
HAL Id: hal-01568437
https://hal.sorbonne-universite.fr/hal-01568437v1

Submitted on 25 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System-Level Design for Communication-Centric Task
Farm Applications

Daniela Genius, Ludovic Apvrille

To cite this version:
Daniela Genius, Ludovic Apvrille. System-Level Design for Communication-Centric Task Farm Appli-
cations. 12th International Symposium on Reconfigurable Communication-centric Systems-on-Chip ,
Jul 2017, Madrid, Spain. �hal-01568437�

https://hal.sorbonne-universite.fr/hal-01568437v1
https://hal.archives-ouvertes.fr

System-Level Design for
Communication-Centric Task Farm

Applications
Daniela Genius

Sorbonne Universités, UPMC Paris 06, LIP6, CNRS UMR 7606, daniela.genius@lip6.fr

Ludovic Apvrille
LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay, IMT, ludovic.apvrille@telecom-paristech.fr

Abstract—Massively parallel applications such as
telecommunication and video streaming have the par-
ticularity that a large proportion of the time is spent
on accessing communication channels between the
tasks, due to contention on the on-chip interconnect.
Moreover, the analysis of a given task deployment is
often fastidious. Thus, we propose to extend an ex-
isting easy-to-use System-level Design methodology to
task farm applications. The contribution first concerns
adding relevant SysML modeling elements to take
into account application code, hardware platforms
and deployment constraints. Secondly, new modeling
elements – including access techniques to communica-
tion channels – must be given a semantics in order to
transform models into a well-defined SystemC virtual
prototyping MPSoC platform. A telecommunication
application serves as an example.

I. INTRODUCTION

It has become a common practice to model
critical software components with model-driven
approaches, one reason being to facilitate their
execution analysis with simulation techniques.
Multiprocessor-on-chip system (MPSoC) architec-
tures feature complex, sometimes hierarchical,
interconnect-on-chip architectures, allowing to ex-
ecute communication-centric applications such as
telecommunication and video streaming. Yet, usual
UML/SysML-based model-driven approaches do
not natively support such task-farm applications,
both in terms of structure and behavior description.
Nor do they offer efficient and easy ways to ana-
lyze critical aspects of MPSoC supporting such as
contention in the communication infrastructure.

In a previous contribution targetting the genera-
tion of virtual prototypes for this particular class of
applications [13], design and mapping were purely
text-based, thus limiting its usage mostly to aca-
demic research, and not to engineers more willing
to use graphical frameworks. Hardware components
had to be either described by hand, which is error-
prone, or generated from a Python specification, and
thus be practically unreadable and hard to debug or
refactor.

This paper proposes an integrated method and
a tool to model critical task-farm software compo-
nents and to evaluate their deployment on massively
parallel candidate MPSoCs. Models are performed
with a UML/SysML editor. Model transformations
techniques are used to convert the application and
the hardware architecture into a SystemC-based
virtual prototyping platform. The latter can easily be
executed, and performance metrics can be obtained
with scripts. Last but not least, tasks and channel
models have been given a formal semantics in timed
automata, thus allowing to use formal verification
on the application before it is deployed. [5].

The paper is organized as follows. Section II
presents the related work. Section III gives an
overview of our previous contributions to virtual
prototyping, while Section IV explains how we
use the semantics of AVATAR channels to express
the task farm property. Section V illustrates our
approach by means of a case study. Section VI
concludes the paper.

978-1-5386-3344-1/17/$31.00 c©2017 IEEE

II. RELATED WORK

During the software development process, soft-
ware components are generally tested/executed on
a local host, and only later integrated once the
target is available. Software-hardware integration is
postponed to the availability of the hardware target.
Thus, the inadequacy of software/hardware interac-
tions that cannot be found with local code execution
may induce late and costly software revising.

A more adequate approach is to frequently val-
idate the different refinements of software compo-
nents in a as-realistic-as-possible hardware environ-
ment. FPGAs can be used for this purpose [15],
but the hardware environment is still required to be
developed in a detailed way and then flashed onto
a sometimes costly FPGA.

A promising solution is the use of virtual pro-
totyping platforms. Their obvious drawback is that
software execution is commonly less realistic, and
takes much longer with regards to FPGAs or real
targets. But they offer more flexibility, and they
are probably more convenient for software engi-
neers with little knowledge about hardware plat-
forms. Many fully software-based prototyping en-
vironments have been proposed. Some of them are
restricted to high-level analysis and offer only func-
tional simulation, while others offer extended profil-
ing capabilities. PtolemyII [8] proposes a modeling
environment for the integration of diverse execution
models, in particular hardware and software compo-
nents. If design space exploration can be performed,
its first intent is the simulation of the modeled
systems.

In Polis [17], applications are described as a
network of state machines. Each element of the
network can be mapped on a hardware or a software
node. This approach is more oriented towards appli-
cation modeling, even if hardware components are
closely associated to the mapping process. Metropo-
lis [2] is an extension of Polis. It targets heteroge-
neous systems and offers various execution models.
Architectural and application constraints are closely
interwoven. Sesame [9] proposes modeling and
simulation of features at several abstraction levels.
Preexisting virtual components are combined to
form a complex hardware architecture. In contrast to

Metropolis, application and architecture are clearly
separated in the modeling process. Models’ seman-
tics vary according to the levels of abstraction,
ranging from Kahn process networks (KPN [16])
to data flow for model refinement, and to discrete
events for simulation purpose. Currently, Sesame
is limited to the allocation of processing resources
to application processes. It neither models memory
mapping nor the choice of the communication ar-
chitecture. The ARTEMIS [19] project originates
from heterogeneous platforms in the context of
research on multimedia applications in particular;
it is strongly based on the Y-chart approach. Ap-
plication and architecture are clearly separated: the
application produces an event trace at simulation
time, read in by the architecture model. However,
behavior depending on timers and interrupts cannot
be taken into account.

MARTE [21] shares many commonalities with
our approach, in terms of the capacity to separately
model communications from the pair application-
architecture. However, it intrinsically lacks sepa-
ration between control aspects and message ex-
changes. Other works based on UML/MARTE, such
as Gaspard2 [11], are dedicated to both hardware
and software synthesis, relying on a refinement
process based on user interaction to progressively
lower the level of abstraction of input models. Still,
such a refinement does not completely separate
the application (software synthesis) or architecture
(hardware synthesis) models from communication.

Di Natale et al. [7] propose the generation of
communication managers for software low layers.
Yet, they do not handle the specificity of task-farm
applications nor they offer formal verification.

AVATAR [18] is a SysML-based environment
for modeling the software components of complex
embedded systems. It proposes operators describe
temporal constraints; formal simulations and veri-
fication can be performed from the models. Gen-
erated code can be used with a SystemC based
simulation engine to perform a cycle-accurate sim-
ulation [14]. However, it does not offer support for
communication-centric task-farm type applications.
Typical applications include automotive, avionics,
but also smaller embedded applications. They have

in common that they are control-oriented, but they
do not handle communication-bound, and high
throughput, systems.

MDGen from Sodius [20] starts from Rhapsody,
which can automatically generate software, but
not hardware descriptions from SysML. SysML in
Rhapsody is untimed and sequential. Timing and
hardware specific artifacts such as clock/reset lines
are generated automatically.

Batori [3] proposes a design methodology for
telecommunication applications. From use cases,
the method proposes several formalisms to capture
the application structure ("interaction model") and
behavior (Finite State Machine) and for its deploy-
ment from which executable code can be generated.
The platform seems limited to specific components
and no design exploration seems possible; code gen-
eration targets a real platform, and not a prototyping
environment.

In summary, most of these environments do not
handle explicitly task-farm applications. On the
contrary, the contribution presented in this paper
explicitly addresses these applications both in terms
of modeling, simulation and formal verification
aspects.

III. VIRTUAL PROTOTYPING

SoCLib [1] is a public domain library of compo-
nent models written in SystemC targeting shared-
memory MPSoC architectures based on the Vir-
tual Component Interconnect (VCI) protocol [22],
which clearly separates the components’ functional-
ity from communication. Hardware components are
either initiators (typically a CPU with its caches),
targets (typically RAM), or sometimes both (DMA,
configurable hardware accelerators and I/O copro-
cessors).

A tool chain for generating code to be executed
in MPSoCs has been defined and implemented [12].
Its objective is to transform SysML application
diagrams , hardware architecture diagrams and map-
ping diagrams into a SoCLib representation. So-
called deployment diagrams are used to capture
allocations of software components onto a MPSoc
platform. From the diagrams, a code generator
translates each SysML software block into a POSIX

thread, and a ldscript generator generates the linker
script taking into account the mapping specified
in the deployment diagram. Finally, The top cell
generator generates a SystemC top cell for cycle-
accurate bit-accurate simulation.

However, this contribution was lacking a a formal
semantics. This paper thus proposes to provide a
complete semantics for these applications, in the
scope of the prototyping and the design space
exploration of these applications.

IV. EXTENDING THE SEMANTICS OF
COMMUNICATION CHANNELS

This section explains how we propose to extend
models/diagrams and code generation capabilities
to support task-farm applications. In the field of
embedded systems, communications are typically
one-to one, more rarely one-to-many e.g. broadcast
communication. Task farm applications are typi-
cally multimedia streaming and high-performance
packet processing e.g. in routers, see Figure 1.
Contrary to general embedded applications, the
communication in task-farm application generally
rely on multi-writer multi-reader communication
channels where any number of reader or writer tasks
can access these channels. Said differently, a task
waiting for some data to be processed indifferently
picks up data from common buffers, thus introduc-
ing a high degree of non-determinism difficult to
capture in a pure FIFO model (e.g., Kahn models).

It is a common practice to transform UM-
L/SysML models to Timed Automata specifications,
as explained in [18]. Based on this idea, we decided
to enhance the AVATAR methodology of [18] to
describe the software part of our application: the
structure of the application is described with SysML
block diagrams, and the behavior of each task is
described with state machine diagrams. A software
model, i.e. its structure and its behavior, can be
transformed into a set of communicating timed
automata.

An example of non-deterministic behavior is
shown on the left side of Figure 2 where two
SysML blocks communicate via a channel. Multi-
writer multi-reader channels are intrinsically asyn-
chronous, and thus part of their semantics can be

Fig. 1. Classification application task and communication graph

<<block>>

B0

~ out m0()
~ out m1()

<<block>>

B1

~ in m0()
~ in m1()

m0()

state0

m1()

Waiting4Sig

m1() m0()

after (2,12)
after (5,15)

after (10,20)

Fig. 2. Non-deterministic semantics

related to the semantics of AVATAR asynchronous
channels. Avatar asynchronous channels are de-
picted with origin and termination ports filled in
white. The right part of Figure 2 shows the state ma-
chine diagrams of blocks B0 and B1, respectively.
A non deterministic system is modeled. Indeed, B0
can decide to send either m0 or m1. B1 waits
for one of the two message, or after a given time
without receiving one of the two ("after(10,20)"), it
resets the waiting time of messages by taking the
central transition from its main state.

V. CASE STUDY

The task and communication graph in Figure
1 features a massively parallel telecommunication
application (i.e., a task farm application), where all

tasks of a stage n can read the data output by all
tasks of stage n − 1. In this particular application,
network packets are first cut into chunks of equal
size by the input co-processor. Each packet chunk
has a descriptor referencing the address of the next
chunk. Overall, a chunk contains a 32-bit address,
11 bits to describe its TotalSize, 20 bits date for
a time stamp, and a Boolean internal indicating if
the packet is stored on-chip of off-chip, for a total
of 64 bit (8 byte). Only these descriptors are sent
through the channels: the packet chunks themselves
are stored in on-chip or off-chip memory.

Tasks of the application are the following. A
bootstrap task organizes the system start-up and fills
the address channel with addresses generated from

the memory segment(s) where packet chunks are to
be stored. The input task accepts addresses from a
channel. It reads Ethernet encapsulated IP packets,
cuts them into slots of equal size, and copies these
slots to dedicated memory regions. A classification
task reads one or several descriptors at a time and
then retrieves the first chunk of the corresponding
packet from memory (not shown in the Figure
to preserve readability; any classification task can
access to any chunk). The scheduling task reads
the priority queues, then writes the descriptor to
the output queue. Both classification and scheduling
tasks use try-read primitives to get work whenever
it is available and thus maximize performance. The
output task constantly reads the output queue. Each
time a slot is read, its liberated addresses are sent
to the address channel for reuse.

A. Modeling

To model this application in AVATAR, we con-
sider only the software tasks, thus ignoring the input
and output coprocessors and the bootstrap task. The
central part of Figure 1 displays what is contained
in the AVATAR model.

Figure 3 shows the block diagram of the
Telecommunication Application. The packet de-
scriptor is modeled as a data type 1 The central
channel, visible as a unique main channel in the
SysML block diagram, contains in fact the three
priority queues, modeled as AVATAR signals. Each
priority queue (high, medium, low) is translated into
a separate multi-writer multi-reader channel for the
SoCLib platform.

Figure 4 shows on the left the state machine
diagram of the classifier. It models the sending of a
packet descriptor from the classifier to the priority
queues. Depending on the priority, the packet is
sent to queue high, medium, or low. To ensure
non-determinism on the handling of data, several
classification tasks are instantiated2, and the Waiting
state of classification tasks has several non deter-
ministic transitions, i.e. a random data is selected

1Currently, only int and Boolean data types are made explicit
in the model, bit wise modeling is not yet possible.

2Three tasks are shown for space restrictions, but there can
be any number of classification tasks, independently from the
number of channels and from the number of packet priorities

Fig. 5. Channel configuration window

among the possible channels having at least one
data available. once a classification task has read a
data, it proceeds i to one of the states Low, Medium,
or High depending on the priority determined by
the classification tasks. Finally, packets of the same
priority are sent to the appropriate queue.

On the right we show the reception of packets
stemming from any of the three priority queues by
the scheduler task. Again, packets are read indiffer-
ently from all three queues and then dispatched in
the Dispatch state to any of the available scheduler
task (two scheduling tasks are instantiated in the
example).

The channel type of the priority queues is lossy,
an option available in AVATAR. This is necessary to
model the fact that incoming packets can be thrown
away if the channel is full. Figure 5 shows the
configuration dialog window of a channel: the upper
part of the window is dedicated to the interconnec-
tion of ports, with connected ports on the right,
and non connected ports on the left. Options of
channels are listed in the central part of the figure:
synchronous, asynchronous, channel depth (here: 32
items), blocking or non blocking, broadcast, lossy
and privacy.

<<block>>

Scheduling

- packet : PacketDesc;

~ in from_queue_low(PacketDesc packet)
~ in from_queue_medium(PacketDesc packet)
~ in from_queue_high(PacketDesc packet)
~ out to_scheduler0(PacketDesc packet)
~ out to_scheduler1(PacketDesc packet)

<<block>>

Sched0

- packet : PacketDesc;

~ in packet(PacketDesc packet)

<<block>>

Sched1

- packet : PacketDesc;

~ in packet(PacketDesc packet)

<<block>>

Classification

- packet : PacketDesc;

~ out queue_low(PacketDesc packet)
~ out queue_medium(PacketDesc packet)
~ out queue_high(PacketDesc packet)
~ in c0_to_queue_low(PacketDesc packet)
~ in c1_to_queue_low(PacketDesc packet)
~ in c2_to_queue_low(PacketDesc packet)
~ in c0_to_queue_medium(PacketDesc packet)
~ in c1_to_queue_medium(PacketDesc packet)
~ in c2_to_queue_medium(PacketDesc packet)
~ in c0_to_queue_high(PacketDesc packet)
~ in c1_to_queue_high(PacketDesc packet)
~ in c2_to_queue_high(PacketDesc packet)

<<block>>

Classif2

- packet : PacketDesc;

~ out to_queue_low(PacketDesc pa...
~ out to_queue_medium(PacketDes...
~ out to_queue_high(PacketDesc pa...

<<block>>

Classif1

- packet : PacketDesc;

~ out to_queue_low(PacketDesc pac...
~ out to_queue_medium(PacketDesc...
~ out to_queue_high(PacketDesc pa...

<<block>>

Classif0

- packet : PacketDesc;

~ out to_queue_low(PacketDesc pa...
~ out to_queue_medium(PacketDes...
~ out to_queue_high(PacketDesc pa...

<<datatype>>
PacketDesc

- address : int;
- date : int;
- internal : bool;
- TotalSize : int;

Fig. 3. Block Diagram of the software part of the classification application

Low

queue_low(packet)

Waiting

c0_to_queue_low(packet)

c1_to_queue_low(packet)

c2_to_queue_low(packet)

Medium

queue_medium(packet)

High

queue_high(packet)

c0_to_queue_medium(packet)

c2_to_queue_medium(packet)

c1_to_queue_medium(packet)

c0_to_queue_high(packet)

c1_to_queue_high(packet)

c2_to_queue_high(packet)

Dispatch

to_scheduler1(packet)to_scheduler0(packet)

from_queue_low(packet)

from_queue_medium(packet)

from_queue_high(packet)

Waiting

Fig. 4. State machine diagram of the classifier (left) and the scheduler (right) blocks

B. Mapping

Allocation of tasks and channels onto the target
MPSoC is explicitly captured within deployment
diagrams. These diagrams contains hardware nodes
(e.g., CPUs and memory banks) that can be cus-
tomized with several parameters such as cache
associativity, memory size, Software tasks are
mapped onto the execution nodes of the platform,
and channels between tasks are mapped onto the
memories. Timers and interrupts are hidden, and
are automatically added to the prototyping model
during the deployment diagram transformation to
SoCLib.

Figure 6 shows the deployment diagram, where
each block representing either a classifier or a
scheduler is mapped onto a separate processor. The

six channels are mapped to Memory0. The other
memory banks represents on-chip packet storage.

The target architecture is based on a Virtual
Generic Micro Network (VGMN), which behaves as
two independent packet switched networks for com-
mands and responses. The underlying simulation
model of VGMN is cycle accurate bit accurate: it is
based on SystemCASS [6]. The operating systems
running on the processors is MutekH [4].

C. Experiments

For functional verification purpose, a C/POSIX
code is first generated from software components
only. As in former work, generated code is automat-
ically enriched with backtracing information: this
enables UML sequence diagrams displaying system

<<CPU>>
CPU1

AVATAR Design::Classif1

<<CPU>>
CPU3

AVATAR Design::Sched0

AVATAR Design::Scheduling

<<CPU>>
CPU0

AVATAR Design::Classif0

AVATAR Design::Classification

<<TTY>>
TTY0

<<VGMN>>
ICN0

<<CPU>>
CPU2

AVATAR Design::Classif2

<<RAM>>
Memory0

Classif2/out to_queue_low

Classif1/out to_queue_low

Classif0/out to_queue_low

Classification/out queue_low

Sched0/in packet

Sched1/in packet

<<CPU>>
CPU4

AVATAR Design::Sched1

<<RAM>>
Memory1

Fig. 6. Deployment Diagram of the classification application

execution to be shown while executing the system
on the local host (or on a target).

For virtual prototyping purpose, hardware is de-
scribed on CABA (Cycle/Bit Accurate) level, thus
with high precision at the price of rather slow
simulation. We furthermore make the following
assumptions. Only one level of interconnect be-
tween hardware elements is considered, bounding
the number of tasks and channels we can reasonably
simulate to a few dozen. We perform experiments
for three classifiers, three priority queues, and two
schedulers.

Just like at the functional level, each SysML
block is translated into on POSIX thread. Each
threads is executed on one of the five powerPC405
processors. In the scope of our application, the
channel memory is a potential contention point;
channels locks are other potential contention points.

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250 300

cy
cl

e
s

mio. simulation cycles

transfer time
spent in lock

Fig. 7. Transfer latency in priority queues

 0

 5

 10

 15

 20

 25

 30

 1x106 2x106 3x106 4x106 5x106 6x106 7x106 8x106 9x106 1x107

b
y
te

s

simulation cycles

Priority Queue0
Priority Queue1
Priority Queue2

Fig. 8. Fill state of the priority queues

We plot the fill state of the three priority queues
for the first millin simulation cycles (see Figure
8). The channels never overflow, a maximum of 3
descriptors (24 byte) are simultaneously present in
a channel, most of the time the cchannels are near
empty (0 or 1 descriptor). We can also determine
the latency of a transfer through the priority queues
in the course of time (Figure 7).

Previous work showed that transfer latency and
channel fill state vary more strongly for clustered
platforms. Buses, bridges and crossbars can be
customized at SysML level. The corresponding
SoCLib models will allow us to address NUMA
architectures in the near future: these architectures
are indeed expected to provide better latency results
but also more variation in the fill state of the
channels [10].

VI. CONCLUSION AND FUTURE WORK

This paper extends a UML/SysML virtual pro-
totyping environment for embedded systems to
SoCLib-based communication-bound platforms. A
typical task farm case is used to explain modeling
operators, the formal semantics and some prelimi-
nary performance results.

Parallel classification is known to suffer from
several major performance impediments, such as
overflow of the input channels for high throughput,
which can only be revealed once input and output
hardware accelerators with parametrizable through-
put are available. We cannot yet model these effects
as our current modeling approach limits to the
software part of the application running on general
purpose processors.

Also, we are working on a tool for better cap-
turing latencies, and automatically evaluating them
during the prototyping stage. That would enable
to compare high-level simulation result - e.g., at
partitioning - with results obtained with the cycle
accurate bit accurate simulations, thus paving the
way to design space exploration at different level
of abstractions.

REFERENCES

[1] SoCLib consortium. SoCLib: an open platform for virtual
prototyping of multi-processors system on chip (webpage).
In http://www.soclib.fr.

[2] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C. Passerone, and A. L. Sangiovanni-Vincentelli. Metropo-
lis: An integrated electronic system design environment.
IEEE Computer, 36(4):45–52, 2003.

[3] G. Batori, Z. Theisz, and D. Asztalos. Domain Specific
Modeling Methodology for Reconfigurable Networked Sys-
tems, pages 316–330. Springer, Berlin, Heidelberg, 2007.

[4] A. Becoulet. Mutekh. http://www.mutekh.org.
[5] J. Bengtsson and W. Yi. Timed automata: Semantics,

algorithms and tools. In Lecture Notes on Concurrency
and Petri Nets, pages 87–124. W. Reisig and G. Rozenberg
(eds.), LNCS 3098, Springer-Verlag, 2004.

[6] R. Buchmann and A. Greiner. A fully static scheduling
approach for fast cycle accurate SystemC simulation of
MPSoCs. In Proc. ICEEC, pages 35–39, Cairo, Egypt,
Dec. 2007. IEEE.

[7] M. Di Natale, F. Chirico, A. Sindico, and A. Sangiovanni-
Vincentelli. An mda approach for the generation of
communication adapters integrating sw and fw components
from simulink. In Int. Conf. on Model Driven Engineering
Languages and Systems, pages 353–369. Springer, 2014.

[8] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Sachs, Y. Xiong, and S. Neuendorffer. Taming hetero-
geneity - the ptolemy approach. Proceedings of the IEEE,
91(1):127–144, 2003.

[9] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Multiob-
jective optimization and evolutionary algorithms for the
application mapping problem in multiprocessor system-
on-chip design. IEEE Trans. on Evolutionary Comp.,
10(3):358–374, 2006.

[10] Etienne Faure. Communications matérielles-logicielles
dans les systèmes sur puce orientés télécommunications
(HW/SW communications in telecommunication oriented
MPSoC). PhD thesis, UPMC, 2007.

[11] A. Gamatié, S. L. Beux, É. Piel, R. B. Atitallah, A. Etien,
P. Marquet, and J.-L. Dekeyser. A model-driven design
framework for massively parallel embedded systems. ACM
TECS, 10(4):39, 2011.

[12] D. Genius and L. Apvrille. Virtual yet precise prototyping
: An automotive case study. In ERTSS’2016, Toulouse, Jan.
2016.

[13] D. Genius, E. Faure, and N. Pouillon. Mapping a telecom-
munication application on a multiprocessor system-on-
chip. In G. Gogniat, D. Milojevic, and A. M. A. A. Erdo-
gan, editors, Algorithm-Architecture Matching for Signal
and Image Processing, chapter 1, pages 53–77. Springer
LNEE vol. 73, Nov. 2011.

[14] D. Genius, L. Li, and L. Apvrille. Model-Driven Perfor-
mance Evaluation and Formal Verification for Multi-level
Embedded System Design. In 5th International Conference
on Model-Driven Engineering and Software Development,
Porto, Portugal, Feb. 2017. INSTICC.

[15] K. Goossens, B. Vermeulen, and A. B. Nejad. A high-
level debug environment for communication-centric debug.
In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 202–207. European Design and
Automation Association, 2009.

[16] G. Kahn. The semantics of a simple language for parallel
programming. In J. L. Rosenfeld, editor, Information
Processing ’74: IFIP Congress, pages 471–475. North-
Holland, New York, NY, 1974.

[17] P. Lieverse, P. van der Wolf, K. A. Vissers, and E. F.
Deprettere. A methodology for architecture exploration
of heterogeneous signal processing systems. VLSI Signal
Processing, 29(3):197–207, 2001.

[18] G. Pedroza, D. Knorreck, and L. Apvrille. AVATAR:
A SysML environment for the formal verification of
safety and security properties. In The 11th IEEE Con-
ference on Distributed Systems and New Technologies
(NOTERE’2011), Paris, France, May 2011.

[19] A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P. van der
Wolf, and E. F. Deprettere. Exploring embedded-systems
architectures with artemis. IEEE Computer, 34(11):57–63,
2001.

[20] Sodius Corporation. MDGen for SystemC.
http://sodius.com/products-overview/systemc.

[21] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-
P. Diguet. A co-design approach for embedded system
modeling and code generation with UML and MARTE. In
DATE’09, pages 226–231, April 2009.

[22] VSI Alliance. Virtual Component Interface Standard (OCB
2 2.0). Technical report, Aug. 2000.

