A. Abdollahi and I. Arias, Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions, Journal of the Mechanics and Physics of Solids, vol.60, issue.12, pp.602100-2126, 2012.
DOI : 10.1016/j.jmps.2012.06.014

R. Alessi, J. Marigo, and S. Vidoli, Gradient Damage Models Coupled with Plasticity and Nucleation of Cohesive Cracks, Archive for Rational Mechanics and Analysis, vol.110, issue.1, pp.575-615, 2014.
DOI : 10.1007/s10659-012-9410-5

M. Ambati, T. Gerasimov, and L. De-lorenzis, Phase-field modeling of ductile fracture, Computational Mechanics, vol.92, issue.3???4, pp.1017-1040, 2015.
DOI : 10.1017/CBO9780511762956

M. Ambati, R. Kruse, and L. De-lorenzis, A phase-field model for ductile fracture at finite strains and its experimental verification, Computational Mechanics, vol.186, issue.4, pp.149-167, 2015.
DOI : 10.1007/s10704-013-9904-6

L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence, Communications on Pure and Applied Mathematics, vol.17, issue.8, pp.999-1036, 1990.
DOI : 10.1080/01621459.1987.10478393

L. Ambrosio and V. M. Tortorelli, On the approximation of free discontinuity problems, Boll. Un. Mat. Ital. B, vol.6, issue.71, pp.105-123, 1992.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune et al., PETSc users manual, 2016.

S. Balay, W. D. Gropp, L. C. Mcinnes, and B. F. Smith, Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries, Modern Software Tools in Scientific Computing, pp.163-202, 1997.
DOI : 10.1007/978-1-4612-1986-6_8

Z. P. Ba?ant, Scaling of quasibrittle fracture: asymptotic analysis, International Journal of Fracture, vol.83, issue.1, pp.19-40, 1997.
DOI : 10.1023/A:1007387823522

Z. P. Ba?ant, Scaling of Structural Strength, 2005.

G. Bellettini and A. Coscia, Discrete approximation of a free discontinuity problem, Numerical Functional Analysis and Optimization, vol.1, issue.3-4, pp.201-224, 1994.
DOI : 10.1007/978-1-4612-1015-3

A. Benallal and J. Marigo, Bifurcation and stability issues in gradient theories with softening. Modelling and Simulation in, Materials Science and Engineering, vol.15, issue.1, p.283, 2007.
DOI : 10.1088/0965-0393/15/1/s22

URL : https://hal.archives-ouvertes.fr/hal-00551073

M. J. Borden, T. J. Hughes, C. Landis, A. Anvari, and I. J. Lee, A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Computer Methods in Applied Mechanics and Engineering, vol.312, pp.130-166, 2016.
DOI : 10.1016/j.cma.2016.09.005

M. J. Borden, T. J. Hughes, C. M. Landis, and C. V. Verhoosel, A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Computer Methods in Applied Mechanics and Engineering, vol.273, issue.0, pp.273100-118, 2014.
DOI : 10.1016/j.cma.2014.01.016

B. Bourdin, Image segmentation with a finite element method, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.2, pp.229-244, 1999.
DOI : 10.1051/m2an:1999114

B. Bourdin, Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces and Free Boundaries, vol.9, pp.411-430, 2007.
DOI : 10.4171/IFB/171

B. Bourdin and A. Chambolle, Implementation of an adaptive finite-element approximation of the Mumford-Shah functional, Numerische Mathematik, vol.85, issue.4, pp.609-646, 2000.
DOI : 10.1007/PL00005394

B. Bourdin, C. Chukwudozie, and K. Yoshioka, A Variational Approach to the Numerical Simulation of Hydraulic Fracturing, SPE Annual Technical Conference and Exhibition, 2012.
DOI : 10.2118/159154-MS

B. Bourdin, G. A. Francfort, and J. Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, vol.48, issue.4, pp.797-826, 2000.
DOI : 10.1016/S0022-5096(99)00028-9

B. Bourdin, G. A. Francfort, and J. Marigo, The Variational Approach to Fracture, Journal of Elasticity, vol.125, issue.8, pp.5-148, 2008.
DOI : 10.1016/S1874-5717(06)80009-5

URL : https://hal.archives-ouvertes.fr/hal-00551079

B. Bourdin, J. Marigo, C. Maurini, and P. Sicsic, Morphogenesis and Propagation of Complex Cracks Induced by Thermal Shocks, Physical Review Letters, vol.112, issue.1, p.14301, 2014.
DOI : 10.1016/0377-0273(94)90092-2

URL : https://hal.archives-ouvertes.fr/hal-00911118

A. Braides, Approximation of Free-Discontinuity Problems. Number 1694 in Lecture Notes in Mathematics, 1998.
DOI : 10.1007/bfb0097344

A. Braides, ?-convergence for beginners, of Oxford Lecture Series in Mathematics and its Applications, 2002.
DOI : 10.1093/acprof:oso/9780198507840.001.0001

S. Burke, C. Ortner, and E. Süli, An Adaptive Finite Element Approximation of a Variational Model of Brittle Fracture, SIAM Journal on Numerical Analysis, vol.48, issue.3, pp.980-1012, 2010.
DOI : 10.1137/080741033

S. Burke, C. Ortner, and E. Süli, AN ADAPTIVE FINITE ELEMENT APPROXIMATION OF A GENERALIZED AMBROSIO???TORTORELLI FUNCTIONAL, Mathematical Models and Methods in Applied Sciences, vol.19, issue.09, pp.1663-1697, 2013.
DOI : 10.1007/b98874

A. Chambolle, An approximation result for special functions with bounded deformation, Journal de Math??matiques Pures et Appliqu??es, vol.83, issue.7, pp.929-954, 2004.
DOI : 10.1016/j.matpur.2004.02.004

URL : http://doi.org/10.1016/j.matpur.2004.02.004

A. Chambolle, An approximation result for special functions with bounded deformation, Journal de Math??matiques Pures et Appliqu??es, vol.83, issue.7, pp.929-954137, 2004.
DOI : 10.1016/j.matpur.2004.02.004

URL : http://doi.org/10.1016/j.matpur.2004.02.004

M. Charlotte, J. Laverne, and J. Marigo, Initiation of cracks with cohesive force models: a variational approach, European Journal of Mechanics - A/Solids, vol.25, issue.4, pp.649-669, 2006.
DOI : 10.1016/j.euromechsol.2006.05.002

URL : https://hal.archives-ouvertes.fr/hal-00551071

A. Chudnovsky, Slow crack growth, its modeling and crack-layer approach: A review, International Journal of Engineering Science, vol.83, pp.6-41, 2014.
DOI : 10.1016/j.ijengsci.2014.05.015

C. Chukwudozie, Application of the Variational Fracture Model to Hydraulic Fracturing in Poroelastic Media, 2016.

S. Conti, M. Focardi, and F. Iurlano, Phase field approximation of cohesive fracture models, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.33, issue.4, pp.1033-1067, 2016.
DOI : 10.1016/j.anihpc.2015.02.001

URL : http://arxiv.org/abs/1405.6883

V. Crismale and G. Lazzaroni, Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model, Calculus of Variations and Partial Differential Equations, vol.90, issue.2, pp.1-54, 2016.
DOI : 10.1002/zamm.200900243

G. and D. Maso, An introduction to ?-convergence, 1993.

R. De-borst, M. Gutiérrez, G. Wells, J. Remmers, and H. Askes, Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis, International Journal for Numerical Methods in Engineering, vol.60, issue.1, pp.289-315, 2004.
DOI : 10.1002/nme.963

URL : https://hal.archives-ouvertes.fr/hal-00450612

G. , D. Piero, G. Lancioni, and R. March, A diffuse cohesive energy approach to fracture and plasticity: the one-dimensional case, J. Mech. Phys. Solids, vol.8, pp.2-4109, 2013.

P. Destuynder and M. Djaoua, Sur une Interpr??tation Math??matique de l'Int??grale de Rice en Th??orie de la Rupture Fragile, Mathematical Methods in the Applied Sciences, vol.III, issue.1, pp.70-87, 1981.
DOI : 10.1215/S0012-7094-63-03008-4

M. L. Dunn, W. Suwito, and S. Cunningham, Fracture initiation at sharp notches: Correlation using critical stress intensities, International Journal of Solids and Structures, vol.34, issue.29, pp.3873-3883, 1997.
DOI : 10.1016/S0020-7683(96)00236-3

M. L. Falk, A. Needleman, and J. R. Rice, A critical evaluation of cohesive zone models of dynamic fracture, J. Phys IV, vol.11, issue.PR5, pp.43-50, 2001.

G. A. Francfort and J. Marigo, Revisiting brittle fracture as an energy minimization problem, Journal of the Mechanics and Physics of Solids, vol.46, issue.8, pp.1319-1342, 1998.
DOI : 10.1016/S0022-5096(98)00034-9

F. Fraternali, Free discontinuity finite element models in two-dimensions for in-plane crack problems, Theoretical and Applied Fracture Mechanics, vol.47, issue.3, pp.274-282, 2007.
DOI : 10.1016/j.tafmec.2007.01.006

F. Freddi and F. Iurlano, Numerical insight of a variational smeared approach to cohesive fracture, Journal of the Mechanics and Physics of Solids, vol.98, pp.156-171, 2017.
DOI : 10.1016/j.jmps.2016.09.003

M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power, International Journal of Solids and Structures, vol.33, issue.8, pp.1083-1103, 1996.
DOI : 10.1016/0020-7683(95)00074-7

X. Gao, A general solution of an infinite elastic plate with an elliptic hole under biaxial loading, International Journal of Pressure Vessels and Piping, vol.67, issue.1, pp.95-104, 1996.
DOI : 10.1016/0308-0161(94)00173-1

A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures, Calculus of Variations, vol.12, issue.2, pp.129-172, 2005.
DOI : 10.1007/s00526-004-0269-6

A. Giacomini and M. Ponsiglione, A Discontinuous Finite Element Approximation of Quasi-static Growth of Brittle Fractures, Numerical Functional Analysis and Optimization, vol.43, issue.7-8, pp.813-850, 2003.
DOI : 10.1016/S0022-5096(98)00034-9

F. J. Gómez and M. Elices, A fracture criterion for sharp V-notched samples, International Journal of Fracture, vol.123, issue.3/4, pp.163-175, 2003.
DOI : 10.1023/B:FRAC.0000007374.80996.a2

F. J. Gómez, G. V. Guinea, and M. Elices, Failure criteria for linear elastic materials with U-notches, International Journal of Fracture, vol.125, issue.2, pp.99-113, 2006.
DOI : 10.1007/s10704-006-0066-7

K. Gou, M. Mallikarjuna, K. R. Rajagopal, and J. R. Walton, Modeling fracture in the context of a strain-limiting theory of elasticity: A single plane-strain crack, International Journal of Engineering Science, vol.88, pp.73-82, 2015.
DOI : 10.1016/j.ijengsci.2014.04.018

J. L. Grenestedt, S. Hallström, and J. Kuttenkeuler, On cracks emanating from wedges in expanded PVC foam, Engineering Fracture Mechanics, vol.54, issue.4, pp.445-456, 1996.
DOI : 10.1016/0013-7944(95)00231-6

A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, issue.582-593, pp.163-198, 1921.
DOI : 10.1098/rsta.1921.0006

B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés, J. Mécanique, vol.14, issue.1, pp.39-63, 1975.

M. Z. Hossain, C. Hsueh, B. Bourdin, and K. Bhattacharya, Effective toughness of heterogeneous media, Journal of the Mechanics and Physics of Solids, vol.71, pp.320-348, 2014.
DOI : 10.1016/j.jmps.2014.06.002

C. E. Inglis, Stresses in plates due to the presence of cracks and sharp corners. Transactions of the Institute of Naval Architects, pp.219-241, 1913.

M. A. Issa, M. A. Issa, M. S. Islam, and A. Chudnovsky, Size effects in concrete fracture: Part I, experimental setup and observations, International Journal of Fracture, vol.102, issue.1, pp.1-24, 2000.
DOI : 10.1023/A:1007533218153

F. Iurlano, A density result for GSBD and its application to the approximation of brittle fracture energies, Calculus of Variations and Partial Differential Equations, vol.6, issue.1-2, pp.315-342, 2014.
DOI : 10.1007/BF00284617

A. Karma, D. A. Kessler, and H. Levine, Phase-Field Model of Mode III Dynamic Fracture, Physical Review Letters, vol.71, issue.4, 2001.
DOI : 10.1103/PhysRevLett.71.2417

M. Klinsmann, D. Rosato, M. Kamlah, and R. M. Mcmeeking, An assessment of the phase field formulation for crack growth, Computer Methods in Applied Mechanics and Engineering, vol.294, pp.313-330, 2015.
DOI : 10.1016/j.cma.2015.06.009

C. Kuhn, A. Schlüter, and R. Müller, On degradation functions in phase field fracture models, Computational Materials Science, vol.108, issue.10, pp.374-384
DOI : 10.1016/j.commatsci.2015.05.034

P. Lazzarin and S. Filippi, A generalized stress intensity factor to be applied to rounded V-shaped notches, International Journal of Solids and Structures, vol.43, issue.9, pp.2461-2478, 2006.
DOI : 10.1016/j.ijsolstr.2005.03.007

URL : http://doi.org/10.1016/j.ijsolstr.2005.03.007

D. Leguillon, Strength or toughness? A criterion for crack onset at a notch, European Journal of Mechanics - A/Solids, vol.21, issue.1, pp.61-72, 2002.
DOI : 10.1016/S0997-7538(01)01184-6

D. Leguillon and E. Sanchez-palencia, Computation of Singular Solutions in Elliptic Problems and Elasticity, 1987.

B. Li, C. Peco, D. Millán, I. Arias, and M. Arroyo, Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy, International Journal for Numerical Methods in Engineering, vol.14, issue.7, pp.3-4711, 2014.
DOI : 10.1007/BF00665906

T. Li, Gradient Damage Modeling of Dynamic Brittle Fracture, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01487449

T. Li, J. Marigo, D. Guilbaud, and S. Potapov, Gradient damage modeling of brittle fracture in an explicit dynamics context, International Journal for Numerical Methods in Engineering, vol.44, issue.20, p.2016
DOI : 10.1016/j.ijsolstr.2007.02.044

URL : https://hal.archives-ouvertes.fr/hal-01248263

E. Lorentz and S. Andrieux, Analysis of non-local models through energetic formulations, International Journal of Solids and Structures, vol.40, issue.12, pp.2905-2936, 2003.
DOI : 10.1016/S0020-7683(03)00110-0

J. Marigo, C. Maurini, and K. Pham, An overview of the modelling of fracture by gradient damage models, Meccanica, vol.63, issue.1, pp.513107-3128, 2016.
DOI : 10.1016/j.jmps.2013.09.003

URL : https://hal.archives-ouvertes.fr/hal-01374814

C. Maurini, B. Bourdin, G. Gauthier, and V. Lazarus, Crack patterns obtained by unidirectional drying of a colloidal suspension in a capillary tube: experiments and numerical simulations using a two-dimensional variational approach, International Journal of Fracture, vol.362, issue.6418, pp.75-91, 2013.
DOI : 10.1038/362329a0

A. Mesgarnejad, B. Bourdin, and M. M. Khonsari, Validation simulations for the variational approach to fracture, Computer Methods in Applied Mechanics and Engineering, vol.290, pp.420-437, 2015.
DOI : 10.1016/j.cma.2014.10.052

C. Miehe, F. Aldakheel, and A. Raina, Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, International Journal of Plasticity, vol.84, 2016.
DOI : 10.1016/j.ijplas.2016.04.011

C. Miehe, M. Hofacker, and L. Schänzel, Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic???plastic solids, Computer Methods in Applied Mechanics and Engineering, vol.294, pp.486-522, 2015.
DOI : 10.1016/j.cma.2014.11.017

A. Mielke, Evolution of rate-indipendent system, Handbook of Differential Equations, Evolutionary Equations, pp.461-559, 2005.

N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending (translated from Russian), 1977.
DOI : 10.1007/978-94-017-3034-1

M. Negri and M. Paolini, Numerical minimization??of the Mumford-Shah functional, Calcolo, vol.38, issue.2, pp.67-84, 2001.
DOI : 10.1007/s100920170004

T. T. Nguyen, J. Yvonnet, M. Bornert, C. Chateau, K. Sab et al., On the choice of parameters in the phase field method for simulating crack initiation with experimental validation, International Journal of Fracture, vol.59, issue.9, pp.213-226, 2016.
DOI : 10.1002/nme.857

URL : https://hal.archives-ouvertes.fr/hal-01258035

M. Ortiz and A. Pandolfi, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, International Journal for Numerical Methods in Engineering, vol.142, issue.9, pp.1267-1282, 1999.
DOI : 10.1007/BF00033830

URL : http://aero.caltech.edu/~ortiz/Pubs/1999/OrtizPandolfi1999.pdf

K. Pham, H. Amor, J. Marigo, and C. Maurini, Gradient Damage Models and Their Use to Approximate Brittle Fracture, International Journal of Damage Mechanics, vol.30, issue.4, pp.618-652, 2011.
DOI : 10.1016/0029-5493(92)90094-C

URL : https://hal.archives-ouvertes.fr/hal-00549530

K. Pham and J. Marigo, Approche variationnelle de l'endommagement : I. Les concepts fondamentaux, Comptes Rendus M??canique, vol.338, issue.4, pp.191-198, 2010.
DOI : 10.1016/j.crme.2010.03.009

URL : https://hal.archives-ouvertes.fr/hal-00490518

K. Pham and J. Marigo, Approche variationnelle de l'endommagement : II. Les mod??les ?? gradient, Comptes Rendus M??canique, vol.338, issue.4, pp.199-206, 2010.
DOI : 10.1016/j.crme.2010.03.012

URL : https://hal.archives-ouvertes.fr/hal-00490520

K. Pham, J. Marigo, and C. Maurini, The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models, Journal of the Mechanics and Physics of Solids, vol.59, issue.6, pp.1163-1190, 2011.
DOI : 10.1016/j.jmps.2011.03.010

URL : https://hal.archives-ouvertes.fr/hal-00578995

K. H. Pham, K. Ravi-chandar, and C. M. Landis, Experimental validation of a phase-field model for fracture, International Journal of Fracture, vol.27, issue.6, pp.83-101, 2017.
DOI : 10.1016/j.jmps.2011.03.010

J. R. Rice, The mechanics of earthquake rupture, Proc. Int. School of Physics " Enrico Fermi " Physics of the Earth's Interior, pp.555-649, 1980.

J. M. Sargado, E. Keilegavlen, I. Berre, and J. M. Nordbotten, High-accuracy phase-field models for brittle fracture based on a new family of degradation functions, 2017.

B. Schmidt, F. Fraternali, and M. Ortiz, Eigenfracture: An Eigendeformation Approach to Variational Fracture, Multiscale Modeling & Simulation, vol.7, issue.3, pp.1237-1266, 2009.
DOI : 10.1137/080712568

A. Seweryn, Brittle fracture criterion for structures with sharp notches, Engineering Fracture Mechanics, vol.47, issue.5, pp.673-681, 1994.
DOI : 10.1016/0013-7944(94)90158-9

P. Sicsic and J. Marigo, From Gradient Damage Laws to Griffith???s Theory of Crack Propagation, Journal of Elasticity, vol.59, issue.6, pp.55-74, 2013.
DOI : 10.1016/j.jmps.2011.03.010

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, vol.48, issue.1, pp.175-209, 2000.
DOI : 10.1016/S0022-5096(99)00029-0

M. Strandberg, Fracture at V-notches with contained plasticity, Engineering Fracture Mechanics, vol.69, issue.3, pp.403-415, 2002.
DOI : 10.1016/S0013-7944(01)00079-0

M. F. Wheeler, T. Wick, and W. Wollner, An augmented-Lagrangian method for the phase-field approach for pressurized fractures, Computer Methods in Applied Mechanics and Engineering, vol.271, issue.4, pp.69-85
DOI : 10.1016/j.cma.2013.12.005

Z. A. Wilson, M. J. Borden, and C. M. Landis, A phase-field model for fracture in piezoelectric ceramics, International Journal of Fracture, vol.58, issue.10, pp.135-153, 2013.
DOI : 10.1016/S0020-7683(97)00168-6

Z. A. Wilson and C. M. Landis, Phase-field modeling of hydraulic fracture, Journal of the Mechanics and Physics of Solids, vol.96, pp.264-290, 2016.
DOI : 10.1016/j.jmps.2016.07.019

Z. Yosibash, A. Bussiba, and I. Gilad, Failure criteria for brittle elastic materials, International Journal of Fracture, vol.125, issue.3/4, pp.307-333, 2004.
DOI : 10.1023/B:FRAC.0000022244.31825.3b

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Zhang, C. Vignes, S. W. Sloan, and D. Sheng, Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale, Computational Mechanics, vol.133, issue.5, pp.1-16, 2017.
DOI : 10.1016/j.compstruct.2015.08.051