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Abstract

Phase-field models, sometimes refered to as gradient damage or smeared crack models, are widely used
methods for the numerical simulation of crack propagation in brittle materials. Theoretical results and
numerical evidences show that they can predict the propagation of a pre-existing crack according to
Griffith’ criterion. For a one-dimensional problem, it has been shown that they can predict nucleation
upon a critical stress, provided that regularization parameter be identified with the material’s internal
or characteristic length. In this article, we draw on numerical simulations to study crack nucleation in
commonly encountered geometries for which closed-form solutions are not available. We use U- and
V-notches to show that the nucleation load varies smoothly from that predicted by a strength criterion
to that of a toughness criterion, when the strength of the stress concentration or singularity varies. We
present validation and verifications numerical simulations for both types of geometries. We consider
the problem of an elliptic cavity in an infinite or elongated domain to show that variational phase field
models properly account for structural and material size effects.

We conclude that variational phase-field models can accurately predict crack nucleation through
energy minimization in a nonlinear damage model instead of introducing ad-hoc criteria.

Keywords: Phase-field models of fracture, crack nucleation, size effects in brittle materials,
validation & verification, gradient damage models, smeared crack models

1. Introduction

Despite its many successes, Griffith’s theory of brittle fracture [51] and its heir, Linear Elastic
Fracture Mechanics (LEFM), still faces many challenges. In order to identify crack path, additional
branching criteria whose choice are still unsettled have to be considered. Accounting for scale effects
in LEFM is also challenging, as illustrated by the following example: Consider a reference structure
of unit size rescaled by a factor L. The critical loading at the onset of fracture scales then as 1/

√
L,

leading to a infinite nucleation load as the structure size approaches 0, which is inconsistent with
experimental observation for small structures [10, 55, 30].

It is well accepted that this discrepency is due to the lack of a critical stress (or a critical lengthscale)
in Griffith’s theory. Yet, augmenting LEFM to account for a critical stress is also challenging. In
essence, the idea of material strength is incompatible with the concept of elastic energy release rate
near stress singularity, the pilar of Griffith-like theories as it would imply crack nucleation under a
infinitesimal loading. Furthermore, a nucleation criterion based solely on pointwise maximum stress
will be unable to handle crack formation in a body subject to a uniform stress distribution.

Many approaches have been proposed to provide models capable of addressing the aforementioned
issues. Some propose to stray from Griffith fundamental hypotheses by incorporating cohesive fracture
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energies [76, 36, 35, 29] or material non-linearities [49]. Others have proposed dual-criteria involving
both elastic energy release rate and material strength such as [61], for instance. Models based on the
peridynamics theory [87] may present an alternative way to handle these issues, but to our knowlege,
they are still falling short of providing robust quantitative predictions at the structural scale.

Francfort and Marigo [40] set to devise a formulation of brittle fracture based solely on Griffith’s idea
of competition between elastic and fracture energy, yet capable of handling the issues of crack path
and crack nucleation. However, as already pointed-out in [40], their model inherits a fundamental
limitation of the Griffith theory and LEFM: the lack of an internal length scale and of maximum
allowable stresses.

Amongst many numerical methods originally devised for the numerical implementation of the
Francfort-Marigo model [18, 74, 41, 84], Ambrosio-Tortorelli regularizations [5, 6], originally introduced
in [20], have become ubiquitous. They are nowadays known as phase-field models of fracture, and
share several common points with the approaches coming from Ginzburg-Landau models for phase-
transition [57]. They have been applied to a wide variety of fracture problems including fracture of
ferro-magnetic and piezo-electric materials [1, 90], thermal and drying cracks [68, 22], or hydraulic
fracturing [19, 89, 31, 91] to name a few. They have been expended to account for dynamic effects,
ductile behavior [2, 71, 3], cohesive effects [33, 32, 42], large deformations [4, 70, 14], or anisotropy [63],
for instance.

Although phase-field models were originally conceived as approximations of Francfort and Marigo’s
variational approach to fracture in the vanishing limit of their regularization parameter, a growing
body of literature is concerned with their links with gradient damage models [43, 66]. In this setting,
the regularization parameter ` is kept fixed and interpreted as a material’s internal length [80]. In
particular, [78, 79] proposed an evolution principle for an Ambrosio-Tortorelli like energy based on
irreversibility, stability and energy balance, where the regularization parameter ` is kept fixed and
interpreted as a material’s internal length. This approach, which we refer to as variational phase-field
models, introduces a critical stress proportional to 1/

√
`. As observed in [80, 22, 75], it can potentially

reconcile stress and toughness criteria for crack nucleation, recover pertinent size effect at small and
large length-scales, and provide a robust and relatively simple approach to model crack propagation
in complex two- and three-dimensional settings. However, the few studies providing experimental
verifications [81, 75, 22] are still insufficient to fully support this conjecture.

The goal of this article is precisely to provide such evidences, focusing on nucleation and size-effects
for mode-I cracks. We provide quantitative comparison of nucleation loads near stress concentrations
and singularities with published experimental results for a range of materials. We show that variational
phase-field models can reconcile strength and toughness thresholds and account for scale effect at the
structural and the material length-scale. In passing, we leverage the predictive power of our approach
to propose a new way to measure a material’s tensile strength from the nucleation load of a crack near
a stress concentration or a weak singularity. In this study, we focus solely on the identification of the
critical stress at the first crack nucleation event and are not concerned by the post-critical fracture
behavior.

The article is organized as follows: in Section 2, we introduce variational phase-field models and
recall some of their properties. Section 3 focuses on the links between stress singularities and con-
centrations and crack nucleation in these models. We provide validation and verification results for
nucleation induced by stress singularities using V-shaped notches, and concentrations using U-notches.
Section 4 is concerned with shape and size effects. We investigate the role of the internal length on
nucleation near a defect, focusing on an elliptical cavity and a mode-I crack, and discussing scale effects
at the material and structural length scales. Conclusions are finally drawn in Section 5.

2. Variational phase-field models

We start by recalling some important properties of variational phase-field models, focussing first
on their construction as approximation method of Francfort and Marigo’s variational approach to
fracture, then on their alternative formulation and interpretation as gradient-damage models.
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2.1. Regularization of the Francfort-Marigo fracture energy

Consider a perfectly brittle material with Hooke’s law A and critical elastic energy release rate Gc
occupying a region Ω ⊂ Rn, subject to a time dependent boundary displacement ū on a part ∂DΩ
of its boundary and stress free on the remainder ∂NΩ. In the variational approach to fracture, the
quasi-static equilibrium displacement ui and crack set Γi at a given discrete time step ti are given by
the minimization problem (see also [21])

(ui,Γi) = argmin
u=ūi on ∂DΩ

Γ⊃Γi−1

E(u,Γ) :=

∫
Ω\Γ

1

2
A e(u) · e(u) dx+GcHn−1(Γ ∩ Ω̄ \ ∂NΩ), (1)

where Hn−1(Γ) denotes the Hausdorff n − 1–dimensional measure of the unknown crack Γ, i.e. its
aggregate length in two dimensions or surface area in three dimensions, and e(u) := 1

2 (∇u + ∇Tu)
denotes the symmetrized gradient of u.

Because in (1) the crack geometry Γ is unknown, special numerical methods had to be crafted.
Various approaches based for instance on adaptive or discontinuous finite elements were introduced [18,
46, 41]. Variational phase-field methods, take their roots in Ambrosio and Tortorelli’s regularization
of the Mumford-Shah problem in image processing [5, 6], adapted to brittle fracture in [20]. In this
framework, a regularized energy E` depending on a regularization length ` > 0 and a “phase–field”
variable α taking its values in [0, 1] is introduced. A broad class of such functionals was introduced
in [23]. They are

E`(u, α) =

∫
Ω

a(α) + η`
2

A e(u) · e(u) dx+
Gc
4cw

∫
Ω

w(α)

`
+ `|∇α|2 dx, (2)

where a and w are continuous monotonic functions such that a(0) = 1, a(1) = 0, w(0) = 0, and

w(1) = 1, η` = o(`), and cw :=
∫ 1

0

√
w(s) ds is a normalization parameter. The approximation of E

by E` takes place with the framework of Γ–convergence (see [34, 24] for instance). More precisely, if
E` Γ–converges to E , then the global minimizers of E` converge to that of E . The Γ–convergence of
a broad class of energies, including the ones above was achieved with various degrees of refinement
going from static scalar elasticity to time discrete and time continuous quasi-static evolution linearized
elasticity, and their finite element discretization [12, 16, 23, 46, 27, 28, 45, 25, 26, 56].

Throughout this article, we focus on two specific models:

E`(u, α) =

∫
Ω

(1− α)2 + η`
2

A e(u) · e(u) dx+
Gc
2

∫
Ω

α2

`
+ `|∇α|2 dx, (AT2)

introduced in [6] for the Mumford-Shah problem and in [20] for brittle fracture, and

E`(u, α) =

∫
Ω

(1− α)2 + η`
2

A e(u) · e(u) dx+
3Gc

8

∫
Ω

α

`
+ `|∇α|2 dx (AT1)

used in [22].
The “surfing” problem introduced in [53] consists in applying a translating boundary displacement

on Ω given by ū(x, y) = ūI(x − V t, y), where ūI denotes the asymptotic far-field displacement field
associated with a mode-I crack along the x-axis with tip at (0, 0), V is a prescribed loading “velocity”,
and t a loading parameter (“time”). Figure 1(left) shows the outcome of a surfing experiment on a
rectangular domain Ω = [0, 5] × [− 1

2 ,
1
2 ] with an initial crack Γ0 = [0, l0] × {0} for several values of

`. The AT1 model is used, assuming plane stress conditions, and the mesh size h is adjusted so that
`/h = 5, keeping the “effective” numerical toughness Geff , (see [21]) fixed. The Poisson ratio is ν = 0.3,
the Young’s modulus is E = 1, the fracture toughness is Gc = 1.5, and the loading rate V = 4. As
expected, after a transition stage, the crack length depends linearly on the loading parameter with slope
3.99, 4.00 and 4.01 for values of ` = of 0.1, 0.05 and 0.025 respectively. The elastic energy release rate
G, computed using the Gθ method [37, 86, 65] is very close to Geff . Even though Γ–convergence only
mandates that the elastic energy release rate in the regularized energy converges to that of Griffith as
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Figure 1: Mode-I “surfing” experiment along straight (left) and circular (right) paths. Dependence of the crack length
and elastic energy release rate on the loading parameter for multiple values of `.

`→ 0, we observe that as long as ` is “compatible” with the discretization size and domain geometry,
its influence on crack propagation is insignificant. Similar observations were reported in [58, 93, 81].

Figure 1(right) repeats the same experiment for a curve propagating along a circular path. Here,
the boundary displacement is given by Muskhelishvili’s exact solution for a crack propagating in mode-
I along a circular path [73]. The Young’s modulus, fracture toughness, loading rate are set to 1. Again,
we see that even for a fixed regularization length, the crack obeys Griffith’s criterion.

When crack nucleation is involved, the picture is considerably different. Consider a one-dimensional
domain of length L, fixed at one end and submitted to an applied displacement ū = eL at the
other end. For the lack of an elastic singularity, LEFM is incapable of predicting crack nucleation
here, and predicts a structure capable of supporting arbitrarily large loads without failing. A quick
calculation shows that the global minimizer of (1) corresponds to an uncracked elastic solution if

e < ec :=
√

2Gc
EL , while at e = ec, a single crack nucleates at an arbitrary location (see [40, 21]). The

failure stress is σc =
√

2GcE/L, which is consistent with the scaling law σc = O
(

1/
√
L
)

mentioned

in the introduction. The uncracked configuration is always a stable local minimizer of (1), so that if
local minimization of (1) is considered, nucleation never takes place. Just as before, one can argue
that for the lack of a critical stress, an evolution governed by the generalized Griffith energy (1) does
not properly account for nucleation and scaling laws.

When performing global minimization of (2) using the backtracking algorithm of [17] for instance,
a single crack nucleates at an `–dependent load. As predicted by the Γ–convergence of E` to E , the
critical stress at nucleation converges to

√
2GcE/L as ` → 0. Local minimization of (2) using the

alternate minimizations algorithm of [20], or presumedly any gradient-based monotonically decreasing
scheme, leads to the nucleation of a single crack at a critical load ec, associated with a critical stress

σc = O
(√

GcE/`
)

. In the limit of vanishing `, local and global minimization of (2) inherit therefore

the weaknesses of Griffith-like theories when dealing with scaling properties and crack nucleation.

2.2. Variational phase-field models as gradient damage models

More recent works have seek to leverage the link between σc and `. Ambrosio-Tortorelli functionals
are then seen as the free energy of a gradient damage model [43, 66, 13, 78, 79] where α plays the role
of a scalar damage field. In [80], a throrough investigation of a one-dimensional tension problem led
to interpreting ` as a material’s internal or characteristic length linked to a material’s tensile strength.
An overview of this latter approach, which is the one adopted in the rest of this work, is given below.

In all that follows, we focus on a time-discrete evolution but refer the reader to [78, 79, 67] for
a time-continuous formulation which can be justified within the framework of generalized standard
materials [52] and rate-independent processes [72]. At any time step i > 1, the sets of admissible
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displacement and damage fields Ci and Di, equipped with their natural H1 norm, are

Ci =
{
u ∈ H1(Ω) : u = ūi on ∂DΩ

}
,

Di =
{
β ∈ H1(Ω) : αi−1(x) ≤ β(x) ≤ 1, ∀x ∈ Ω

}
,

where the constraint αi−1(x) ≤ β(x) ≤ 1 in the definition of Di mandates that the damage be an
increasing function of time, accounting for the irreversible nature of the damage process. The damage
and displacement fields (ui, αi) are then local minimizers of the energy E`, i.e. there exists hi > 0 such
that

∀(v, β) ∈ Ci ×Di such that ‖(v, β)− (ui, αi)‖ ≤ hi, E`(ui, αi) ≤ E`(v, β), (3)

where ‖·‖ denotes the natural H1 norm of Ci ×Di.
We briefly summarize the solution of the uniaxial tension of a homogeneous bar [77, 80], referring

the reader to the recent review [67] for further details: As one increases the applied strain, the damage
field remains 0 and the stress field constant until it reaches the elastic limit

σe =

√
GcE

cw`

√
w′(0)

2s′(0)
. (4)

where E is the Young modulus of the undamaged material, and s(α) = 1/a(α). If the applied displace-
ment is increased further, the damage field increases but remains spatially constant. Stress hardening
is observed until peak stress σc, followed by stress softening. A stability analysis shows that for long
enough domains (i.e. when L � `), the homogeneous solution is never stable in the stress softening
phase, and that a snap-back to a fully localized solution such that maxx∈(0,L) α(x) = 1 is observed.
The profile of the localized solution and the width D of the localization can be derived explicitly from
the functions a and w. With the choice of normalization of (2), the surface energy associated to the
fully localized solution is exactly Gc and its elastic energy is 0, so that the overall response of the bar
is that of a brittle material with toughness Gc and strength σc.

Knowing the material’s toughness Gc and the Young’s modulus E, one can then adjust ` in such a
way that the peak stress σc matches the nominal material’s strength. Let us denote by

`ch =
GcE

′

σ2
c

=
K2
Ic

σ2
c

(5)

the classical material’s characteristic length(see [82, 39], for instance), where E′ = E in three dimension
and in plane stress, or E′ = E

1−ν2 in plane strain. The identification above gives

`1 :=
3

8
`ch; `2 :=

27

256
`ch, (6)

for the AT1 and AT2 models, respectively.
Table 1 summarizes the specific properties of the AT1 and AT2 models. The AT1 model has some key

conceptual and practical advantages over the AT2 model used in previous works, which were leveraged
in [22] for instance: It has a non-zero elastic limit, preventing diffuse damage at small loading. The
length localization band D is finite so that equivalence with Griffith energy is obtained even for a
finite value of `, and not only in the limit of ` → 0, as predicted by Γ–convergence [86]. By remain-
ing quadratic in the α and u variables, its numerical implementation using alternate minimizations
originally introduced in [20] is very efficient.

In all the numerical simulations presented below, the energy (2) is discretized using linear Lagrange
elements, and minimization performed by alternating minimization with respect to u and α. Mini-
mization with respect to u is a simple linear problem solved using preconditioned gradient conjugated
while constrained minimization with respect to α is reformulated as a variational inequality and im-
plemented using the variational inequality solvers provided by PETSc [9, 8, 7]. All computations were
performed using the open source implementations models mef901 and gradient-damage2.

1available at https://www.bitbucket.org/bourdin/mef90-sieve
2available at https://bitbucket.org/cmaurini/gradient-damage
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model w(α) a(α) cw σe σc D `ch

AT1 α (1− α)2 2
3

√
3GcE′

8`

√
3GcE′

8` 4` 8
3`

AT2 α2 (1− α)2 1
2 0 3

16

√
3GcE′

` ∞ 256
27 `

Table 1: Properties of the gradient damage models considered in this work: the elastic limit σe, the material strength
σc, the width of the damage band D, and the conventional material length `ch defined in (5). We use the classical
convention E′ = E in three dimension and in plane stress, and E′ = E

1−ν2 in plane strain.

3. Effect of stress concentrations

The discussion above suggests that variational phase-field models, as presented in Section 2.2, can
account for strength and toughness criteria simultaneously, on an idealized geometry. We propose to
investigate this claim further by focussing on more general geometries, a V-shaped notch to illustrate
nucleation near stress singularities and a U-shaped notch for stress concentrations. There is a wealth
of experimental literature on crack initiation in such geometries using three-point bending (TPB),
four-point bending (FPB), single or double edge notch tension (SENT and DENT) allowing us to
provide qualitative validation and verification simulations of the critical load at nucleation.

3.1. Initiation near a weak stress singularity: the V-notch

Consider a V-shaped notch in a linear elastic isotropic homogeneous material. Let (r, θ) be the polar
coordinate system emanating from the notch tip with θ = 0 corresponding to the notch symmetry axis,
shown on Figure 2(left). Assuming that the notch lips Γ+ ∪ Γ− are stress free, the mode-I component
of the singular part of the stress field in plane strain is given in [62]:

σθθ = krλ−1F (θ),

σrr = krλ−1F
′′(θ) + (λ+ 1)F (θ)

λ(λ+ 1)
,

σrθ = −krλ−1 F ′(θ)
(λ+ 1)

,

(7)

where

F (θ) = (2π)λ−1 cos((1 + λ)θ)− f(λ, ω̄) cos((1− λ)θ)

1− f(λ, ω̄)
, (8)

and

f(λ, ω̄) =
(1 + λ) sin((1 + λ)(π − ω̄))

(1− λ) sin((1− λ)(π − ω̄))
, (9)

and the exponent of the singularity λ ∈ [1/2, 1], see Figure 2(right), solves

sin (2λ (π − ω̄)) + λ sin (2 (π − ω̄)) = 0. (10)

From (7), it is natural to define a generalized stress intensity factor

k =
σθθ

(2π r)λ−1

∣∣∣∣
θ=0

. (11)

Note that this definition differs from the one often encountered in the literature by a factor (2π)λ−1,
so that when ω = 0 (i.e. when the notch degenerates into a crack), k corresponds to the mode-I stress
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Figure 2: Pac-man geometry for the study of the crack nucleation at a notch. Left: sketch of the domain and notation.
Right: relation between the exponent of the singularity λ and the notch opening angle ω̄ determined by the solution of
equation (10). For any opening angle ω̄ we apply on ∂DΩ the displacement boundary condition obtained by evaluating
on ∂DΩ the asymptotic displacement (12) with λ = λ(ω).

intensity factor whereas when ω = π/2, k is the tangential stress, and that the physical dimension of
[k] ≡ N/m−λ− 1 is not a constant but depends on the singularity power λ.

If ω̄ < π/2 (i.e. ω > π/2), the stress field is singular at the notch tip so that a nucleation criterion
based on maximum pointwise stress will predict crack nucleation for any arbitrary small loading. Yet,
as long as ω̄ > 0 (ω < π), the exponent of the singularity is sub-critical in the sense of Griffith, so that
LEFM forbids crack nucleation, regardless of the magnitude of the loading.

3.1.1. The mode-I Pac-Man test

Consider a Pac-Man–shaped3 domain with radius L� ` and notch angle ω̄ as in Figure 2(left). In
linear elasticity, a displacement field associated with the stress field (7) is

ūr =
rλ

E

(1− ν2)F ′′(θ) + (λ+ 1)[1− νλ− ν2(λ+ 1)]F (θ)

λ2(λ+ 1)

ūθ =
rλ

E

(1− ν2)F ′′′(θ) + [2(1 + ν)λ2 + (λ+ 1)(1− νλ− ν2(λ+ 1)]F ′(θ)
λ2(1− λ2)

.

(12)

In the mode-I Pac-Man test, we apply a boundary displacement of the form tū, where t is a monoton-
ically increasing loading parameter on the outer edge of the domain ∂DΩ.

We performed series of numerical simulations varying the notch angle ω̄ and regularization param-
eter ` for the AT1 and AT2 models. Up to a rescaling and without loss of generality, it is always possible
to assume that E = 1 and Gc = 1. The Poisson ratio was set to ν = 0.3. We either prescribed the
value of the damage field on Γ+ ∪ Γ− to 1 (we refer this to as “damaged notch conditions”) or let it
free (“undamaged notch conditions”). The mesh size was kept at a fixed ratio of the internal length
h = `/5.

For “small” enough loadings, we observe an elastic or nearly elastic phase during which the damage
field remains 0 or near 0 away from an area of radius o(`) near the notch tip. Then, for some loading
t = tc, we observed the initiation of a “large” add-crack associated with a sudden jump of the elastic
and surface energy. Figure 3 shows a typical mesh, the damage field immediately before and after
nucleation of a macroscopic crack and the energetic signature of the nucleation event.

Figure 4 shows that up to the critical loading, the generalized stress intensity factor can be ac-
curately recovered by averaging σθθ(r, 0)/(2π r)λ−1 along the symmetry axis of the domain, provided
that the region r ≤ 2` be excluded.

Figure 5(left) shows the influence of the internal length on the critical generalized stress intensity
factor for a sharp notch (ω̄ = 0.18◦) for the AT1 and AT2 models, using damaged and undamaged notch

3https://en.wikipedia.org/wiki/Pac-Man
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AT1(left) and AT2(right) models with undamaged notch conditions, and sub-critical loadings. The notch aperture is
ω̄ = π/10

boundary conditions on the damage field. In this case, the generalized stress intensity factor coincides
with the standard mode-I stress intensity factor KIc. As suggested by the surfing experiment in the
introduction, the internal length ` also has a very minor influence on the critical load t := kATc '
KIc =

√
GcE′. As reported previously in [58] for instance, undamaged notch conditions lead to

overestimating the critical load. We speculate that this is because with undamaged notch condition,
the energy barrier associated with bifurcation from an undamaged (or partially damaged) state to a
fully localized state needs to be overcome. As expected, this energy barrier is larger for the AT1 model
than for the AT2 model for which large damaged areas ahead of the notch tip are observed.

For flat notches (2ω̄ = 179.64◦) as shown in Figure 5(right), the generalized stress intensity factor
k takes the dimension of a stress, and crack nucleation is observed when kc reaches the `–dependent
value σc given in Table 1, i.e. when σθθ|θ=0 = σc, as in the uniaxial tension problem. In this case the
type of damage boundary condition on the notch seems to have little influence.

For intermediate values of ω̄, we observe in Figure 6 that the critical generalized stress intensity
factor varies smoothly and monotonically between its extreme values and remains very close to KIc

for opening angles as high as 30◦ which justifies the common numerical practice of replacing initial
cracks with slightly open sharp notches and damaged notch boundary conditions.

3.1.2. Validation

For intermediate values 0 < 2ω̄ < π, verification is rendered more difficult by the fact that various
models predict different nucleation loads. Instead, we focus on validation against experiments from
the literature based on measurements of the generalized stress intensity factor at a V-shaped notch.
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Figure 6: Critical generalized stress intensity factor k for crack nucleation at a notch as a function of the notch opening
angle ω̄. Results for the AT1 and AT2 models with damaged -D and undamaged -U notch lips conditions. The results
are obtained with numerical simulations on the Pac-Man geometry with (Kic)eff = 1 and σc = 10 under plane-strain
conditions with a unit Young’s modulus and a Poisson ratio ν = 0.3.

Data from single edge notch tension (SENT) test of soft annealed tool steel, (AISI O1 at−50◦C) [88],
four point bending (FPB) experiments of Divinycell R© H80, H100, H130, and H200 PVC foams) [50],
and double edge notch tension (DENT) experiments of poly methyl methacrylate (PMMA) and dura-
luminium [85], were compiled in [47]. We performed a series of numerical simulations of Pac-Man tests
using the material properties reported in [47] and listed in Table 2. In all cases, the internal length `
was computed using (6).

Figures 7 and 8 compare the critical generalized stress intensity factor from our numerical simu-
lations with experimental values reported in the literature for V-notch with varying aperture. The
definition (11) for k is used. In each case, we observe a remarkable agreement for the entire range of
notch openings.

The numerical values of the critical generalized stress intensity factors for the AT1 models and the
experiments from the literature are included in Tables A.4, A.5, A.6, and A.7 using the convention
of (11) for k. As suggested by Figure 5 and reported in the literature [see 58], nucleation is best
captured if damaged notch boundary conditions are used for sharp notches and undamaged notch
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Material E [MPa] ν KIc [MPa
√

m] σc [MPa] source
Al2O3 − 7%ZrO2 350,000 0.24 4.1 290 [92]
PMMA 2,300 0.36 1.03 124 [38, 92]
Plexiglass 3,000 0.36 1.86 104.9 [85]
PVC H80 85 0.32 0.32 2.51 [47, 50]
PVC H100 125 0.32 0.26 4.02 [47, 50]
PVC H130 175 0.32 0.34 5.70 [47, 50]
PVC H200 310 0.32 0.57 9.38 [47, 50]
Steel 205,000 0.3 52 1170 [47, 88]
Duraluminium 70,000 0.3 50.6 705 [85]

Table 2: Material properties used in the numerical simulations as given in the literature
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Figure 7: Critical generalized stress intensity factor kc vs notch angle. Comparison between numerical simulations with
the AT1 and AT2 models and damaged and undamaged boundary conditions on the notch edges with experiments in steel
from [88] (left), and Duraluminium (middle) and PMMA (right) from [85].
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Figure 8: Critical generalized stress intensity factor kc vs notch angle and depth in PVC foam samples from [50].
Numerical simulations with the AT1 model with damaged and undamaged notch conditions (left), and AT2 model with
damaged and undamaged notch conditions (right).

conditions for flat ones.
These examples strongly suggest that variational phase-field models of fracture are capable of

predicting mode-I nucleation in stress and toughness dominated situations, as seen above, but also in
the intermediate cases. Conceptually, toughness and strength (or equivalently internal length) could
be measured by matching generalized stress intensity factors in experiments and simulations. When
doing so, however, extreme care has to be exerted in order to ensure that the structural geometry
has no impact on the measured generalized stress. Similar experiments were performed in [38, 92] for
three and four point bending experiments on PMMA and Aluminium oxyde-Zirconia ceramics samples.
While the authors kept the notch angle fixed, they performed three and four point bending experiments
or varied the relative depth of the notch as a fraction of the sample height (see Figure 9).
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their four point bending, up to the location of the loading devices.

Figure 10 compares numerical values of the generalized stress intensity factor using the AT1 model
with experimental measurements, and the actual numerical values are included in Table A.8 and A.9.
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Figure 10: Critical generalized stress intensity factor kc vs notch angle for Al2O3−7%ZrO2(left) and PMMA (right).
The black markers represents all experimental results. The numerical results are obtained through the Pac-Man test
using the AT1 model. See Tables A.8-A.9 in the Appendix for the raw data.

For the Aluminium oxyde-Zirconia ceramic, we observe that the absolute error between measure-
ment and numerical prediction is typically well within the standard deviation of the experimental
measurement. As expected, damaged notch boundary conditions lead to better approximation of kc
for small angles, and undamaged notches are better for larger values of ω̄.

For the three point bending experiments in PMMA of [38] later reported in [92], the experimen-
tal results suggest that the relative depth a/h of the notch has a significant impact on kc. We then
performed full-domain numerical simulation using the geometry and loading from the literature, and
compared the critical force upon which a crack nucleates in experiments and simulations. All computa-
tions were performed using the AT1 model in plane strain with undamaged notch boundary conditions.
Figure 11 compares the experimental and simulated value of the critical load at failure, listed in
Table A.10 and A.11.

These simulations show that a robust quantitative prediction of the failure load in geometries
involving a broad range of stress singularity power can be achieved numerically with the AT1 model,
provided that the internal length be computed using (6), which involves only material properties. In
other words, our approach is capable of predicting crack nucleation near a weak stress singularity
using only elastic properties, fracture toughness Gc, the tensile strength σc, and the local energy
minimization principle (3).

In light of Figure 11, we suggest that both toughness and tensile strength (or equivalently toughness
and internal length) can be measured by matching full domain or Pac-Man computations and exper-
iments involving weak elastic singularity of various power (TPB, FPB, SENT, DENT with varying
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Figure 11: Critical load in the three- and four-point bending experiments of a Al2O3 − 7%ZrO2 sample (left) and
four-point bending of a PMMA sample (right) from [92] compared with numerical simulations using the AT1 model and
undamaged notch boundary conditions. Due to significant variations in measurements in the first set of experiments,
each data point reported in [92] is plotted. For the PMMA experiments, average values are plotted and error bars show
the range of measured values. See Table A.10 and A.11 in the Appendix for raw data.

notch depth or angle) instead of measuring σc directly. We expect that this approach be much less
sensitive to imperfections that the direct measurement of tensile strength, which is virtually impossible.
Furthermore, since our criterion is not based on crack tip asymptotics, using full domain computations
do not require that the experiments be specially designed to isolated the notch tip singularity from
structural scale deformations.

3.2. Initiation near a stress concentration: the U-notch

Crack nucleation in a U-shaped notch is another classical problem that has attracted a wealth of
experimental and theoretical work. Consider a U-shaped notch of width ρ length a � ρ subject to a
mode-I local loading (see Figure 12 for a description of notch geometry in the context of a double edge
notch tension sample). Assuming “smooth” loadings and applied boundary displacements, elliptic
regularity mandates that the stress field be non-singular near the notch tip, provided that ρ > 0.
Within the realm of Griffith fracture, this of course makes crack nucleation impossible. As it is the
case for the V-notch, introducing a nucleation principle based on a critical stress is also not satisfying
as it will lead to a nucleation load going to 0 as ρ → 0, instead of converging to that of an infinitely
thin crack given by Griffith’s criterion. There is a significant body of literature on “notch mechanics”,
seeking to address this problem introducing stress based criteria, generalized stress intensity factors,
or intrinsic material length and cohesive zones. A survey of such models, compared with experiments
on a wide range of brittle materials is given [48].

Figure 12: DENT geometry

In what follows, we study crack nucleation near stress concentrations in the AT1 and AT2 models
and compare with the experiments gathered in [48]. The core of their analysis consist in defining a
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generalized stress intensity factor

KU = Ktσ
∞
c

√
πρ

4
, (13)

where Kt, the notch stress concentration factor, is a parameter depending on the local (a and ρ), as well
as global sample geometry and loading. Through a dimensional analysis, they studied the dependence
of the critical generalized stress intensity factor at the onset of fracture and the notch radius. We
performed series of numerical simulations of double edge tension (DENT) experiments on a sample
of length h = 40 for multiple values of the notch depth a, radius ρ, and spacing b given in Table 3,
for which the values of Kt were computed in [60]. In each case, we leveraged the symmetries of the
problem by performing computations with the AT1 and AT2 models on a quarter of the domain for a
number of values of the internal length ` corresponding to ρ/`ch between 0.05 and 20. In all cases,
undamaged notch boundary conditions were used.

Notch shape Notch depth a Notch tip radius ρ Ligament width b Kt

U 10 2.5 20 5.33
U 10 1.25 20 7.26
U 10 0.5 20 11.12

Table 3: DENT sample geometry.
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Figure 13: Crack nucleation at U-notches. Comparison between experimental data of [48] and numerical simulations
using the AT1 (left) and AT2 (right) models.

In Figure 13, we overlay the outcome of our simulations over the experimental results gathered
in [48]. As for the V-notch, we observe that the AT2 model performs poorly for weak stress concen-
trations (large values of ρ/`ch), as the lack of an elastic phase leads to the creation of large partially
damaged areas. For sharp notches (ρ ' 0), our simulations concur with the experiments in predicting
crack nucleation when KU = KIc. As see earlier, the AT1 slightly overestimates the critical load in this
regime when undamaged notch boundary conditions are used. In light of 13, we claim that numerical
simulations based on the variational phase-field model AT1 provides a simple way to predict crack
nucleation that does not require the computation of a notch stress concentration factors Kt or the
introduction of an ad-hoc criterion.

4. Size effects in variational phase-field models

Variational phase-field models are characterised by the intrinsic length `, or `ch. In this section, we
show that this length-scale introduces physically pertinent scale effects, corroborating its interpretation
as a material length. To this end, we study the nucleation of a crack in the uniaxial traction of a plate
(−W,W ) × (−L,L) with a centered elliptical hole with semi-axes a and ρa (0 ≤ ρ ≤ 1) along the x-
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and y-axes respectively, see Figure 14. In Section 4.1, we study the effect of the size and shape of the
cavity, assumed to be small with respect to the dimension of the plate (a�W,L). In Section 4.2, we
investigate material and structural size effects for a plate of finite width in the limit case of a perfect
crack (ρ = 0).

4.1. Effect of an elliptical cavity: size and shape effects

h =
ah
ρ

h = ρ2ah

h =
R

100

Figure 14: Crack nucleation in an infinite domain containing an elliptical hole. (left) domain geometry (centre) compu-
tational domain (right) typical mesh.

For a small hole (a�W,L), up to a change of scale, the problem can be fully characterized by two
dimensionless parameters: a/`, and ρ. For a linear elastic and isotropic material ocuppying an infinite
domain, a close form expression of the stress field as a function of the hole size and aspect ratio is
given in [54]. The stress is maximum at the points A = (a, 0) and A′ = (−a, 0), where the radial stress
is zero and the hoop stress is given by:

σmax = t

(
1 +

2

ρ

)
, (14)

t denoting the applied tensile stress along the upper and lower edges of the domain, i.e. the applied
macroscopic stress at infinity. We denote by ū the corresponding displacement field for t = 1, which is
given in [44].

As for the case of a perfect bar, (14) exposes a fundamental issue: if ρ > 0, the stress remains
finite, so that Griffith–based theories will only predict crack nucleation if ρ = 0. In that case the limit
load given by the Griffith’s criterion for crack nucleation is

t = σG :=

√
GcE′

aπ
. (15)

However, as ρ→ 0, the stress becomes singular so that the critical tensile stress σc is exceeded for an
infinitesimally small macroscopic stress t.

Following the findings of the previous sections, we focus our attention on the AT1 model only,
and present numerical simulations assuming a Poisson ratio ν = 0.3 and plane-stress conditions. We
perform our simulations in domain of finite size, here a disk of radius R centered around the defect.
Along the outer perimeter of the domain, we apply a boundary displacement u = tū, where ū is as
in [54], and we use the macroscopic stress t a loading parameter. Assuming a symmetric solution, we
perform our computations on a quarter domain. For the circular case ρ = 1, we use a reference mesh
size h = `min/10, where `min is the smallest value of the internal length of the set of simulations. For
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ρ < 1, we selectively refine the element size near the expected nucleation site (see Figure 14-right). In
order to minimize the effect of the finite size of the domain, we set R = 100a.

We performed numerical simulations varying the aspect ratio a/` from 0.1 to 50 and the ellipticity
ρ from 0.1 to 1.0. In each case, we started from an undamaged state an monotonically increased the
loading. In all numerical simulations, we observe two critical loading te and tc, the elastic limit and
structural strength, respectively. For 0 ≤ t < te the solution is purely elastic, i.e. the damage field
α remains identically 0 (see Figure 15-left). For te ≤ t < tc, partial distributed damage is observed.
The damage field takes its maximum value αmax < 1 near point A (see Figure 15-center). At t = tc, a
fully developed crack nucleates, then propagates for t > tc (see Figure 15-right). As for the Pac-Man
problem, we identify the crack nucleation with a jump in surface energy, and focus on loading at the
onset of damage.

Figure 15: Damage field at the boundary of the hole in the elastic phase 0 < t < te (left), the phase with partial damage
te < t < tc (center), and after the nucleation of a crack t > tc (right). Blue: α = 0, red: α = 1. The simulation is for
ρ = 1.0 and a/` = 5.

From the one-dimensional problem of Section 2.2 and [77, 80], we expect damage nucleation to take
place when the maximum stress σmax reaches the nominal material strength σc =

√
3GcE′/8` (see

Table 1), i.e. for a critical load

te =
ρ

2 + ρ
σc =

ρ

2 + ρ

√
3GcE′

8`
. (16)

Figure 16-left confirms this expectation by comparing the ratio te/σc to its expected value ρ/(2+ρ)
for ρ ranging from 0.1 to 1. Figure 16-right highlights the absence of size effect on the damage nucleation
load, by comparing te/σc for multiple values of a/` while keeping ρ fixed at 0.1 and 1.

Figure 17 focuses on the crack nucleation load tc, showing its dependence on the defect shape (left)
and size (right). Figure 17-right shows the case of circular hole (ρ = 1) and an elongated ellipse, which
can be identified to a crack (ρ = 0.1). It clearly highlights a scale effect including three regimes:

i. For “small” holes (a� `), crack nucleation takes place when t = σc, as in the uniaxial traction of
a perfect bar without the hole: the hole has virtually no effect on crack nucleation. In this regime
the strength of a structure is completely determined by that of the constitutive material. Defects
of this size do not reduce the structural strength and can be ignored at the macroscopic level.

ii. Holes with length of the order of the internal length (a = O(`)), have a strong impact on the
structural strength. In this regime the structural strength can be approximated by

log(tc/σc) = D log(a/`) + c, (17)

where D is an dimensionless coefficient depending on the defect shape. For a circular hole ρ = 1,
we have D ≈ −1/3.

iii. When a� `, the structural failure is completely determined by the stress distribution surrounding
the defect. We observe that for weak stress singularities (ρ ≡ 1), nucleation takes place when the
maximum stress reaches the elastic limit σe, whereas the behavior as ρ ≡ 0 is consistent with
Griffith criterion, i.e. the nucleation load scales as 1/

√
a.

Figure 17-right shows that the shape of the cavity has a significative influence on the critical load
only in the latter regime, a � `. Indeed, for a/` of the order of the unity or smaller, the critical
loads tc for circular and highly elongated cavities are almost indistinguishable. This small sensitivity
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Figure 16: Normalized applied macroscopic stress te/σc at damage initiation as a function of the aspect ratio ρ for
a/` = 1 (left) and of the relative defect sizes a/` for ρ = 1 and ρ = 0.1 (right).
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Figure 17: Normalized applied macroscopic stress tc/σe at crack nucleation for an elliptic cavity in an infinite plate.
Left: shape effect for cavities of size much larger than the internal length (a/` = 48); the solid line is the macroscopic
stress at the damage initiation te (see also Figure 16) and dots are the numerical results for the AT1 model. Right: size
effect for circular (ρ = 1.0) and highly elongated (ρ = 0.1) cavities.

of the critical load on the shape is the result of the stress-smoothing effect of the damage field, which
is characterised by a cut-off length of the order of `. Figure 17-left shows the critical stress tc at
nucleation when varying the aspect ratio ρ for a/` = 48, for which σG/σc = 2/15. As expected, the
critical stress varies smoothly from the value σG (15) predicted by the Griffith theory for a highly
elongated cavity identified to a perfect crack, to te (16) for circular cracks, where the crack nucleates
as soon as the maximum stress σmax attains the elastic limit.

This series of experiments is consistent with the results of Section 3.2 showing that variational
phase-field models are capable of simultaneously accounting for critical elastic energy release rate and
critical stress. Furthermore, they illustrate how the internal length ` can be linked to critical defect size
as the nucleation load for a vanishing defect of size less than ` approaches that of a flawless structure.

4.2. Competition between material and structural size effects

We can finally conclude the study of size effects in variational phase-field models by focusing on
the competition between material and structural size effects. For that matter, we study the limit case
ρ = 0 of a perfect crack of finite length 2a in a plate of finite width 2W , see Figure 18-left. Under the
hypotheses of LEFM, the critical load upon which the crack propagates is

σG(a/`ch, a/W ) =

√
GcE′ cos( aπ2W )

aπ
= σc

√
1

π

`ch
a

cos
( aπ

2W

)
. (18)
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Figure 18: Initiation of a crack of length 2a in a plate of finite width 2W . The numerical results (dots) are obtained
with the AT1 model for ` = W/25. The strength criterion and the Griffith’s criterion (18).

which reduces to (15) for large plate (W/a→∞). As before, we note that σG/σc →∞ as a/`ch → 0,
so that for any given load, the material’s tensile strength is exceeded for short enough initial crack.

We performed series of numerical simulations using the AT1 a model on the a quarter of the domain
with W = 1, L = 4, ν = 0.3, ` = W/25, h = `/20, and the initial crack’s half-length a ranging from
from 0.025` to 12.5` (i.e. 0.001W to 0.5W ). The pre-existing crack was modelled as a geometric
feature and undamaged crack lip boundary conditions were prescribed. The loading was applied by
imposing a uniform normal stress of amplitude t to its upper and lower edge.

Figure 18, displays the normalized macroscopic structural strength of the sample, tc/σc, where σc is
given by (6), and tc is the applied load upon which the crack grows, identified as before. The results are
in good agreement with classical theories linking size-effect on the strength of the material [11]. When
a � `, i.e. when the defect is large compared to the material’s length, crack initiation is governed
by Griffith’s criterion (18). As noted earlier, the choice of undamaged notch boundary conditions
on the damage fields leads to slightly overestimating the nucleation load. Our numerical simulations
reproduce the structural size effect predicted by LEFM when the crack length is comparable to the
plate width W .

When a � ` however, we observe that the macroscopic structural strength is very close to the
material’s tensile strength. Again, below the material’s internal length, defects have virtually no
impact on the structural response. LEFM and Griffith–based models cannot account for this material
size-effect. These effects are introduced in variational phase-field model by the additional material
parameter `.

In the intermediate regime a = O(`), we observe a smooth transition between strength and tough-
ness criteria, where the tensile strength is never exceeded.

When a� `, our numerical simulations are consistent with predictions from Linear Elastic Fracture
Mechanics shown as a dashed line in Figure 18, whereas when a� `, the structural effect of the small
crack disappear, and nucleation takes place at or near the material’s tensile strength, i.e. tc/σc ' 1.

5. Conclusion

In contrast with most of the literature on phase-field models of fracture focusing validation and
verification in the context of propagation “macroscopic” cracks [69, 81], we have studied crack nucle-
ation.

In this article, we have studied crack nucleation and initiation in multiple geometries. We confirmed
observations reported elsewhere in the literature that although they are mathematically equivalent in
the limit of ` → 0, damaged notch boundary conditions lead to a more accurate computation near
strong stress singularities whereas away from singularities, undamaged notch boundary conditions are
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to be used. Our numerical simulations also highlight the superiority of phase-fiel models such as AT1

which exhibit an elastic phase in the one-dimensional tension problem over those who don’t (such as
AT2), when nucleation away from strong singularity is involved. Our numerical simulations suggest
that it is not possible to accurately account for crack nucleation near “weak” singularities using the
AT2 model. We infer that a strictly positive elastic limit σe is a required feature of a phase-field model
that properly account for crack nucleation.

We have shown that as suggested by the one-dimensional tension problem, the regularization pa-
rameter ` must be understood (up to a model-dependent multiplicative constant) as the material’s
characteristic or internal length `ch = GcE/σ

2
c , and linked to the material strength σc. With this ad-

justment, we show that variational phase-field models are capable of quantitative prediction of crack
nucleation in a wide range of geometries including three- and four-point bending with various type
of notches, single and double edge notch tests, and a range of brittle materials, including steel and
duraluminium at low temperatures, PVC foams, PMMA, and several ceramics.

We recognize that measuring a material’s tensile strength is difficult and sensitive to the presence
of defect, so that formulas (6) may not be a practical way of computing a material’s internal length.
Instead, we propose to perform series of experiments such as three point bending with varying notch
depth, radius or angle, as we have demonstrated in Figure 11 that with a properly adjusted internal
length, variational phase-field models are capable of predicting the nucleation load for any notch depth
or aperture. Furthermore, since variational phase-field models do not rely on any crack-tip asymptotic,
this identification can be made even in situation where generalized stress or notch intensity factors are
not known, or are affected by the sample’s structural geometry.

We have also shown that variational phase-field models properly account for size effects that cannot
be recovered from Griffith-based theories. By introducing the material’s internal length, they can
account for the vanishing effect of small defects on the structural response of a material, or reconcile
the existence of a critical material strength with the existence of stress singularity. Most importantly,
they do not require introducing series of ad-hoc criteria based on local geometry and loading. On the
contrary, we see that in most situation, criteria derived from the asymptotic analysis of a microgeometry
can be recovered a posteriori. Furthermore, variational phase-field models are capable of quantitative
prediction of crack path after nucleation. Again, they do so without resolving to introducing additional
ad-hoc criteria, but only relying on a general energy minimisation principle.

In short, we have demonstrated that variational phase-field models address some of the most vexing
issues associated with brittle fracture: scale effects, nucleation, existence of a critical stress, and path
prediction.

Of course, there are still remaining issues that need to be addressed. Whereas the models are derived
from irreversibility, stability and energy balance, our numerical simulations do not enforce energy
balance as indicated by a drop of the total energy upon crack nucleation without string singularities.
Note that to this day, devising an evolution principle combining the strength of (3) while ensuring
energy balance is still an open problem. Perhaps extensions into phase field models dynamic fracture
will address this issue.

Fracture in compression remains an issue in variational phase-field models. Although several ap-
proaches have been proposed that typically consist in splitting the strain energy into a damage in-
ducing and non damage inducing terms, neither of the proposed splits are fully satisfying (see [64] for
instance). In particular, it is not clear of either of this models is capable of simultaneously accounting
for nucleation under compression and self-contact.

Finally, even though a significant amount of work has already been invested in extending the scope
of phase-field models of fracture beyond perfectly brittle materials, to our knowledge, none of the
proposed extension has demonstrated its predictive power yet.
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Appendix A. Tables of experimental an numerical data for V-notch experiments

Experiments Undamaged notch Damaged notch

2ω̄ Type k
(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

0◦ TPB 51.77 3.06 67.09 22.84 % 54.69 5.35 %

30◦ SENT 60.97 1.97 66.91 8.88 % 56.99 6.98 %

60◦ SENT 65.81 1.52 69.55 5.39 % 62.95 4.53 %

90◦ TPB 88.62 3.58 85.16 4.06 % 78.15 13.40 %

120◦ SENT 142.74 2.25 130.81 9.12 % 121.68 17.30 %

140◦ SENT 243.73 31.86 211.06 15.48 % 191.91 27.00 %

Table A.4: Generalized critical stress intensity factors as a function of the notch aperture in soft annealed tool steel,
(AISI O1 at −50◦C). Experimental measurements from [88] using SENT and TPB compared with Pac-Man simulations
with the AT1 model.

Experiments Undamaged notch Damaged notch

2ω̄ Mat k
(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

0◦ H80 0.14 0.01 0.18 22.91 % 0.15 5.81 %
H100 0.26 0.02 0.34 24.62 % 0.28 7.61 %
H130 0.34 0.01 0.44 29.34 % 0.36 5.09 %
H200 0.57 0.02 0.74 47.60 % 0.61 6.53 %

90◦ H80 0.20 0.02 0.22 12.65 % 0.21 4.73 %
H100 0.36 0.02 0.41 12.29 % 0.38 4.10 %
H130 0.49 0.05 0.54 11.33 % 0.50 0.50 %
H200 0.81 0.08 0.91 20.54 % 0.83 2.21 %

140◦ H80 0.53 0.06 0.53 0.37 % 0.48 9.26 %
H100 0.89 0.04 0.92 3.43 % 0.84 5.91 %
H130 1.22 0.10 1.25 2.95 % 1.13 7.48 %
H200 2.02 0.14 2.07 4.92 % 1.89 6.80 %

155◦ H80 0.86 0.07 0.83 3.63 % 0.75 14.36 %
H100 1.42 0.08 1.42 0.14 % 1.29 10.63 %
H130 1.90 0.10 1.95 2.82 % 1.76 8.06 %
H200 3.24 0.15 3.23 0.89 % 2.92 11.02 %

Table A.5: Generalized critical stress intensity factors as a function of the notch aperture in Divinycell R© PVC foam.
Experimental measurements from [50] using four point bending compared with Pac-Man simulations with the AT1 model.
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Experiments Undamaged notch Damaged notch

ω̄ Type k
(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

10◦ DENT 53.55 0.94 64.80 17.36 % 56.40 5.05 %

20◦ DENT 57.10 0.26 65.11 12.30 % 58.52 2.43 %

30◦ DENT 60.50 0.60 67.17 9.94 % 62.11 2.59 %

40◦ DENT 66.34 0.50 74.07 10.44 % 69.24 4.18 %

50◦ DENT 80.15 0.46 86.61 7.46 % 82.25 2.55 %

60◦ DENT 102.00 1.17 114.20 10.69 % 107.43 5.05 %

70◦ DENT 150.44 1.17 170.19 11.61 % 158.91 5.33 %

80◦ DENT 291.75 1.94 305.03 4.35 % 274.74 6.19 %

90◦ DENT 705.27 8.53 661.19 6.67 % 592.59 19.01 %

Table A.6: Generalized critical stress intensity factors as a function of the notch aperture in duraluminium. Experimental
measurements from [85] using single edge notch tension compared with Pac-Man simulations with the AT1 model.

Experiments Undamaged notch Damaged notch

ω̄ Type k
(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

10◦ DENT 1.87 0.03 2.50 25.29 % 2.07 10.03 %

20◦ DENT 1.85 0.03 2.53 26.89 % 2.13 12.97 %

30◦ DENT 2.17 0.03 2.65 18.17 % 2.33 6.92 %

40◦ DENT 2.44 0.02 3.07 20.65 % 2.73 10.70 %

50◦ DENT 3.06 0.05 3.94 22.31 % 3.54 13.63 %

60◦ DENT 4.35 0.18 5.95 26.97 % 5.41 19.69 %

70◦ DENT 8.86 0.18 11.18 20.74 % 10.10 12.26 %

80◦ DENT 28.62 0.68 27.73 3.20 % 24.55 16.56 %

90◦ DENT 104.85 10.82 96.99 8.11 % 85.37 22.82 %

Table A.7: Generalized critical stress intensity factors as a function of the notch aperture in PMMA. Experimental
measurements from [85] using single edge notch tension compared with Pac-Man simulations with the AT1 model.

Experiments Undamaged notch Damaged notch

2ω̄ type k
(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

30◦ TPB 4.49 0.57 4.97 9.6% 4.53 0.9%
FPB 4.24 0.30 4.97 14.6% 4.53 6.4%

60◦ TPB 6.02 n/a 5.35 12.6% 5.00 20.3%
FPB 5.14 0.09 5.35 3.8% 5.00 2.8%

90◦ TPB 6.66 0.50 6.99 4.8% 6.72 1.0%
FPB 6.81 0.54 6.99 2.6% 6.72 1.3%

120◦ TPB 13.21 0.87 13.12 0.7% 12.38 6.8%
FPB 14.66 1.23 13.12 11.7% 12.38 18.4%

Table A.8: Generalized critical stress intensity factors as a function of the notch aperture in Aluminium oxyde ceramics.
Experimental measurements from [92] using three and four point bending compared with Pac-Man simulations.
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Experiments Undamaged notch Damaged notch

2ω̄ a/h k
(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

60◦ 0.1 1.41 0.02 1.47 4.5% 1.29 9.3%
0.2 1.47 0.04 1.47 0.4% 1.29 14.0%
0.3 1.28 0.03 1.47 13.0% 1.29 0.4%
0.4 1.39 0.04 1.47 5.8% 1.29 7.8%

90◦ 0.1 2.04 0.02 1.98 3.0% 1.81 12.9%
0.2 1.98 0.01 1.98 0.0% 1.81 9.6%
0.3 2.08 0.03 1.98 5.1% 1.81 15.2%
0.4 2.10 0.03 1.98 5.9% 1.81 16.1%

120◦ 0.1 4.15 0.02 3.87 7.3% 3.63 14.3%
0.2 4.03 0.06 3.87 4.2% 3.63 11.0%
0.3 3.92 0.18 3.87 1.4% 3.63 8.0%
0.4 3.36 0.09 3.87 13.0% 3.63 7.4%

Table A.9: Generalized critical stress intensity factors as a function of the notch aperture in PMMA. Experimental
measurements from [38] using three and four point bending compared with Pac-Man simulations. The value a/h refers
to the ratio depth of the notch over sample thickness. See Figure 9 for geometry and loading.

2ω̄ type P
(exp)
c [N] stdev P

(num)
c [N] rel. error

30◦ TPB 1470.50 72.01 1517.59 3.1%
FPB 1726.00 56.29 1976.59 12.7%

60◦ TPB 1736.00 0.00 1517.59 14.4%
FPB 1909.17 60.88 1986.62 3.9%

90◦ TPB 1528.40 149.41 1608.04 5.0%
FPB 2024.40 212.03 2127.09 4.8%

120◦ TPB 1933.00 75.15 1949.75 0.9%
FPB 2711.29 187.66 2618.73 3.5%

Table A.10: Critical load reported in [92] using three- and four-point bending experiments of an Al2O3 − 7%ZrO2 sample
compared with numerical simulations using the AT1 model and undamaged notch boundary conditions. TPB and FPB
refer respectively to three point bending and four point bending. See Figure 9 for geometry and loading.

2ω̄ a/h P
(exp)
c [N] stdev P

(num)
c [N] rel. error

60◦ 0.1 608.50 6.69 630.81 3.5%
0.2 455.75 12.48 451.51 0.9%
0.3 309.00 8.19 347.98 11.2%
0.4 258.75 6.61 268.69 3.7%

90◦ 0.1 687.33 5.19 668.69 2.8%
0.2 491.00 2.94 491.41 0.1%
0.3 404.33 5.44 383.33 5.5%
0.4 316.00 4.24 297.48 6.2%

120◦ 0.1 881.75 4.60 822.22 7.2%
0.2 657.25 9.36 632.32 3.9%
0.3 499.60 25.41 499.50 0.0%
0.4 336.25 9.09 386.87 13.1%

Table A.11: Load at failure reported in [92] using three point bending experiments of a PMMA sample compared to full
domain numerical simulations using the AT1 model with undamaged notch boundary conditions. The value a/h refers
to the ratio depth of the notch over sample thickness. See Figure 9 for geometry and loading.
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Saclay – École Polytechnique, October 2016.

[65] T. Li, J.-J. Marigo, D. Guilbaud, and S. Potapov. Gradient damage modeling of brittle fracture
in an explicit dynamics context. Int. J. Num. Meth. Engng., 5 2016.

[66] E. Lorentz and S. Andrieux. Analysis of non-local models through energetic formulations. Int. J.
Solids Struct., 40:2905–2936, 2003.

[67] J.-J. Marigo, C. Maurini, and K. Pham. An overview of the modelling of fracture by gradient
damage models. Meccanica, 51(12):3107–3128, 2016.

[68] C. Maurini, B. Bourdin, G. Gauthier, and V. Lazarus. Crack patterns obtained by unidirectional
drying of a colloidal suspension in a capillary tube: experiments and numerical simulations using
a two-dimensional variational approach. Int. J. Fracture, 184(1-2):75–91, 2013.

[69] A. Mesgarnejad, B. Bourdin, and M. M. Khonsari. Validation simulations for the variational
approach to fracture. Comp. Methods Appl. Mech. Engng., 290:420–437, 2015.

[70] C. Miehe, F. Aldakheel, and A. Raina. Phase field modeling of ductile fracture at finite strains.
a variational gradient-extended plasticity-damage theory. Int. J. Plasticity, 2016.

[71] C. Miehe, M. Hofacker, L.-M. Schänzel, and F Aldakheel. Phase field modeling of fracture in
multi-physics problems. Part II. coupled brittle-to-ductile failure criteria and crack propagation
in thermo-elastic-plastic solids. Comp. Meth. Appl. Mech. Engng., 294:486–522, 2015.

[72] A. Mielke. Evolution of rate-indipendent system. In C. Dafermos and E. Feireisl, editors, Handbook
of Differential Equations, Evolutionary Equations, volume 2, chapter 6, pages 461–559. Elsevier,
2005.

[73] N. I. Muskhelishvili. Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental
Equations, Plane Theory of Elasticity, Torsion, and Bending (translated from Russian). Noordhoff
International Publishing, Leyden, The Netherlands, 2nd edition, 1977.

[74] M. Negri and M. Paolini. Numerical minimization of the Mumford-Shah functional. Calcolo,
38(2):67–84, 2001.

[75] T. T. Nguyen, J. Yvonnet, M. Bornert, C. Chateau, K. Sab, R. Romani, and R. Le Roy. On the
choice of parameters in the phase field method for simulating crack initiation with experimental
validation. Int. J. Fracture, 197(2):213–226, 2016.

25



[76] M. Ortiz and A. Pandolfi. Finite-deformation irreversible cohesive elements for three-dimensional
crack-propagation analysis. Int. J. Num. Meth. Engng., 44:1267–1282, 1999.

[77] K. Pham, H. Amor, J.-J. Marigo, and C. Maurini. Gradient damage models and their use to
approximate brittle fracture. Int. J. Damage Mech., 20(4, SI):618–652, 2011.

[78] K. Pham and J.-J. Marigo. Approche variationnelle de l’endommagement: I. Les concepts fonda-
mentaux. The variational approach to damage: I. The foundations. C.R. Mécanique, 338(4):191–
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