
HAL Id: hal-01571315
https://hal.sorbonne-universite.fr/hal-01571315

Preprint submitted on 2 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Open Slice-based Facility Architecture (Open SFA)
Jordan Auge, Timur Friedman

To cite this version:
Jordan Auge, Timur Friedman. The Open Slice-based Facility Architecture (Open SFA). 2012. �hal-
01571315�

https://hal.sorbonne-universite.fr/hal-01571315
https://hal.archives-ouvertes.fr

1

The Open Slice-based Facility
Architecture (Open SFA)

Jordan Augé & Timur Friedman
Revision History

Revision 0.1 2012-12-03 J

Table of Contents
About this document ... 1
Challenges in federating heterogeneous infrastructures .. 2

Generalities ... 2
SFA overview .. 2
History ... 3
SFA and the experiment lifecycle .. 3

SFA overview .. 3
SFA entities .. 3
The SFA registry and the record object type .. 5
Slices and slivers .. 5
The SFA manager interfaces and methods ... 5

Using SFA .. 6
SFA for users .. 6
SFA for testbed owners ... 6

Securely accessing entities in a distributed environment: naming, authentication & authorization 7
Authentication .. 7
Certificate, GID ... 7
Authentication procedure ... 7
Bootstrap procedure .. 7
Authorization ... 8
Generalities ... 8
Credentials .. 8
Rights and priviledges ... 8
Credential delegation ... 9
Credential verification ... 10
Summary of a bootstrap process .. 10
Hands-on illustration of the different concepts ... 10
Tickets .. 12

SFA API reference .. 12
Aggregate Manager API .. 12
Registry API .. 17
Common API ... 21

About this document
This document is intended as a step towards creating a globally-agreed upon standard for the Slice-based
Facility Architecture, or SFA. At the time of writing, there exist some written SFA specifications, but as
best we can tell they do not entirely correspond with written, currently functioning code. There also exist
a number of functioning implementations, but these are not entirely documented.

The Open Slice-based Facility
Architecture (Open SFA)

2

We take as our starting point SFA as it is implemented by SFAWrap (http://sfawrap.info), which is a
generic SFA wrapper for testbeds. SFAWrap is used by, among others, the PlanetLab, SensLAB, and
FEDERICA testbeds, as well as by the FITeagle tool. As such , it is deployed both in the FIRE initiative
in Europe and in the GENI initiative in the United States.

We dub this version the Open SFA specification, as we open it for discussion and contribution
to stakeholders worldwide. This draft can be found on the OpenSFA website (http://opensfa.info),
and those who wish to participate are invited to join the mailing list discuss@opensfa.info
[mailto:discuss@opensfa.info].

References
• Generic SFA Wrapper implementation http://sfawrap.info

• Slice-base Federation Architecture v2.0 http://groups.geni.net/geni/wiki/SliceFedArch

• ProtoGENI API http://www.protogeni.net/trac/protogeni/wiki/API

Challenges in federating heterogeneous
infrastructures
Generalities

Note

This section will describe the context in which SFA operates and the reasons why such a protocol
was needed. It will also highlight the major requirements that influenced its design.

SFA overview
Note

present SFA, refer to original documents, timeline, planetlab

SFA has been designed to provide a minimal set of functionalities, a thin waist if you will, that a testbed
can implement in order to enter into a global and interoperable federation. An experimenter in an SFA-
based environment can transparently browse resources on any federated testbed, and allocate and reserve
those resources.

Because of the potential for a very large number of testbeds, a global federation architecture faces a serious
scalability issue. SFA introduces a fully distributed solution in which each peer testbed serves as the
authority of reference for the resources that it brings, and each user community, along with its experiments,
is represented by an authority (possibly, but not necessarily identified with an individual testbed).

Under the SFA architecture, there is a separation between what is generic and what is testbed-specific.
Testbed-specific information is captured in a resource model, called a resource specification (RSpec),
which is an XML transported by the SFA layer. SFA itself does not cover such aspects as resource model,
policies, reservations or measurements. These functionalities should instead be implemented on top of
SFA.

http://sfawrap.info
http://opensfa.info
mailto:discuss@opensfa.info
mailto:discuss@opensfa.info
http://sfawrap.info
http://groups.geni.net/geni/wiki/SliceFedArch
http://www.protogeni.net/trac/protogeni/wiki/API

The Open Slice-based Facility
Architecture (Open SFA)

3

History
SFA was conceived of by Larry Peterson of Princeton University in the context of efforts to create a global
PlanetLab federation. The first federation of computer networking testbeds was set up between Princeton’s
PlanetLab Central and UPMC’s and INRIA’s PlanetLab Europe, starting in 2006, as part of the EU’s
OneLab project. This initial federation was based on the pragmatic solution of synchronizing the central
databases of each of the federated entities. In this way, users of each testbed gained full access to the
resources of the other. As this solution worked in the context of two peers, but was clearly not scalable, SFA
pointed the way forward. The first working deployment of SFA code was developed jointly by Princeton
and INRIA, the latter working in the context of the EU’s OneLab2 project. Starting in 2008, SFA was used
to extend PlanetLab federation to other peers, such as PlanetLab Japan and EmanicsLab. Simultaneously,
SFA was adopted as a control plane architecture by GENI, in which context written specifications ???
were drafted. Our description of SFA draws upon both the working code (from PlanetLab and from other,
more recent, SFA implementations) and the written specification. These differ somewhat in their details,
but agree on most of the main aspects.

SFA and the experiment lifecycle
SFA forms the control plane for browsing and reserving resources offers by a federation of networking
testbeds. We often refer to the workflow followed by experimenters by experiment lifecycle. One common
way to represent it is through the following steps: 1. Account management and authentication 2. Resource
discovery 3. Resource reservation 4. Experiment configuration 5. Experiment running 6. Data collection
7. Resource release

Steps 1-3 and 7 are refer to as the control plane, while steps 4-6 correpond to the experimental plane.
SFA only addresses the former. It is structed around four major components: * an 'API': SFA’s most
visible part is an API allowing an interaction with the testbeds. It’s purpose is to bring the minimal
set of functionality allowing for a global federation. Without entering too much into details, we can
identify three core SFA API calls that are in phase with the experimental lifecycle (+ those related to
authentication and authorization, which are used out of band). These are: * for Resource discovery:
‘ListResources` * for Resource reservation: CreateSliver * for Resource release: DeleteSliver
We can also refer to another method that allows the discovery of capabilities and peers (GetVersion). A
complete reference of the API is presented in Section ???. * an 'object management’ layer: SFA proposes
a set of data types allowing the representation and identification of the different entities involved in the
federation, and their associated data models. The next section (Section ???) introduces those concepts.
* 'authentication and authorization': A large part of the SFA specification proposes authentication and
authorization mechanisms enabling a federation in a secure and distributed way, and supporting API
calls between well-identified entities. They are described in detail in Section ???. * 'resource model':
Necessarily, the SFA layer cannot take into account the detailed aspects of each testbeds. Such specificities
are abstracted into a resource specification document (RSpecs) that is transported on top of the SFA layer,
while the latter only deals with high-level considerations that are common to all platforms. The last section
(Section ???) is dedicated to RSpecs.

SFA overview
SFA entities

Object types. SFA designates a set of four main object types that represent the different entities involved
in the testbed federation:

Authorities These represent testbeds, parts of testbeds to which trust or rights may be delegated, and/
or communities of users.

The Open Slice-based Facility
Architecture (Open SFA)

4

Resources These consist of nodes, links, or any other experimental resource provided by the testbeds,
and exposed to the users.

Users These are experimenters wanting access to resources.
Slices A slice is the basic unit of interaction between users and resources. One can think of

a slice as corresponding to an experiment, and englobing all of the users and resources
associated with that experiment. As its name suggests, slices play a central role in the
SFA. They are presented in more details in the next section.

A hierarchical structure. In a centralized environment, it would be relatively easy to designate a central
authority that would keep track of all the entities. This is less obvious in our decentralized context. The
solution adopted by SFA is a classic one (the web in one example): we assume there will be a limited
number of top-level domains. Because there will potentially be so many entities, each top-level domain
is not required to know all of the entities under its responsibility. Rather, it enables a hierarchy, and each
level in the hierarchy is only required to know about the level below.

SFA objects exist in a shared namespace, organized according to a hierarchy of authorities and sub-
authorities. Trust relationships are based upon this hierarchy, with authorities vouching for the objects
further down in the hierarchy. Figure ??? represents a part of the object hierarchy in the PlanetLab
federation. We see the PlanetLab Europe (ple) and PlanetLab Central (plc) root authorities. We also see the
sub-authorities, such as upmc and inria, princeton and columbia, that represent PlanetLab sites, which are
the different universities and research labs that contribute resources to the testbed. These sub-authorities
delegate the management of their own users to the root authorities. The figure highlights in red a user,
represented by the HRN \texttt{ple.upmc.userA}, that corresponds to a user who has been vetted by the
UPMC site under the PlanetLab Europe root authority. A registry is responsible for managing all of the
objects under its branch, and will route other requests to the corresponding responsible authority.

Note
The need to distinguish hierarchy and routing

Naming. Objects of a given type are identified by a unique string composed of the chain of their parent
authorities, dot-separated, followed by the name of the object within its authority. This is denoted as the
Human-Readable Name of the object. An example of HRN is auth.subauth.object, which reflect
the chain of parent authorities of the object. Note that this string can both designate a user and a slice.

In order to disambigate those cases, a Unique Resource Name (URN) is proposed, though less convenient
for human users.

Note
we should explain the format of URNs here.

Finally, the term of XRN can either refer to a HRN or a URN. It is commonly used in the SFA API for
functions that can work with either a HRN or a URN. When needed, a type parameter is also expected.

Identifiers. Objects are uniquely identified by a certificate, signed recursively by their home authority.
We have thus a chain of certificates identifying all objects belonging to a top-level authority. The set of
an object certificate and its parents is denoted GID. (Awkwardly, for a global federation scheme that is
based on the notion that there is no one central authority, the term GID is said to stand for \emph{GENI
identifier}.) We will see in Section ??? how these GIDs for the base for a secure distributed authentication
and authorization system.

Note
certificates and GID. Refer to SFA2.0

The Open Slice-based Facility
Architecture (Open SFA)

5

The SFA registry and the record object type
A registry corresponds to a repository where the different objects and their properties are stored, in a
distributed way following the naming hierarchy. More specifically, a registry associates an object XRN
with its corresponding GID and other additional information.

Record data type
The entry characterizing an object in the registry is named a record, and has the following structure: *
'HRN' * 'GID' * 'type': (slice|node|user|authority|authority+sa|authority+am|authority+sm) * 'Info' * Info =
(PI[], Organization), if Type = SA * Info = (Owner[], Operator[], Organization), if Type = MA * Info =
(URI, LatLong, IP, DNS), if Type = Component * Info = (URI, Researcher[], InitScript), if Type = Slice
* Info = (PostalAddr, Phone, Email, AuthTokens[]), if Type = User

Slices and slivers
The notions of slice and sliver

Examples of slicing. Wired nodes = a virtual machine Wireless nodes = a node + a channel Slicing in
time = reservation * 1 / N / infinite slices at the same time on a given resource

The SFA manager interfaces and methods
SFA defines a minimal set of API calls to enable interaction between the different actors of the federation,
and that are implemented around three main components:

'Registry manager ®': This exposes objects that are managed by the federation. 'Aggregate manager (AM)':
This exposes the resources of an individual testbed, or more generally, the resources that fall under a single
authority. 'Slice manager (SM)': This exposes the resources from multiple, federated authorities and is
used to track slice objects.

The API calls can be organized into three main categories:

'Object management': These calls manipulate registry objects through the classical list, create, read, update
and delete functions. Resource browsing and slice management': These calls associate resources to slices,
as well as starting, stopping or getting the status of slices. 'Federation discovery': There is an API call
that is used to obtain detailed information about the different federation services that are running, and to
recursively discover peer platforms.

SFA is based on a web services API. To issue a call, a user must connect to a manager’s XML-RPC
interface via HTTPS, using their private key as a cypher, and passing as a first parameter the credential
that shows that they are authorized to perform the operation.

Note
.API = language independent

XMLRPC alternatives. In our opinion, the choice of XMLRPC is an implementation choice. Other
proposals such as REST ??? exists, and this is for example the choice made by the OMF-FA ???
implementation.

Illustration. Full API in a separate part also. He we should only explain the basics and give a few
examples.

The Open Slice-based Facility
Architecture (Open SFA)

6

Registry Manager API
The registry manager is a component dedicated to the manipulation of this registry: creating, displaying,
updating, deleting and listing objects.

Action on these objects through APIs. Secure invocation mechanisms: part of a separate part. Architecture
could in principle support multiple such schemes.

Note
We can explain here that the registry is the perfect place for user management. NOTE:
Relationship between registry and User/Slice/… authorities… NOTE: Explain that it issues
credentials, refer to auth/auth section.

Note
How is the hierarchy decided ? NOTE: People might be confused that we have
XXX.YYY.their_testbed NOTE: GENI clearing house = want to minimize the number of trusted
entities. Is it because we have no certificate distribution system ?

1. cf get_trusted_certs ??

Aggregate and Slice Manager API

Using SFA
SFA for users
SFA clients

• sfi.py

• sface

• Omni

• Flack

• MySlice

SFA for testbed owners
SFA implementations

http://groups.geni.net/geni/wiki/GeniApi

Joining the SFA federation
In order for a testbed to become part of the current global federation enabled through SFA, given that a trust
relationship has been established with at least one current member of the federation, there are two important

http://groups.geni.net/geni/wiki/GeniApi

The Open Slice-based Facility
Architecture (Open SFA)

7

technical requirements that need to be fulfilled. First, the local testbed resources must be described in an
RSpec that the testbed’s aggregate manager can both send and understand. Second, a friendly user interface
must be available for researchers to be able to browse the available resources, express their requirements,
and reserve the desired set of resources of this testbed in a fashion that is consistent with the rest of the
federation. The following two sections describe two software components, the Generic SFA Wrapper and
MySlice, that propose to make this process easy for testbed owners and developers.

Securely accessing entities in a distributed
environment: naming, authentication &
authorization

Authentication and authorization are two essential notions that are too often mixed up. They respectively
answer the two following questions: Who am I ? and What can I do?.

SFA defines a set of functionalities to manage the different entities involves in a federation. The remainder
of this section describes these functionalities, as well as how they are abstracted into various managers.

Authentication
Certificate, GID

SFA currently bases its authentication mechanism on a public key infrastructure, where each object has a
keypair (a public and a private key) and is associated with a signed certificate, called a GID, that is stored
in a registry. The certificate is used for authentication, following the same principles as user and website
authentication on the web. It is a X.509 certification ??? that associates the object’s HRN with its public
key, and that is signed recursively by each parent authorities up to the root.

Authentication procedure
Let’s consider a user U willing to authenticate to a server S thanks to its GID. U needs to establish a SSL
connection (in our case a XMLRPC connection over HTTPS) cyphered with the private key associated
to the GID.

If the SSL session succeeds, S only has to validate the GID to be able to recognize the user identified by the
related HRN. The only requirement for this is that S trusts the root certificate that has signed the GID. In
no way either U or S have to contact the user’s home authority that has established the GID; the possession
of the GID by the user if sufficient and can be done out-of-band through a bootstrap procedure. If U’s root
authority is trusted by S, the chain of signatures proves that the owner of this keypair is really U.

This process which is natural for users can also be used by authorities, for peer communications, but also
for resources for example (even though it is not commonly used today, it might be of interest for a testbed
building only on the SFA).

Bootstrap procedure
Initially, a user U is only supposed to posses a keypair. A bootstrap procedure (such as user registration)
is necessary to that its home authority H knowns its public key, and is able to associate it to its HRN.

From its keypair, U can generate a self-signed certificate it will use for the SSL connection. This is
sufficient for H to authenticate the user since it knows his user account, which was not the case in the

The Open Slice-based Facility
Architecture (Open SFA)

8

previous paragraph. This allows the user to retrieve its GID by contacting the registry of its home authority
(GetGid method). It can then use it to contact all other federated entities.

Authorization
Generalities

In SFA, at present, an entity can be authenticated even if later it turns out that it is not allowed to perform
actions or access resources. This second step is called authorization, and it depends on the local policies in
use on the various testbeds. As for authentication, there are many possible ways to perform authorization
in a distributed environment. For instance, A, a user of testbed B, might also want to get authenticated
and authorized by testbed C, which might never have heard of A or B, but trusts them indirectly because
C trusts their root authority.

Credentials
Currently, SFA implements the notion of a credential, which is a signed XML document that proves that
an entity has a set of rights relating to another one, and states whether or not its has the possibility to
delegate those rights. Such credentials can be used to establish the various trust relationships necessary to
run a federated platform. For example, a slice credential might allow a privileged user to create a slice,
while a less privileged user might only be allowed to perform operations on an existing slice.

More precisely a credential stores the following information: 'caller': identified entity to which the
credential has been issued, characterized by its HRN and GID. Most of the time, the caller is a user (or an
authority); 'object': identifies the object for which the credential holds. The type of the object determines
the type of credential: user credential, slice credential or authority credential; 'expires': a credential is issued
for a limited lifetime; 'priviledges': a set of priviledges that are assigned to the caller with respect to the
object, 'delegate': each priviledge is annotated with a flag indicating whether it can be further delegated.

There is currently a debate in the SFA community as to whether to move to an attribute-based access
control (ABAC) authorization mechanism, in which a user could assemble a set of signed clauses from
various entities, and use them to construct a proof that they (the user) indeed have the rights that they
claims. Shibboleth ???, which is used to managed a federation of identity providers for national research
networks (NRENs), is also a candidate for a future authorization system.

Note
Legacy credentials used to be an equivalent tuple stored in the subjectAltName of an X509
certificate. This behaviour is deprecated and not the subject of the present document.

Rights and priviledges
Table 1. Rights

Right Priviledges
user refresh, resolve, info
sa authority, sa
ma authority, ma
authority authority, sa, ma
slice refresh, embed, bind, control, info

The Open Slice-based Facility
Architecture (Open SFA)

9

Right Priviledges
component operator

Note
Rights seem to be somewhat redundant with the type of the credential. For example, a "sa"
credential implies the authority right, because a "sa" credential cannot be issued to a user who
is not an owner of the authority.

Table 2. Priviledges

Priviledge Operations
authority register, remove, update, resolve, list,

getcredential, *
refresh remove, update
resolve resolve, list, getcredential
sa getticket, redeemslice, redeemticket, createslice,

createsliver, deleteslice, deletesliver, updateslice,
getsliceresources, getticket, loanresources,
stopslice, startslice, renewsliver, deleteslice,
deletesliver, resetslice, listslices, listnodes,
getpolicy, sliverstatus

embed getticket, redeemslice, redeemticket, createslice,
createsliver, renewsliver, deleteslice, deletesliver,
updateslice, sliverstatus, getsliceresources,
shutdown

bind getticket, loanresources, redeemticket
control updateslice, createslice, createsliver, renewsliver,

sliverstatus, stopslice, startslice, deleteslice,
deletesliver, resetslice, getsliceresources, getgids

info listslices, listnodes, getpolicy
ma setbootstate, getbootstate, reboot, getgids,

gettrustedcerts
operator gettrustedcerts, getgids
* createsliver, deletesliver, sliverstatus, renewsliver,

shutdown

Note
"*" is a privilege granted by ProtoGENI slice authorities, and we give it access to the GENI AM
calls

Credential delegation
Because authentication requires the possession of a private key, a delegation mechanism has been
implemented in SFA so that a user could perform actions for which it has been delegated the rights, on
behalf of another user. A delegated credential has the same structure which states that the delegee has
some rights on an entity and is signed by the delegating user. It also encloses the original credential(s),
proving that the original user has both the delegated privileges and the right to delegate them.

The Open Slice-based Facility
Architecture (Open SFA)

10

Credential verification
Check the credential against the peer cert (callerGID included in the credential matches the caller that is
connected to the HTTPS connection, check if the credential was signed by a trusted cert and check if the
credential is allowed to perform the specified operation.

Verify that: * All of the signatures are valid and that the issuers trace back to trusted roots (performed by
xmlsec1) * The XML matches the credential schema * That the issuer of the credential is the authority
in the target’s urn * In the case of a delegated credential, this must be true of the root * That all of the
gids presented in the credential are valid * Including verifying GID chains, and includ the issuer * The
credential is not expired

For Delegates (credentials with parents) * The privileges must be a subset of the parent credentials * The
privileges must have "can_delegate" set for each delegated privilege * The target gid must be the same
between child and parents * The expiry time on the child must be no later than the parent * The signer
of the child must be the owner of the parent

Verify does NOT * ensure that an xmlrpc client’s gid matches a credential gid, that must be done elsewhere

Verify issuer: Make sure the credential’s target gid (a) was signed by or (b) is the same as the entity
that signed the original credential, or (c) is an authority over the target’s namespace. Also ensure that the
credential issuer / signer itself has a valid GID signature chain (signed by an authority with namespace
rights).

Summary of a bootstrap process
Hands-on illustration of the different concepts

It is important to note that all mechanisms used by SFA rely on standard mechanisms and tools. In
this section, we propose a look at how these objects can be manipulated though standard tools, namely
openssl for certificates, and xmlsec1 for credentials. This is of course fully handled by the existing
SFA clients. In this section, and we use the commandline tool sfi.py originating from the Generic SFA
Wrapper implementation 1.

We take the example of a user 'myuser' accessing the testbed 'mytestbed'.

SSH keypair creation.

ssh-keygen -t rsa
cp ~/.ssh/id_rsa.pub myuser.key

Generation of the self-signed certificate.

Certificate Signing Request (CSR)
openssl req -new -key myuser.pkey -out myuser.csr

Certificate
openssl x509 -req -days 365 -in myuser.csr -signkey myuser.pkey -out myuser.cert
(365x5 = ???, give only CN)

Display the generated certificate
openssl x509 -text -in myuser.cert -noout

1http://www.sfawrap.info

http://www.sfawrap.info

The Open Slice-based Facility
Architecture (Open SFA)

11

GID repatriation.

Retrieving the GID through a SFA call
sfi.py gid mytestbed.myuser

Display the GID
openssl x509 -text -in sfi_files/mytestbed.myuser.gid
openssl x509 -text -in sfi_files/mytestbed.myuser.user.gid

Need to explain the difference between both GIDs...

Displaying the hierarchy of signatures in the GID
perl -n0777e 'map { print "---\n"; open(CMD, "| openssl x509 -noout -subject -issuer"); print CMD; close(CMD) } /^-----BEGIN.*?^-----END.*?\n/gsm' ~/.sfi/mytestbed.myuser.user.gid

Verifying the GID
openssl verify -CAfile trusted_roots/mytestbed.gid sfi_files/myteutotstbed.myuser.gid
openssl verify -CAfile trusted_roots/mytestbed.gid sfi_files/mytestbed.myuser.user.gid

Generating a PKCS12 token for web authentication
openssl pkcs12 -export -inkey myuser.pkey -in sfi_files/mytestbed.myuser.gid -out myuser.p12

Use of the sfi.py client. The first time a command is issued through sfi.py, the bootstrap process
we have illustrated is performed automatically, and the different objects retrieved are cached in the
~/.sfi directory.

sfi.py list mytestbed

The following files have been generated in ~/.sfi:
- mytestbed.myuser.pkey (user private key)
- mytestbed.myuser.sscert (self-signed certificate)
- mytestbed.myuser.user.gid (user GID)
- mytestbed.myuser.user.cred (user credential)

Display the generated self-signed certificate
openssl x509 -text -in ~/.sfi/mytestbed.myuser.sscert

Credential repatriation. Just like the GID, credentials will be automatically repatriated by sfi.py
when needed.

The user credential is gathered through the bootstrap process we already
performed, and should be available in ~/.sfi/mytestbed.myuser.user.cred.

List the resources associated to a slice
sfi.py resources mytestbed.slice1

We should now also have a slice credential in ~/.sfi/mytestbed.slice1.slice.cred

Credentials can be inspected thanks to a regular text editor.

In order to verify the XML signature, the xmlsec1 tool can be used:

xmlsec1 --verify --node-id "ref0" --trusted-pem trusted_roots/mytestbed.gid sfi_files/mytestbed.slice1.slice.cred

In case of a delegated credential, the parent credential has the node-id
'ref0', and the newly delegated credential has the id 'ref1'

The Open Slice-based Facility
Architecture (Open SFA)

12

xmlsec1 --verify --node-id "ref1" --trusted-pem trusted_roots/mytestbed.gid sfi_files/mytestbed.slice1.slice.cred

Tickets
TODO

SFA API reference
The different methods in this section are presented by alphabetical order, grouped by component.

Note
Describe the kind of information that is given for each method.

Aggregate Manager API
Method CreateSliver

Description. Allocate resources to a slice. This operation is expected to start the allocated resources
asynchornously after the operation has successfully completed. Callers can check on the status of the
resources using SliverStatus.

Prototype. CreateSliver(slice_xrn, creds, rspec, users, options)

Parameters

slice_xrn XRN of the slice to allocate to (string)

creds Credential string or list of credential strings

rspec RSpec to allocate (string)

users A list of user information under the form:

• 'urn': URN of the users that is allowed to access the slice

• 'keys': List of ssh (RSA) keys in a string format

options Dictionary of options

• 'call_id':

• self.ois ?

Return value. The return value is an ReturnValue associative array with the following fields: * 'status':
either success or exception * 'aggregate': * 'elapsed': duration of the API call * 'rspec': the manifest RSpec
or the created slice/sliver (only if status == success) * 'exc_info': exception information (only if status ==
exception)

Interfaces. AM, SM

Notes. This method will eventually trigger the creation of the slice and related users on a third-party
testbed. This explains why minimal users information need to be passed as parameters when calling this

The Open Slice-based Facility
Architecture (Open SFA)

13

function (cannot be NULL). Such information can be retrieved thanks to the Resolve method. This also
explains why this methods does not apply to CM while DeleteSliver does.

Anything not contained in this request will be removed from the slice.

The RSpec must explicitely allocate slivers (presence of <sliver_type> or <sliver> elements).

The SM loops through all aggregates and combines the received RSpecs. The returned RSpecs by the SM
has a statistics section. The SM drops eventually received statistics sections.

The slice is automatically started (might be dependent on the driver)

Note
sfatables ?

Note
What about various Rspecs formats ? What about unknown formats ? NOTE: what about slice
tags ? NOTE: What is sliver_type ?

Example. The associated sfi.py command is create_sliver

Method DeleteSliver
Description. Remove the slice from all nodes and free the allocated resources

Prototype. DeleteSliver(xrn, creds, options)

Parameters

'xrn' XRN of the slice to instanciate

'creds' (List of) credential(s) string(s) specifying the rights of the caller

'options' Associative array of options with the following fields

• 'call_id' (optional)

Return value. 1 if successful, faults otherwise

Interfaces. CM, AM, SM

Method GetTicket
Description. Retrieve a ticket for the specified slice. The ticket is filled in with information from the
testbed. It includes resources, and attributes such as user keys and initscripts.

Prototype. GetTicket(xrn, creds, rspec, users, options)

Parameters. xrn name of the slice to retrieve a ticket for (hrn or urn) cred credential string or List of
credential rspec resource specification dictionary user List of user information options Options call_id
(.ois())

Return value. String representation of the ticket.

Interfaces. AM, SM

The Open Slice-based Facility
Architecture (Open SFA)

14

Example. The corresponding operation in sfi.py is get_ticket.

Method ListResources
Description. Returns information about available resources or resources allocated to this slice

Prototype. ListResources(creds, options)

Parameters

creds (List of) credential string(s) specifying the rights of the caller.

options Associative array of options with fields:

• 'call_id': always send call_id to v2 servers

• 'cached': ask for cached values if available

• 'geni_slice_urn'

• 'geni_rspec_version': rspec return format. client must specify a version through
geni_rspec_version or rspec_version. Example: {type: geni, version: 3.0}

• 'rspec_version': alternative to geni_rspec_version

• 'geni_compressed': zlib compressed data with base64 encoding

• 'info':

• 'list_leases': (leases|resources)

Interfaces. AM, SM

Method ListSlices
Description. List instanciated slices

Prototype. ListSlices(creds, options)

Parameters

cred credential string specifying the rights of the caller, or list of credentials

options Associative array of options with fields:

• 'call_id'

Return value. A list of URNs

Interfaces. CM, AM, SM

Example. The corresponding sfi.py method is slices

Method RedeemTicket
Prototype. RedeemTicket(ticket, creds)

The Open Slice-based Facility
Architecture (Open SFA)

15

Parameters

ticket String representation of a sfa ticket

creds (List of) credential string(s) specifying the rights of the caller.

Return value. 1 if successful

Interfaces. CM

Method RenewSliver
Description. Renews the resources in a sliver, extending the lifetime of the slice.

Prototype. RenewSliver(slice_xrn, creds, expiration_time, options)

Parameters

slice_xrn XRN of the slice to renew.

creds (List of) credential string(s) specifying the rights of the caller.

expiration_time Requested expiration time in RFC 3339 format (string).

options Associative array of options with fields:

• 'call_id':

• '(+ ois)'

Return value. {"aggregates": results, "code": {"geni_code": geni_code}, "value": geni_value, "output":
geni_output}

internally (interpretation might be wrong in other parts of this document) {"code": {"geni_code": 0}, value:
result} {"aggregate": aggregate, "exc_info": traceback.format_exc(), "code": {"geni_code": -1}, "value":
False, "output": ""}

bool success or failure

Interfaces. AM, SM

Example. The corresponding sfi.py command is renew.

Method reset_slice
Description. Reset the specified slice.

Prototype. reset_slice(cred, xrn, origin_hrn=NULL)

Parameters

cred (List of) credential string(s) specifying the rights of the caller.

xrn XRN of the slice to renew.

origin_hrn XRN of the original caller, or NULL

Return value. 1 is successful, faults otherwise

The Open Slice-based Facility
Architecture (Open SFA)

16

Interfaces. CM, AM, SM

Example. The corresponding sfi.py command is reset.

Method Shutdown
Description. Perform an emergency shut down of a sliver. This operation is intended for administrative
use. The sliver is shut down but remains available for further forensics.

Prototype. Shutdown(slice_xrn, cred)

Parameters

slice_xrn XRN of the slice to shutdown

cred (List of) credential string(s) specifying the rights of the caller.

Return value. Bool success of failure

Notes. Shutdown calls the Stop method.

Interfaces. AM, SM

Method SliverStatus
Description. Get the status of a sliver

Prototype. SliverStatus(slice_hrn, cred, options)

Parameters

slice_xrn XRN of the slice.

cred (List of) credential string(s) specifying the rights of the caller.

options Associative array of options with fields:

• 'call_id':

Return value. A ReturnValue dictionary / A list of associative arrays with fields: * 'geni_resources' (for
SM and AM) * 'geni_urn' (for SM) * 'pl_login' (for SM) * 'status': (ready|unknown) (for SM) unknown
is used if no 'geni_resources'

Interfaces. CM, AM, SM

Example. The corresponding sfi.py command is status.

Method Start
Description. Start the specified slice.

Prototype. Start(xrn, creds)

Parameters

xrn XRN of the slice to start.

The Open Slice-based Facility
Architecture (Open SFA)

17

cred (List of) credential string(s) specifying the rights of the caller.

Return value. 1 is successful, faults otherwise

Method Stop
Description. Stop the specified slice.

Prototype. Stop(xrn, creds)

Parameters

xrn XRN of the slice to stop.

cred (List of) credential string(s) specifying the rights of the caller.

Return value. 1 is successful, faults otherwise

Method UpdateSliver
Description. Allocate resources to a slice. This operation is expected to start the allocated resources
asynchornously after the operation has successfully completed. Callers can check on the status of the
resources using SliverStatus.

Prototype. UpdateSliver(slice_xrn, creds, rspec, users, options)

Parameters

slice_xrn XRN of the slice to update.

cred (List of) credential string(s) specifying the rights of the caller.

rspec RSpec to allocate.

users List of user information.

options Associative array of options with fields:

Return value. allocated rspec

Interfaces. AM, SM

Note. Depending on the implementation, this method might be an alias for CreateSliver.

Registry API
Method CreateGid

Description. This method creates a signed certificate in the registry for the referenced object. In addition
to being stored at the SFA level, a call to the testbed will also be performed to create the record at the
testbed level.

Prototype. CreateGid(creds, xrn, cert=NULL)

Parameters

cred (List of) credential string(s) specifying the rights of the caller

The Open Slice-based Facility
Architecture (Open SFA)

18

xrn XRN of the certificate owners

cert caller’s certificate (default: None)

Return value. The GID string representation

Example. The corresponding sfi.py command is create_gid.

Method GetCredential
Description. Retrieve a credential for an object.

Prototype. GetCredential(cred, xrn, type)

Parameters

cred (List of) credential string(s) specifying the rights of the caller.

xrn XRN of the object

type type of the object (user | slice | node | authority | NULL)

Return value. Credential string.

Notes. If the credential argument is NULL, then the behaviour of the method might revent to
GetSelfCredential.

Method GetGids
Description. Get a list of record information (hrn, gid and type) for the specified hrns.

Parameters

xrns (List of) XRN(s)

cred (List of) credential string(s) specifying the rights of the caller.

Return value. An associative array with fields: * 'hrn' * 'type' * 'gid' (issued from Resolve).

Notes. This methods is calling Resolve.

Example. This method has no entry point in sfi.py.

Note
Is this method important ? When is it called ?

Method GetSelfCredential
Description. Retrive a credential for an object thanks to self signed certificates as the SSL cert (see the
bootstrap process / how to get credentials).

Prototype. GetSelfCredential(cert, xrn, type)

Parameters

cert certificate string

The Open Slice-based Facility
Architecture (Open SFA)

19

xrn human readable name of object (hrn or urn)

type type of object (user | slice | sa | ma | node)

Return value. Credential string

Notes. GetSelfCredential a degenerate version of GetCredential used by a client to get his initial
credential when de doesnt have one. This is the same as GetCredential(…, cred = None, …)

The registry ensures that the client is the principal that is named by (type, name) by comparing the public
key in the record’s GID to the private key used to encrypt the client side of the HTTPS connection. Thus
it is impossible for one principal to retrieve another principal’s credential without having the appropriate
private key.

Method List
Description. List the entries/records in a named authority registry.

Prototype. List(xrn, creds, options={})

Parameters

hrn human readable name of authority to list (hrn or urn)

cred (List of) credential string(s) specifying the rights of the caller

options associative array of options with fields:

• 'recursive': (same as putting a * at the end of the hrn) consider subauthorities

Return value. A list of record dictionaries with fields: * 'hrn': * 'type': * '…': ?

Notes. Load all know registry names into a prefix tree and attempt to find the longest matching prefix *
if there was no match then this record belongs to an unknow registry * if the best match (longest matching
hrn) is not the local registry, forward the request

Example. The corresponding sfi.py command is list.

sfi.py list mytestbed
sfi.py list mytestbed.subauthority

Method Register
Description. Regiter a new object (record) within the registry. In addition to being stored at the SFA
level, the appropriate records will also be create at the testbed level.

Prototype. Register(record, creds)

Parameters

record_dict Record dictionary containing record fields

cred credential string, or list of credentials

Return value. String representation of GID

The Open Slice-based Facility
Architecture (Open SFA)

20

Example. The corresponding sfi.py commmand is add.

Method Remove
Description. Remove the named object from the registry. If the object also represents a testbed object,
the corresponding record will be also removed from the testbed.

Prototype. Remove(xrn, creds, type)

Parameters

xrn XRN of the record to remove

creds credential string, or list of credentials

type record type, or type not specified. The type can be all, *.

Return value. 1 if successful, faults otherwise

Example. The corresponding sfi.py commmand is remove.

Method Resolve
Description. Resolve, show details about the named registry record(s).

Prototype. Resolve(xrns, creds)

Parameters

xrns XRN(s) to resolve

creds (List of) credentials string(s) specifying the rights of the caller.

Return value. A list of record dictionaries or empty list

Example. The corresponding sfi.py commmand is show.

Method Update
Description. Update a object (record) in the registry. This might also update the tested information
associated with the record. Depending on the implementation, the SFA fields (name, type, GID) might
be fixed.

Prototype. Update(record_dict, creds)

Parameters

record_ An associative array representing the record to be updated.

type Type of the record (mandatory)

cred (List of) credentials string(s) specifying the rights of the caller.

Return value. 1 if successful, faults otherwise

The Open Slice-based Facility
Architecture (Open SFA)

21

Method ``

Common API
Method GetVersion

Description. Returns a SFA server version information.

Prototype. GetVersion(options={})

Parameters

options associative array of options

Return value. ReturnValue with the version dict as a value

• 'code_tag': version_tag, (eg. like 2.1-11) (for RM, CM, AM, SM)

• 'code_url': Source code management (SCM) URL (for RM, CM, AM, SM)

• 'hostname': hostname of the component (as retrieved by gethostname) (for RM, CM, AM, SM)

• 'interface': name of the SFA component (registry|aggregate|slicemgr|component) (for RM, CM, AM,
SM)

• 'sfa': SFA version (currently: 2) (for RM, AM, SM)

• 'geni_api': GENI API version (currently: 2) (for RM, AM, SM)

• 'geni_api_versions': {2: http://HOST:PORT} (for AM, SM)

• 'hrn': HRN (for RM, AM, SM)

• 'urn': URN (for RM, AM, SM)

• 'peers': list of peers (for RM, SM)

• 'geni_request_rspec_versions': request_rspec_versions (for SM)

• 'geni_ad_rspec_versions': ad_rspec_versions (for SM)

• 'testbed': [myplc] (for CM)

Interfaces. R, CM, AM, SM

Method get_trusted_certs
Description. ??

Prototype. get_trusted_certs(cred = None)

Parameters

cred (List of) credential string(s) specifying the rights of the caller, or None.

Return value. list of gid strings

The Open Slice-based Facility
Architecture (Open SFA)

22

Notes. If cred is not specified just return the gid for this interface. This is true when when a peer is
attempting to initiate federation with this interface

Interfaces. R, SM, AM

