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Abstract. Ensemble learning methods for evolving data streams are ex-
tremely powerful learning methods since they combine the predictions of
a set of classifiers, to improve the performance of the best single classifier
inside the ensemble. In this paper we introduce the Droplet Ensemble
Algorithm (DEA), a new method for learning on data streams subject
to concept drifts which combines ensemble and instance based learning.
Contrarily to state of the art ensemble methods which select the base
learners according to their performances on recent observations, DEA
dynamically selects the subset of base learners which is the best suited
for the region of the feature space where the latest observation was re-
ceived. Experiments on 25 datasets (most of which being commonly used
as benchmark in the literature) reproducing different type of drifts show
that this new method achieves excellent results on accuracy and rank-
ing against SAM KNN [1], all of its base learners and a majority vote
algorithm using the same base learners.

Keywords: Concept Drift, Ensemble Learning, Online-Learning, Su-
pervised Learning, Data Streams

1 Introduction

The explosion of data generated in real-time from streams has brought to the
limelight the learning algorithms able to handle them. Sensors, stock prices on
the financial markets or health monitoring are a few example of the numerous
cases in real life where data streams are generated. It is therefore important to
devise learning algorithms that can handle this type of data.

Unfortunately, these data streams are often non-stationary and their char-
acteristics can change over time. For instance, the trend and volatility of the
stock prices can suddenly change as a consequence of an unexpected economic
event. This phenomenon, referred as concept drift (when the underlying distribu-
tion which generates the observations on which the algorithm is trying to learn



changes over time), raises the need to use adaptive algorithms to handle data
streams.

In this paper we propose a novel ensemble method which aims at obtaining
good performances regardless of the dataset and type of drift encountered. One
of the main characteristic of this method is that, it determines the regions of
expertise of its base learners (BL) in the feature space and selects the subset
of BL which is the best suited to predict on the latest observation. This new
method outperforms SAM-KNN [1], a new classifier algorithm for data streams
that won the Best Paper award at ICDM 2016.

The main contributions of the paper are the following:

– a new streaming classifier for evolving data streams, which weights its base
learners according to their local expertise in the feature space.

– an extensive evaluation over a wide range of datasets and type of drifts.
– a discussion on how the new method, DEA over-performs the best state of

the art algorithms.

The paper is organized as follows: Section 2 lays down the framework of our
problem and goes through the related works. Section 3 details the proposed
algorithm while Section 4 presents the datasets used as well as the experimental
protocol. Section 5 presents and discuss the results of the experiments and finally
Section 6 concludes.

2 Framework and related work

In this section we present the framework of our problem and we discuss related
works on learning algorithms handling concept drift.

2.1 Framework

The problem being addressed here is supervised classification on a stream of
data subject to concept drifts. Formally, a stream endlessly emits observations
{x1, x2, ...} (where xi =

{
x1i , ..., x

k
i

}
∈ X = Rk, k designates the dimension of

the feature space and i designates the time step at which the observation was
received) which are unlabeled at first but for which a label yi ∈ Y = {1, ..., c} is
being received a constant amount of time u ∈ R+∗ after xi. We will work in the
framework where the label of xi is always received before reception of xi+1. The
goal is to create an on-line classifier f : X → Y which can predict, as accurately
as possible, the class yi associated to xi.

An on-line classifier is a classifier which can operate when data are received
in sequence (as opposed to a batch classifier which needs a full dataset from
scratch to operate) and can evolve over time (i.e. its learned model is constantly
updated with the latest observations). Formally, the operating process of an
on-line classifier is described thereafter:



– When an observation xt is received at time t, it outputs a prediction ŷt. The
true class yt is then released and, after computation of the prediction error
according to the 0-1 loss function: L (y, ŷ) = I{y 6=ŷ} (where I is the indicator
function), the classifier is updated with the latest observation:
ft = Update (ft−1, {xt, yy}). Our goal then, is to minimize the average error(

1
n

n∑
i=1

L (yi, ŷi)

)
over the n observations received so far.

In the considered framework, the hidden joint distribution P (X,Y ) (called
Concept) which generates the couples (xi, yi) at each time step, is also allowed
to unexpectedly change over time: a phenomenon referred as Concept Drift.
Formally [1], concept drift occurs at time t if Pt−1 (X,Y ) 6= Pt (X,Y ). According
to Bayes rule: P (X,Y ) = P (Y/X)P (X). Thus, a drift of concept can result
either in a change of the posterior probability of the classes P (Y/X) (called real
drift) either in a change of the distribution of the features P (X) (called virtual
drift) either in both.

The types of drifts can be further categorized according to the speed at which
they occur. We say that a drift is abrupt when the drift last for one observation
(Pt−1 (X,Y ) 6= Pt (X,Y ) and the concept is stable before t − 1 and after t) or
conversely that it is incremental when the drift last more than one observation
(Pt−k (X,Y ) 6= ... 6= Pt−1 (X,Y ) 6= Pt (X,Y ) and the concept is stable before
t−k and after t). Reoccurring drifts, happen when a previously learned concept
reappears after some time (∃k ∈ N/Pt−k (X,Y ) = Pt (X,Y )).

2.2 Related work

Several methods have been proposed in order to deal with the issue of drifting
concepts on data streams, the majority of which being ensemble methods.

ADACC was introduced in [11]. It maintains a set of BL which are weighted
every τ time steps according to their number of wrong predictions. It then ran-
domly selects one BL from the worst half of the ensemble and replaces it by a
new one which is protected from deletion for a few time steps. The final pre-
diction is given by the current best performer. The algorithm also includes a
mechanism to remember past concepts.

Dynamic Weighted Majority (DWM) is an ensemble method introduced
in [6]. Each of its BL has a weight which is reduced in case of a wrong prediction.
When a BL’s weight drops bellow a given threshold, it is deleted from the en-
semble. If all the BL output a wrong prediction on an instance, a new classifier
is added to the ensemble.

ADWIN Bagging (Bag Ad) was introduced in [9] and improves the On-
line Bagging algorithm proposed by Oza and Rusell [10] by adding the ADWIN
algorithm as a change detector. When a change is detected, the worst performing
BL is replaced by a new one.

Similarly, ADWIN Boosting (Boost Ad) improves the on-line Boosting
algorithm of Oza and Russell [10] by adding ADWIN to detect changes.



Leveraging Bagging (Lev Bag) was introduced in [7] and further improves
the ADWIN Bagging algorithm by increasing re-sampling (using a value λ larger
than 1 to compute the Poisson distribution) and by adding randomization at the
output of the ensemble by using output codes.

Hoeffding Adaptive Tree (Hoeff Tree) was introduced in [12] and uses
ADWIN to monitor the performance of the branches on the tree. When the
accuracy of a branch decreases, it is replaced with a more accurate one.

AccuracyUpdatedEnsemble (AUE) described in [4] maintains a weighted
ensemble of BL and uses a weighted voting rule for its final prediction. It creates
a new BL after each chunk of data which replaces the weakest performing one.
The weights of each BL are computed according to their individual performances
on the latest data chunk.

Finally, SAM KNN [1], best paper award at ICDM 2016, is a new im-
provement method of the KNN algorithm. It maintains the past observations
into 2 types of memories (short and long term memory). The task of the short
term memory is to remain up to date according to the current concept whereas
the long term memory is in charge of remembering the past concepts. When a
concept change is detected, the observations from the short term memory are
transfered to the long term memory.

3 The Droplets Ensemble Algorithm

Fig. 1. Example of map learned in 2 dimensions. Left: before update of the model with
the 6th observation (received at point A). Right: after update of the model with the
6th observation.

Our main goal in designing our new ensemble algorithm dealing with a data
stream subject to concepts drift, is to take into account the local expertise of
each of its BL on the region of the feature space where the latest observation



was received. This means that it gives more weight to the predictions of the BL
which demonstrated an ability to predict accurately in this region.

We propose DEA (Droplets Ensemble Algorithm), an ensemble learning al-
gorithm which dynamically maintains an ensemble of n BL

(
F =

{
f1, ..., fn

})
along with an ensemble of p Droplets

(
Map =

{
D1, ..., Dp

})
up to date with

respect to the current concept.

The BL can be any learning algorithms, as long as they are able to classify
on a data stream subject to concept drifts.

A Droplet is an object which can be represented as a k -dimensional hyper-
sphere (with k the dimension of the feature space). Each Droplet Dt is associated
with an observation xt and holds a pointer to a BL: f i (i ∈ {1, ..., n}). The values
taken by xt correspond to the coordinates of the center of the Droplet in the
feature space whereas f i corresponds to the BL which managed to achieve the
lowest prediction error on a region of the feature space defined around xt.

Figure 1. shows an example of Map learned where the numbers represent the
time step at which each Droplet has been received.

We now go through the algorithm in details.

3.1 Model Prediction

Algorithm 1 Model Prediction
Inputs: F =

{
f1, ..., fn

}
: Ensemble of base learners,

Map =
{
D1, ..., Dp

}
: Ensemble of existing Droplets,

xt: Latest unlabeled observation,
xconst: Normalization constants
Output: ŷt: Estimated class for xt

xnormt ← Normalize (xt, xconst)
ODt ← Get overlapped Droplets (Map, xnormt )
If (ODt 6= ∅)

Foreach Dh ∈ ODt (h ∈ {a, ..., u})
ŷht ← Predict

(
Dh, xt

)
End Foreach
ŷt ←Majority V ote

(
ŷat , ..., ŷ

u
t

)
Else

Dnn ← Get Nearest Droplet (Map, xnormt )
ŷt ← Predict (Dnn, xt)

End If

At time t, upon reception of a new unlabeled observation xt the first step is to
normalize the values of xt according to a vector of normalization constants xconst



found on the initialization step5. Then ODt, the set of Droplets which contains
the normalized coordinates of the latest observation is computed. If ODt 6= ∅,
the predicted value for this observation is given by a simple majority vote of
the BL associated with the overlapped Droplets in ODt. On the other hand,
if ODt = ∅, the learner associated with the nearest Droplet Dnn is used for
prediction. For instance, in the left plot of Fig. 1., if an observation is received
at the position of point A, the BL associated with D1 and D2 will be used for
prediction whereas if an observation is received at the position of point B, only
the BL associated with D3 will be used for prediction.

The prediction process is summarized in Algorithm 1.

3.2 Model Update

Once the true label yt associated with the latest observation xt is released, each
BL f i (with i ∈ {1, ..., n}) predicts on the latest observation and the vector of
the prediction errors et+1 =

{
e1t+1, ..., e

n
t+1

}
(with eit+1 ∈ {0, 1}) is set aside. The

BL are then updated with {xt, yt}.
The next step is to search for the BL which will be associated to the new

Droplet Dt. This is done by summing the prediction errors achieved by each BL
on the N nearest Droplets , where N is a parameter defined by the user. If an
unique BL minimizes this sum, it is associated to the new Droplet, otherwise
(if at least 2 BL minimizes the sum of prediction error) the search space is
expanded in turns to the N + 1, N + 2, N + 3, ... nearest Droplets until a single
best performer is found.

The new Droplet Dt is then added to the feature space at the coordinates
of xnormt . This Droplet is given a default radius Rdefault (where Rdefault is a
parameter defined by the user), stores the vector of prediction errors et+1 and
creates a pointer to the best BL fk found on the previous step.

The algorithm then goes through the set of overlapped Droplets ODt and
if it is not empty, it decreases the influence of the Droplets in ODt which have
outputted a wrong prediction on xt. This is done by shrinking their radius which
will make them less likely to predict on a future observation received in this
region of the feature space. Formally, for each Droplet u in ODt :

1. Compute the overlap between Du and the latest Droplet:
Overlappu = Rdefault + Ru − ‖xnormu − xnormt ‖ (where ‖.‖ denotes the Eu-
clidean distance)

2. Update the radius of Du: Ru,t+1 = Ru,t − Overlappu

2 .
3. Delete Du if Ru,t+1 ≤ 0.

For instance the right plot of Fig. 1. shows the updated model after reception of
an observation at the position of point A and where the BL associated with D1

5 This is simply done by computing the average µi as well as the standard deviation
σi of each feature on the initialization set and by transforming the ith feature of xt
into xit−µ

i

σi



outputted a wrong prediction on the 6th observation whereas the BL associated
with D2 predicted correctly.

Finally, a memory management module is ran at each time step to ensure
that p, the user defined parameter for the maximum number of Droplets allowed
in memory is not exceeded. If the memory is full, the algorithm uses 3 different
criteria to select the Droplet which will be removed:

1. Remove the Droplet with the smallest radius.
2. If all the Droplets have the same radius, remove the Droplet which has

outputted the highest number of wrong prediction.
3. If criteria 1. and 2. failed, remove the oldest Droplet.

Algorithm 2 summarizes the model update process.

Algorithm 2 Model Update
Inputs: Rdefault: Default radius of a Droplet,
F =

{
f1, ..., fn

}
: Ensemble of base learners,

Map =
{
D1, ..., Dp

}
: Ensemble of existing Droplets,

xt: Latest unlabeled observation,
yt: True label latest observation,
p: Maximum number of Droplets allowed in memory,
ODt: Set of overlapped Droplets at time t
Output: Updated DEA

Foreach f i in F
eit+1 ← Get Prediction Error

(
f it , {xt, yt}

)
f it+1 ← Update Base Learner

(
f it , {xt, yt}

)
End foreach
fk ← Search best base learner (Map, {xt, yt}) , k ∈ {1, ..., n}
Dt ← Create Droplet

(
Rdefault, x

norm
t , fk, et+1, sum errors = 0

)
Map← Add Droplet

(
Map,Dt

)
Foreach Du ∈ ODt

Ru,t+1 ← Update Radius (Ru,t)
If Ru,t+1 ≤ 0

Map← Remove Droplet (Map,Du)
End if

End foreach
If (Card (Map) ≥ p)

Map←Memory Management (Map)
End if

3.3 Running time and space requirements

Running time: Provided that each of the base learner runs in constant time at
each time step, the temporal complexity of both the prediction and update steps
of DEA is O (i.p) whith i is the number of observations generated by the stream
so far and p the maximum number of Droplets allowed in memory.



Space requirements: As previously explained, the maximum number p of Droplets
saved into computer memory is constrained and so is the number n of base learn-
ers. This means that, as long as each of the n base learner constrains its memory
consumption at each time step, the space complexity of DEA will be O (n+ p)
which is independant of the number of observations generated by the stream so
far.

4 Experimental Framework

In this section, we describe the datasets on which the experiments have been
conducted, their characteristics as well as the experimental protocol used.

4.1 Datasets

A total of 25 artificial and real world datasets have been used. These datasets
have been chosen for the diversity of their characteristics, which are summarized
thereafter:



Most of these datasets have frequently been used in the literature dedicated
to streams subjects to concept drifts. Also, please note that in this table, an
“N/A” value doesn’t mean that there is no concept drift. It means that, because
the dataset comes from the real world, it is impossible to know for sure the
number of drifts it includes as well as their type.

The first 4 datasets from Agrawal to LED have been generated using the
built-in generators of MOA6. A precise description of theses datasets can be
found in the following papers [13,14,15]. The KDD Cup 10 percent dataset was
introduced and described in [2]. Rotating Check board was created in [5] and
the version CB (Constant) dataset was used (constant drift rate). SPAM was
introduced in [3] and Usenet was inspired by [8]. Airlines was introduced in the
2009 Data Expo competition. The dataset has been shrinked to the first
153 000 observations.

Multidataset is a new synthetic dataset created for this paper. Every
50 000 observations, the concept drifts to a completely new dataset, starting with
Rotating checkboard, then Random RBF, then Rotating Hyperplane and finally
SEA. In the basic version, the successive concepts overlap each other whereas in
the No Overlap (NO) version the datasets are shifted and the data are randomly
generated on each dataset.

Finally, all the datasets listed after Weather have been retrieved from the
repository7 given in the paper of Losing et al. [1].

All the datasets used as well as the code of the DEA algorithm and the results
of the experiments are available at the following link8.

4.2 Experimental Setting

MOA have been used to conduct the experiments and provide the implementa-
tion of the classifiers. DEA was also implemented in MOA. The code for SAM
KNN was directly retrieved from the link provided in their paper[1]9.

All the parameters of all the classifiers were set to default values (except for
the training period which was set to 100 observations for all the learners and for
the number of observations allowed in memory which was set to 400 for DEA
and SAM KNN) and for all the datasets. In the case of the Droplets algorithm,
the default radius was set to 0.1 and the minimum number of neighbors consid-
ered was set to 20 for all the experiments. We used all the algorithms described
in this paper as BL for DEA (they were chosen because of their availability on
MOA) with the exception of SAM KNN and Majority Vote. The simple majority

6 http://moa.cms.waikato.ac.nz/
7 https://github.com/vlosing/driftDatasets
8 https://mab.to/o5iNvZdhH
9 https://github.com/vlosing/driftDatasets



vote algorithm (which uses the same BL as DEA) was used as a base-line for
performance comparison.

Leaving all the parameters to default values for all the datasets is required
because there is no assumptions regarding the structure of the data or the type
of drifts the classifiers will have to deal with. Therefore, it wouldn’t be relevant
to optimize parameters that would be suitable for a particular concept, at a
particular time and for a particular dataset.

The goals of the experiments were to compare the performance of DEA
against one of the currently best adaptive algorithm (SAM KNN), assess how
DEA was faring against another ensemble algorithm which is given the same BL
(Majority Vote) and assess whether DEA was able to outperform each of its BL.

For each dataset, the performance of the algorithms was computed using the
prequential method (interleaved test-then-train): when an unlabelled observation
is received, the algorithm is first asked to predict its label and the prediction
error is recorded (test). Once the true labelled is realeased, the classifier is trained
with this labelled observation (train). This method has the advantage of making
use of the whole dataset.

5 Results and discussion

The accuracy (percentage of correct classifications) obtained by each algorithm
on each dataset are reported in Table 2. Bold numbers indicate the best per-
forming algorithm. The bottom 2 lines show the average accuracy as well as the
average rank obtained by each algorithm on all the datasets.

The results indicate that DEA managed to obtain the best average accuracy
as well as the best average rank on the 25 datasets considered. In particular, the
average rank obtained demonstrates the ability of DEA to perform consistently
well regardless of the characteristics of the dataset and of the type of drifts
encountered. This is an interesting property because it is often impossible to
predict how the stream will evolve over time and thus, an algorithm which can
deal with a very diversified set of environments could be useful as it wouldn’t be
possible to pick right from the beginning the algorithm which is the best suited
for the whole dataset.

This good performance also confirms that using the local expertise of the BL
as a selection criteria to decide which subset will be used for prediction should
be considered as a way to improve the performances of an ensemble learning
algorithm. Indeed, DEA over-performed the ensemble learning algorithms which
rely on the latest performances to weight their BL (ADACC, DWM, AUE, ...)
as well as a Majority Vote algorithm which simply ask all the algorithms to
collaborate for prediction, independently of the observation received.



6 Conclusion

Learning on a data stream subject to concept drifts is a challenging task. The
hidden underlying distribution on which the algorithm is trying to learn can
change in many unexpected ways, requiring an algorithm which is capable of
good performances regardless of the environment encountered.

In order to tackle this issue, we have proposed the Droplets Ensemble Algo-
rithm (DEA), a novel algorithm which combines the properties of an instance
base learning algorithm with the ones of an ensemble learning algorithm. It
maintains into memory a set of hyper-spheres, each of which includes a pointer
to the BL which is the most likely to obtain the best performance in the region of
the feature space around that observation. When a new observation is received,
it selects the BL which are likely to obtain the best performance in this region
and use them for prediction.

The experiments carried on a set of 25 diversified datasets, reproducing a
wide variety of drifts show that our algorithm is able to over-perform each of
its base learners, a majority vote algorithm using the same base learners as well
as SAM KNN (one of the currently best adaptive algorithm) by obtaining the
best average accuracy and rank. These results indicate that our algorithm is
well suited to be used as a general purposed algorithm for predicting on data
streams with concept drifts and that taking into account the local expertise
of each BL should be considered in order to improve the performances of an
ensemble learning algorithm.



The algorithm can still be further improved and future work will focus on
improving the efficiency of the search algorithm.
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