M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet et al., The FEniCS Project Version 1.5, Archive of, Numerical Software, vol.3, 2015.

G. Arbia, I. Vignon-clementel, T. Hsia, and J. Gerbeau, Modified Navier???Stokes equations for the outflow boundary conditions in hemodynamics, European Journal of Mechanics - B/Fluids, vol.60, pp.175-188, 2016.
DOI : 10.1016/j.euromechflu.2016.06.001

URL : https://hal.archives-ouvertes.fr/hal-01328501

L. Baffico, C. Grandmont, and B. Maury, MULTISCALE MODELING OF THE RESPIRATORY TRACT, Mathematical Models and Methods in Applied Sciences, vol.2, issue.01, pp.59-93, 2010.
DOI : 10.1007/978-3-642-87553-3

Y. Bazilevs, J. R. Gohean, T. J. Hughes, R. D. Moser, and Y. Zhang, Patient-specific isogeometric fluidstructure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Engrg, vol.198, pp.45-46, 2009.

C. Catherine-b-`-egue, F. Conca, O. Murat, and . Pironneau, A nouveau sur leséquationsleséquations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, Comptes rendus de l'Académie des sciences, Mathématique, vol.1, issue.304 1, pp.23-28, 1987.

C. Bertoglio and A. Caiazzo, A tangential regularization method for backflow stabilization in hemodynamics, Journal of Computational Physics, vol.261, pp.162-171, 2014.
DOI : 10.1016/j.jcp.2013.12.057

C. Bertoglio and . Et-al, A Stokes-residual backflow stabilization method applied to physiological flows, Journal of Computational Physics, vol.313, pp.313-260, 2016.
DOI : 10.1016/j.jcp.2016.02.045

C. Bertoglio, Forward and inverse problems in fluid-structure interaction. application to hemodynamics, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00768188

O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Computers & Fluids, vol.27, issue.4, pp.421-433, 1998.
DOI : 10.1016/S0045-7930(98)00002-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.454.2675

K. Boukir, Y. Maday, E. Métivet, and . Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, vol.29, issue.12, pp.1421-1454, 1997.
DOI : 10.1007/978-3-642-61623-5

F. Boyer and P. Fabrie, Outflow boundary conditions for the incompressible non-homogeneous navier-stokes equations, Discrete and Continuous Dynamical Systems-Series, p.219, 2007.

M. Braack, Outflow Conditions for the Navier-Stokes Equations with Skew-Symmetric Formulation of the Convective Term, Lecture Notes Comput. Science and Engineer, vol.108, pp.35-45, 2014.
DOI : 10.1007/978-3-319-25727-3_4

M. Braack and P. B. Mucha, Directional Do-Nothing Condition for the Navier-Stokes Equations, Journal of Computational Mathematics, vol.32, issue.5, pp.507-521, 2014.
DOI : 10.4208/jcm.1405-m4347

C. Bruneau and P. Fabrie, Effective downstream boundary conditions for incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, vol.59, issue.8, pp.693-705, 1994.
DOI : 10.1002/fld.1650190805

S. Dong, An outflow boundary condition and algorithm for incompressible two-phase flows with phase field approach, Journal of Computational Physics, vol.266, pp.47-73, 2014.
DOI : 10.1016/j.jcp.2014.02.011

S. Dong, G. E. Karniadakis, and C. Chrzssostomidis, A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains, Journal of Computational Physics, vol.261, pp.83-105, 2014.
DOI : 10.1016/j.jcp.2013.12.042

M. E. Moghadam, Y. Bazilevs, T. Hsia, and I. , A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Computational Mechanics, vol.65, issue.41???43, pp.277-291, 2011.
DOI : 10.1002/fld.2360

URL : https://hal.archives-ouvertes.fr/hal-00650986

L. Formaggia, A. Quarteroni, and C. Vergara, On the physical consistency between three-dimensional and one-dimensional models in haemodynamics, Journal of Computational Physics, vol.244, pp.97-112, 2013.
DOI : 10.1016/j.jcp.2012.08.001

J. Fouchet-incaux, Artificial boundaries and formulations for the incompressible Navier???Stokes equations: applications to air and blood flows, SeMA Journal, vol.26, issue.7, pp.1-40, 2014.
DOI : 10.1007/978-3-642-87553-3

URL : https://hal.archives-ouvertes.fr/hal-00926273

U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, vol.48, issue.3, pp.387-411, 1982.
DOI : 10.1016/0021-9991(82)90058-4

V. Gravemeier, A. Comerford, L. Yoshihara, M. Ismail, and W. A. Wall, A novel formulation for Neumann inflow boundary conditions in biomechanics, International Journal for Numerical Methods in Biomedical Engineering, vol.190, issue.5, pp.560-573, 2012.
DOI : 10.1016/S0045-7825(00)00203-6

F. Hecht, O. Pironneau, A. L. Hyaric, and K. Ohtsuka, Freefem++ v. 2.11. user's manual, 2010.

J. G. Heywood, R. Rannacher, and S. Turek, ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS, International Journal for Numerical Methods in Fluids, vol.8, issue.5, pp.325-352, 1996.
DOI : 10.1137/0727022

Y. Huang and U. Ghia, A multigrid method for solution of vorticity-velocity form of 3-D navier-stokes equations, Communications in Applied Numerical Methods, vol.106, issue.3, pp.707-719, 1992.
DOI : 10.1115/1.3242393

M. Ismail, V. Gravemeier, A. Comerford, and W. A. Wall, A stable approach for coupling multidimensional cardiovascular and pulmonary networks based on a novel pressure-flow rate or pressure-only Neumann boundary condition formulation, International Journal for Numerical Methods in Biomedical Engineering, vol.28, issue.5, pp.447-469, 2014.
DOI : 10.1114/1.1326031

H. Kim, C. Figueroa, . Hughes, C. Jansen, and . Taylor, Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.45-46, pp.3551-3566, 2009.
DOI : 10.1016/j.cma.2009.02.012

C. Patrick-le-quéré, H. Weisman, E. Dick, R. Becker, M. Braack et al., Modelling of Natural Convection Flows with Large Temperature Differences: A Benchmark Problem for Low Mach Number Solvers. Part 1. Reference Solutions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.3, pp.609-616, 2005.
DOI : 10.1051/m2an:2005027

J. Oakes, A. L. Marsden, C. Grandmont, and C. , Distribution of aerosolized particles in healthy and emphysematous rat lungs: Comparison between experimental and numerical studies, Journal of Biomechanics, vol.48, issue.6, pp.1147-1157, 2015.
DOI : 10.1016/j.jbiomech.2015.01.004

URL : https://hal.archives-ouvertes.fr/hal-01244416

J. Oakes, A. L. Marsden, C. Grandmont, S. C. Shadden, and C. , Airflow and Particle Deposition Simulations in Health and Emphysema: From In Vivo to In Silico Animal Experiments, Annals of Biomedical Engineering, vol.114, issue.2, pp.899-914, 2014.
DOI : 10.1152/japplphysiol.00273.2012

URL : https://hal.archives-ouvertes.fr/hal-00916348

O. Pironneau and M. Tabata, Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type, International Journal for Numerical Methods in Fluids, vol.18, issue.10-12, pp.10-12, 2010.
DOI : 10.1137/1.9780898719208

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numerische Mathematik, vol.March, issue.3, pp.309-332, 1982.
DOI : 10.1007/BF01396435

A. Porpora, P. Zunino, C. Vergara, and M. Piccinelli, Numerical treatment of boundary conditions to replace lateral branches in hemodynamics, International Journal for Numerical Methods in Biomedical Engineering, vol.30, issue.4, pp.1165-1183, 2012.
DOI : 10.1002/cnm.2488

. S. Dong, A convective-like energy-stable open boundary condition for simulations of incompressible flows, Journal of Computational Physics, vol.302, pp.300-328, 2015.
DOI : 10.1016/j.jcp.2015.09.017

M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher, Benchmark Computations of Laminar Flow Around a Cylinder, 1996.
DOI : 10.1007/978-3-322-89849-4_39

A. Soualah and A. , Mathematical and numerical modelling of the humain lung, Theses, 2007.

R. Temam, Une méthode d'approximation de la solution deséquationsdeséquations de Navier-Stokes, Bull. Soc. Math. France, vol.96, pp.115-152, 1968.