

In the vicinity of the origin O this leading term can be
expanded using the uniform tension in direction x1 ex-
pressed below in polar variables (throughout this paper
Cartesian coordinates (x1,x2) and polar ones (r,h) both with
origin at O are unambiguously mixed)

U0ðx1; x2Þ ¼ U0ðOÞ þ Trt1ðhÞ þ � � � ð3Þ

with

rt11ðhÞ ¼ r kSþ2lS

4lSðkSþlSÞ cos h ¼ kSþ2lS

4lSðkSþlSÞ x1

rt12ðhÞ ¼ �r kS

4lSðkSþlSÞ sin h ¼ � kS

4lSðkSþlSÞ x2

8
><

>:
ð4Þ

The coefficient T is the tension on the lower face of X0 as
estimated in the experiments (Eq. (1) for instance). The
associated stress field fulfils

r1
11ðr; hÞ ¼ T; r1

12ðr; hÞ ¼ r1
22ðr; hÞ ¼ 0 ð5Þ

The first term of (3) is an irrelevant constant corresponding
to the vertical deflection of point O. According to the singu-
larity theory (Leguillon and Sanchez-Palencia, 1987), the
remaining terms in (3) involve higher integer powers of
the space variable r.

The next terms of expansion (2) result more precisely of
a matched asymptotic procedure as presented in Sections 4
and 5.

4. The inner expansion

To have more details on the region surrounding the ori-
gin O where a crack is expected to appear, a zoom in is car-
ried out. But contrarily to the usual procedure (Haboussi
et al., 2001) in such situation which consists in stretching
the initial domain in the single direction x1, we consider
a dilatation in all directions around the origin O:
xi? yi = xi/e (i = 1,2) (in polar coordinates r? q = r/e). In
this domain an inner expansion (as opposed to the previ-
ous outer one) is assumed in the following form

Ueðx1; x2Þ ¼ Ueðey1; ey2Þ
¼ W0ðy1; y2Þ þ e W1ðy1; y2Þ þ � � � ð6Þ

The successive terms in (6) are solutions to problems set-
tled in the unbounded (as e? 0) domain Xin spanned by
the pair y1 and y2P 0. Clearly, finite values of y1 and y2
correspond to small values of x1 and x2. Thus the expansion
(6) is valid in a vicinity of the solder layer, i.e. within a ver-
tical band containing the solder joint (Fig. 3).

The two expansions Eqs. (2) and (6) are complementary,
the matching conditions in between state that the solution
in the inner domain Xin as one moves far from the origin
(i.e. as q?1) must match with the solution in the outer
domain when approaching the origin O and the solder
layer figured by the virtual line C (i.e. as r? 0). In other
words there is an intermediate region where the two
expansions coincide. Thus, it can be easily derived that
W0(y1,y2) must behave like U0(O) and W1(y1,y2) like rt1(h)
at infinity. Using the derivation rule @⁄/@xi = 1/e @⁄/@yi for
i = 1, 2, there is a trivial solution to the first condition

Fig. 2. Schematic view of the butt joined specimen under a 4-point bending load (a) and the simplified problem neglecting the joint thickness (b). The

virtual interface C (x1 = 0) between the left and right parts of the specimen is highlighted.
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W0ðy1; y2Þ ¼ U0ðOÞ ð7Þ

And the second one can be ensured by superposition

W1ðy1; y2Þ ¼ Tq t1ðhÞ þ cW
1
ðy1; y2Þ ð8Þ

The complementary term cW
1
ðy1; y2Þ is decreasing to 0 at

infinity.
For simplicity, in a first step, the stress free boundary

conditions along the bottom face of the specimen are omit-
ted, only interior points y2 > 0 are considered. Then,
according to the elastic equations, cW

1
ðy1; y2Þ must be con-

stant in the right and left parts of the SiC substrate (i.e.
y1P 1/2 and y1 6 � 1/2). By continuity and for symmetry
reasons it comes (see Fig. 4)

W1
2ðy1;y2Þ¼�T kS

4lSðkSþlS Þy2 for any y1

W1�
1 ðy1;y2Þ¼T kSþ2lS

4lS kSþlSð Þy1�
A
2

� �
respectively for y1P1=2 and y16�1=2

W1
1ðy1;y2Þ¼T kSþ2lS

4lS kSþlSð ÞþA

� �
y1 for �1=26y161=2

8
>>>>>><

>>>>>>:

ð9Þ

Eq. (9)1holds in thewhole domain (the SiC substrate and the
solder layer), Eq. (9)2 holds in the right (upper index +) and
in the left (upper index �) parts of the SiC substrate and
Eq. (9)3 in the solder layer. The constant Amust be adjusted
to ensure the stress vector continuity through the interfaces
layer/substrate located at y1 = ± 1/2

A ¼ 1

kL þ 2lL
� 1

kS þ 2lS

!

� kS

4lSðkS þ lSÞ
kS

kS þ 2lS
� kL

kL þ 2lL

!
ð10Þ

Then according to Eqs. (8) and (9)

cW
1
ðy1; y2Þ ¼ TAðy1; y2Þ ð11Þ

where the function A(y1,y2) is introduced allowing a more
concise notation

A2ðy1;y2Þ¼0 for any y1
A1ðy1;y2Þ¼�A=2 respectively for y1P1=2 and y16�1=2

A1ðy1;y2Þ¼Ay2 for �1=26 y161=2

8
><

>:

ð12Þ

Now considering the boundary condition omitted in (9), it
comes.

r12ðy1;0Þ¼lS @W1
1

@y2
ðy1;0Þþ

@W1
2

@y1
ðy1 ;0Þ

� �
¼0 for y16�1=2and y1P1=2

r22ðy1;0Þ¼ðkSþ2lSÞ@W
1
2

@y2
ðy1;0ÞþkS

@W1
1

@y1
ðy1 ;0Þ¼0 for y16�1=2and y1P1=2

r12ðy1;0Þ¼lL @W1
1

@y2
ðy1;0Þþ

@W1
2

@y1
ðy1;0Þ

� �
¼0 for�1=26y161=2

r22ðy1;0Þ¼ðkLþ2lLÞ@W
1
2

@y2
ðy1 ;0ÞþkL

@W1
1

@y1
ðy1;0Þ¼TB for �1=26y161=2

8
>>>>>>>><

>>>>>>>>:

ð13Þ

with

B ¼ kL

kL þ 2lL
� 4lLðkL þ lLÞ
4lSðkS þ lSÞ

kS

kL þ 2lL
ð14Þ

This term vanishes only if

kS

4lSðkS þ lSÞ
¼ kL

4lLðkL þ lLÞ
ð15Þ

i.e. not surprisingly if the necking is the same in the sub-
strate and in the layer. This is unlikely as soon as a signif-
icant contrast exists between the two materials. The inner
solution (9) does not extend to the ends of the solder layer
where it breaks the free surface.

Then an additional term cW
1
ðy1; y2Þ must compensate

the boundary condition imbalance (13)4

r̂22ðy1; 0Þ ¼ ðkL þ 2lLÞ @
cW 1

2

@y2
ðy1;0Þ þ kL

@cW 1
1

@y1
ðy1;0Þ

¼ �TB for� 1=2 6 y1 6 1=2 ð16Þ
Such a problem is ill-posed. The resultant force �TB � 1
(the stretched solder layer thickness is 1) extracted from
(16) does not vanish and the solution cannot decrease to
0 at infinity as expected. It behaves like the point force
solution F(y1,y2) involving a logarithmic term which can
be written as (Timoshenko and Goodier, 1951)

F1ðy1;y2Þ¼� B
p

1
2lS sinhcoshþ 1

2ðkSþlSÞh�
p

4ðkSþlSÞ

� �

F2ðy1;y2Þ¼ B
p

kSþ2lS

2lSðkSþlSÞ

� �
lnqþ B

p
kS

2lSðkSþlSÞ cos
2 h� 1

2ðkSþlSÞ sin
2
h

� �

8
><

>:

ð17Þ
The corresponding resultant force vanishes in direction 1
and equals B in direction 2.

Since F(y1,y2) is singular both for q? 0 and q?1, the
displacement field cW

1
ðy1; y2Þ is rewritten by truncation

and superposition

cW
1
ðy1; y2Þ ¼ T Aðy1; y2Þ þuðqÞFðy1; y2Þ þ

ccW
1

ðy1; y2Þ
!

ð18Þ

Fig. 3. The unbounded half space Xin spanned by y1 and y2P 0, so-called

inner domain.

Fig. 4. The shape of the second term (9) of the inner expansion at an

interior point, i.e. for a fixed value of y2 > 0.
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where u(q) is smooth enough and fulfils u(q) = 0 if q < q1

and u(q) = 1 if q > q2 (q1 and q2 are arbitrarily chosen so
that q2 > q1). The function u(q) allows getting rid of the
singular behaviour of lnq at the origin ad ensure the right

behaviour at infinity. The function
ccW

1

ðy1; y2Þ is solution to
a well-posed problemwith vanishing conditions at infinity.
More precisely it behaves like 1/q, the associated mode is a

kind of pinching 1/qt�1(h) (Leguillon and Sanchez-Palencia,

1990). The notation t�1(h) is used to recall that this mode is
the so-called dual mode (Leguillon and Sanchez-Palencia,

1987) to t1(h) defined in (4)

t�1
q ðhÞ ¼ cos 2h

lS

t�1
h ðhÞ ¼ � sin 2h

kSþ2lS

8
<

: ð19Þ

Formally, the behaviour at infinity can be written

ccW
1

ðy1; y2Þ � D0 1

q
t�1ðhÞ ð20Þ

where � means ‘‘behaves like at infinity’’ and D0 is the
corresponding generalized stress intensity factor. The
explanation for the index 0 will be given further. It must

be pointed out that the computation of
ccW

1

ðy1; y2Þ can be

done once and for all by a FEA as well as the calculation
of D0, regardless of the loading and the geometry of the
specimens.

5. The outer expansion

Applying once again matching rules, the behaviour at
infinity of the inner terms defined by Eqs. (18) and (20)
must match with the outer expansion. First, it imposes
the second term of (2) to split into

Ue
1ðx1;x2Þ¼U0

1ðx1;x2ÞþTe �A=2þF1ðx1;x2Þþ bU1
1ðx1;x2Þ

� �
þ . . .

Ue
2ðx1;x2Þ¼U0

2ðx1;x2ÞþTe F2ðx1;x2Þþ bU1
2ðx1;x2Þ

� �
þ . . .

8
><

>:

ð21Þ

where F(x1,x2) is defined by (17) in which r replaces q. In
(21)1 the sign + is used in the right part of X0 (Fig. 2(b)),
i.e. for x1P 0, and vice versa.

As a consequence, the first corrective term in (2) is
solution to a problem with an opening jump through the
middle line C. This is not surprising, in X0 the area occu-
pied by the solder is replaced by the substrate which is
generally stiffer. The elongation associated with U0 is then
locally lower than the actual one and the complementary
term corrects this inaccuracy by a discontinuity, i.e. a jump
in the horizontal displacement. Vice versa there is an over-
lapping if the interphase is stiffer than the substrate. The
jump or the overlapping is not contradictory with a
mechanical behaviour, the term eU1 is a small correction
to U0 that has no special mechanical meaning.

In addition to this jump there is a point force contribu-
tion, it accounts for the incompatible necking effects
between substrate and solder in the domain X0 where the
thin solder layer is neglected. Under tension, the solder
shrinks more than the substrate and pull on it. Fig. 6

summarizes the behaviour of the two leading terms U0 and
U1 of the outer expansion near the origin O.

Another term theoretically appears in the form e lne but it
is multiplied by an irrelevant constant. The displacement
field bU

1
ðx1; x2Þ is solution to a well-posed problem, it fulfils

stress free boundary conditions on the lower face of the spec-
imen and appropriate boundary conditions derived from the
discontinuity constant A and the point force F(x1,x2) else-
where (where the logarithmic term is not singular).

Going further in the matching procedure, matching
rules provide the next term U2 of the outer expansion (2)
and its splitting according to (20)

Ueðx1;x2Þ¼U0ðx1;x2ÞþTeU1ðx1;x2ÞþTD0e2U2ðx1;x2Þþ � � � ð22Þ

with

U2ðx1; x2Þ ¼
1

r
t�1ðhÞ þ bU

2
ðx1; x2Þ

The displacement field bU
2
ðx1; x2Þ is also solution to a well-

posed problem. It fulfils stress free boundary conditions on
the lower face of the specimen and appropriate boundary
conditions derived from 1/r t�1(h) elsewhere (where this
term is not singular).

6. Nucleation of a crack at the interface

The end of the solder layer is a privileged site for crack
nucleation. The existence of a singular point leads to a
stress concentration at the intersection between the inter-
face and the free edge. As observed in the experiments, the
only plausible mechanism seems to be a crack starting
from or close to the free edge and growing along the inter-
face (Fig. 7). We assume that its length ‘ at initiation is of
the same order or smaller than the layer thickness e. In the
stretched domain the dimensionless crack length is n = ‘/e.
Otherwise, if ‘ is by far much larger than e, the expansions
should be carried out first with respect to ‘ (and then with
respect to 1/n = e/‘� 1), in this case the solder layer would
play a minor role in the fracture process due to its small
thickness compared to the crack length and a model with
a weak virtual interface C is enough.

The function cW
1
ðy1; y2Þ in (8) must now fulfil additional

stress free boundary conditions on the two faces of the
nucleated crack, thus a new conditionmust be added to (16)

r̂12ðy1; y2Þ ¼ 0; r̂11ðy1; y2Þ ¼ �T for

y1 ¼ �1=2� and 0 6 y2 6 n ð23Þ

where signs + and � denote respectively the right and left
faces of the new crack. This condition do not introduce new
difficulties, the resultant force remains the same (condition
(23) do not introduce any resultant force or moment), thus
the behaviour at infinity of this solution is still defined by
(17) and (19), then

ccW
1

ðy1; y2Þ � Dn 1

q
t�1ðhÞ ð24Þ

In the equations, the main difference prior to crack nucle-
ation and following this event lies in the generalized stress
intensity factors D0 and Dn. In the first case, FEA are carried
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out on a crack free domain (Fig. 5) whereas its geometry
embeds a crack in the latter one (Fig. 7). The outer expan-
sion Eq. (22) has to be modified accordingly, simply replac-
ing D0 by Dn.

From this point of view (i.e. the function Dn), there is not
much difference between a crack at the interface or inside
the joint or even slightly outside in the substrate. The dif-
ference will come later when the properties at failure will
be taken into account, they can differ dramatically depend-
ing on the location of the crack, in the SiC substrate, in the
solder material or along the interface.

As mentioned above for D0 the calculation of Dn can also
be done once and for all, regardless of the loading and the
geometry of the specimens.

7. The energy release rate for the interface crack

The change in potential energy dWp between the two
states (i.e. prior to and following the crack nucleation)
can be written using a path independent integral (Leguil-
lon, 1993; Labossiere and Dunn, 1999). To this aim, let us
denote respectively Ue0(x1,x2) and Ue‘(x1,x2) the solutions
prior and following the crack nucleation, then

dWp ¼ WðUe‘;Ue0Þ

¼ b

2

Z

U

½rðUe‘ÞnUe0 � rðUe0ÞnUe‘	ds ð25Þ

where b is the specimen thickness (plane strain assump-
tion) and where U is any contour encompassing the origin
in the domain X0 and starting and finishing at the bottom
stress free edge of the specimen (Fig. 2), the vector n is its
normal pointing toward the origin. The integral W is path
independent for any displacement fields fulfilling the bal-
ance equations. Substituting the outer expansions of the
two terms in this integral gives

dWp ¼ e2ðDn � D0ÞTWðU2;U0Þbþ . . . ð26Þ

and the incremental energy release rate derives
immediately

G ¼ � dWp

‘b
¼ e

Dn � D0

n
TWðU0;U2Þ þ � � � ð27Þ

Here ‘b is the surface of the newly created crack. Using the
expansion (3) for U0(x1,x2), the splitting (22) for U2(x1,x2)
and some properties of the integral W lead finally to
(Leguillon and Sanchez-Palencia, 1987)

G ¼ e
Dn � D0

n
T2Wðt1; t�1Þ þ � � � ¼ e gðnÞ T2 þ � � � ð28Þ

with

gðnÞ ¼ Dn � D0

n
Wðt1; t�1Þ

Here W(t1, t�1) is a constant since the two functions t1 and
t�1 are well known (see (4) and (19)). The function g(n)
(MPa�1) depend on the geometry of the perturbation, i.e.
the length of the crack (it should also weakly depend on
the location of the crack but only one mechanism has been
retained herein: the failure of the interface). Varying n, it is
observed by a FEA that the function g(n) is close to a linear
one

gðnÞ � 4:4 10�6 � n ð29Þ

8. The interface fracture criterion

Respectively energy and stress based, two criteria are
often invoked to predict failure either separately in general
or in conjunction in some other cases (Leguillon, 2002).
They write

�dWP
P Gc‘b and T P rc ð30Þ

where Gc and rc denote the toughness and the tensile
strength of the interface. The right hand side member Gc‘b

Fig. 5. The unbounded half space spanned by y1 and y2 > 0 and the special

loading (16) for the function cW
1
ðy1; y2Þ.

Fig. 6. Schematic view of the behaviour of the two leading terms of the

outer expansion (21). (a) U0: pure bending, (b) U1: discontinuity plus

point force.

Fig. 7. Solder failure and the corresponding loading for the term

cW
1
ðy1; y2Þ, the initial vertical loading (16) along the bottom face of the

solder layer and the horizontal loading T on the two faces of the crack.
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is the energy consumed to create a crack with surface ‘b.
Then, using (28), it comes from (30)1

egðnÞT2
P Gc ) T P

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gc

e gðnÞ

s

ð31Þ

At this stage, we make the strong but reasonable assump-
tion that the crack length ‘at initiation varies with the
thickness e. For simplicity we suppose that it is propor-
tional, then g(n) and hence n are constant (note that the
dimensionless crack length n is still unknown in (31)).
The validity of such an assumption is corroborated by the
forthcoming comparison with experimental results (Figs.
9 and 10). Other assumptions, especially ‘independent of
e, lead to conclusions which are not consistent with the
experimental observations.

The present case seems very similar to that of the trans-
verse cracking initiation in cross-ply laminates (Parvizi
et al., 1978). The failure condition splits into two parts,
the energy driven regime if e is small enough (Eq. (31))
and the stress driven regime T = rc if e is large (Leguillon,
2002) (Fig. 8).

The transition point e0 is obtained if the two conditions
(30) are simultaneously fulfilled therefore

e0 ¼ 1

gðnÞ
Gc

r2
c

ð32Þ

Figs. 9 and 10 show the tensile stress at failure along the
bottom face of the specimen derived from measurements
of the failure remote load (see Eq. (1)) compared to the the-
oretical prediction (31). The experimental points come
from 3 families of test conducted on the 2 grades of solder
CEA1 and CEA2 to which were added items collected in
databases (CEA0). They all correspond to a failure of the
interface. We recall that a failure in the substrate was ob-
served in some few cases corresponding to very thin layers
of solder.

Values of T seem to tend toward an asymptotic limit
around rc ’ 54 MPa (the point at the far right of the graph,
Fig. 8) for CEA0. The transition point can be estimated at
e0 = 100 lm. CEA1 and CEA2 give the asymptotic value
rc ’ 84 MPa, e0 = 92 lm. This asymptotic value can be re-
tained as the tensile strength of the interface defined in
(30)2.

The solder toughness KIc of CEA1 and CEA2 has been
estimated to 1.5 MPa m1/2 by nano indentation leading to
Gc = 0.12 10�4 MPa m (12 J m�2), this value is chosen for
the interface solder/substrate toughness. Indeed it cannot
be larger than that of the weaker of the two adjacent mate-
rials; in any case this value is an upper bound of the actual
interface toughness which is very difficult to estimate. As a
consequence, for CEA1 and CEA2, the unknown parameter
in (32) can be estimated: n = ‘/e � 4. It must be pointed out
that this length does not have much physical meaning. It is
simply a length below which no energy balance holds true
(see (30)) and then no crack arrest can be observed.

For e below the transition point e0 the tensile stress at
failure depends on the layer thickness as 1=

ffiffiffi
e

p
. The Log–

Log diagram of T vs. e fits with a linear function of the form

lnðTÞ ¼ �1

2
lnðeÞ þ z ð33Þ

where z is the only degree of freedom determined by a
least square method leading finally to the approximations
exhibited on Figs. 9 and 10. Of course these curves are
bounded from above by the tensile strength of the SiC sub-
strate as e? 0.

0

0 e e

T

0

σ
c

Fig. 8. Transition between two regimes, the energy driven regime below

the transition thickness e0, the stress driven regime above (horizontal

line).
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T
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Fig. 9. Comparison between prediction (31) of the tensile stress at failure

(solid line) and experiments conducted on specimens using CEA0

(triangles). Below the transition point it is energy driven and stress

driven above.
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Fig. 10. Comparison between prediction (31) of the tensile stress at

failure (solid line) and experiments on specimens using CEA1 (squares)

and CEA2 (diamonds). Below the transition point it is energy driven and

stress driven above.
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9. Conclusion

The representation of the behaviour of a structure
embedding a thin joint under the form of asymptotic
expansions is well known for a long time as long as interior
points are concerned. Literature becomes sparser when the
boundary conditions and the disturbances present in the
area where the bonding layer meets the free edge must
be taken into account. We showed here that the outer
expansion has a classical form to which is added a logarith-
mic term representing a point force which intensity de-
pends strongly on the contrast between the materials
forming the substrate and the solder and in particular on
the necking properties of the two materials.

However, this term plays no role in the failure criterion
which takes a particularly simple form. It has two branches,
one is governed by an energy condition, depending on 1=

ffiffiffi
e

p

for small thicknesses and the other governed by a stress
condition, independent of e for larger thicknesses of the sol-
der layer. The identification made on a large number of
measurements is mainly there to show the correctness of
formula (31). Indeed, there is a very good agreement be-
tween the experiments and the theoretical curve.

Nevertheless, to be predictive, the constant z in (33)
must be identified without going through the least square
procedure (i.e. through a large number of tests). It can be
done as follows: the tensile stress at failure Tm is measured
from a test carried out for a given joint thickness em, then
according to Eq. (33), z and finally T at failure noted Tf for
any bonding layer thickness are determined by

z ¼ lnðTm

ffiffiffiffiffiffi
em

p
Þ ) T f ¼ Tm

ffiffiffiffiffiffi
em
e

r
ð34Þ

provided points are located in the energy driven branch
(i.e. for em 6 e0 and e 6 e0). While it is difficult to determine
the transition point, we see in Figs. 9 and 10 that consider-
ing this energy condition everywhere does not lead to large
inaccuracies within the thicknesses range analyzed here.
Moreover, a measured value of Tm not too far from the ten-
sile strength of SiC means that em is small and below e0,
then this approach provides a conservative calculation that
underestimates the strength of the structure in the stress
governed branch.

Thermal residual stresses due to the process for making
the joint have not been explicitly considered in this study.
Tests conducted at high and low temperatures failed to
clearly demonstrate this role, as several authors have
found, even if the thermal expansion coefficients are signif-
icantly different. However, in the present case, it is likely
that their effects whatever they are would simply shift
the curves 9 and 10 without changing their shape.Thus, it
is transparent to the above reasoning which remains valid
since it is based on the identification of em and Tm at an
experimental point of the curve.
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