Adam Heriban

Xavier Défago

Sébastien Tixeuil

Optimally Gathering Two Robots

We present an algorithm that ensures in finite time the gathering of two robots in the nonrigid ASYNC model. To circumvent established impossibility results, we assume robots are equipped with 2-colors lights and are able to measure distances between one another. Aside from its light, a robot has no memory of its past actions, and its protocol is deterministic. Since, in the same model, gathering is impossible when lights have a single color, our solution is optimal with respect to the number of used colors.

1 Chirality denotes the ability to distinguish left from right.

Introduction

Networks of mobile robots evolving in a 2-dimensional Euclidean space recently captured the attention of the distributed computing community, as they promise new applications (rescue, exploration, surveillance) in potentially dangerous (and harmful) environments. Since its initial presentation [START_REF] Suzuki | Distributed anonymous mobile robots: Formation of geometric patterns[END_REF], this computing model has grown in popularity and many refinements have been proposed (see [START_REF] Flocchini | Distributed Computing by Oblivious Mobile Robots[END_REF] for a recent state of the art). From a theoretical point of view, the interest lies in characterizing the exact conditions for solving a particular task.

In the model we consider, robots are anonymous (i.e., indistinguishable from each-other), oblivious (i.e., no persistent memory of the past is available), and disoriented (i.e., they do not agree on a common coordinate system). The robots operate in Look-Compute-Move cycles. In each cycle a robot "Looks" at its surroundings and obtains (in its own coordinate system) a snapshot containing the locations of all robots. Based on this visual information, the robot "Computes" a destination location (still in its own coordinate system) and then "Moves" towards the computed location. Since the robots are identical, they all follow the same deterministic algorithm. The algorithm is oblivious if the computed destination in each cycle depends only on the snapshot obtained in the current cycle (and not on the past history of execution). The snapshots obtained by the robots are not consistently oriented in any manner (that is, the robots' local coordinate systems do not share a common direction nor a common chirality 1).

The execution model significantly impacts the ability to solve collaborative tasks. Three different levels of synchronization have been considered. The strongest model [START_REF] Suzuki | Distributed anonymous mobile robots: Formation of geometric patterns[END_REF] is the fully synchronized (FSYNC) model where each phase of each cycle is performed simultaneously by all robots. The semi-synchronous (SSYNC) model [START_REF] Suzuki | Distributed anonymous mobile robots: Formation of geometric patterns[END_REF] considers that time is discretized into rounds, and that in each round an arbitrary yet non-empty subset of the robots are active. The robots that are active in a particular round perform exactly one atomic Look-Compute-Move cycle in that round. It is assumed that the scheduler (seen as an adversary) is fair in the sense that in each execution, every robot is activated infinitely often. The weakest model is the asynchronous model [START_REF] Flocchini | Distributed Computing by Oblivious Mobile Robots[END_REF] (ASYNC), which allows arbitrary delays between the Look, Compute and Move phases, and the movement itself may take an arbitrary amount of time. In this paper, we consider the most general ASYNC model.

Related Work.

The gathering problem is one of the benchmarking tasks in mobile robot networks, and has received a considerable amount of attention (see [START_REF] Flocchini | Distributed Computing by Oblivious Mobile Robots[END_REF] and references herein). The gathering tasks consist in all robots (each considered as a dimensionless point in a 2-dimensional Euclidean space) reaching a single point, not known beforehand, in finite time. A foundational result [START_REF] Suzuki | Distributed anonymous mobile robots: Formation of geometric patterns[END_REF][START_REF] Courtieu | Impossibility of gathering, a certification[END_REF] shows that in the SSYNC model, no deterministic algorithm can solve gathering for two robots without additional assumptions. This impossibility result naturally extends to the ASYNC model.

In hostile environments such as those we envision, robots are likely to fail. So far, three kinds of failures were considered in the context of deterministic gathering [START_REF] Agmon | Fault-tolerant gathering algorithms for autonomous mobile robots[END_REF][START_REF] Bouzid | Gathering of mobile robots tolerating multiple crash faults[END_REF][START_REF] Dieudonné | Self-stabilizing gathering with strong multiplicity detection[END_REF][START_REF] Bhagat | Fault-tolerant gathering of asynchronous oblivious mobile robots under one-axis agreement[END_REF][START_REF] Défago | Fault and byzantine tolerant self-stabilizing mobile robots gathering[END_REF][START_REF] Défago | Fault-tolerant and self-stabilizing mobile robots gathering: Feasibility study[END_REF]:

1. Transient faults: robots may experience transient faults that corrupt their current state, leading to an arbitrary initial configuration, from which algorithms may not recover (e.g., if the initial configuration is bivalent, and the execution model is SSYNC). As a result, the only known self-stabilizing solution [START_REF] Dieudonné | Self-stabilizing gathering with strong multiplicity detection[END_REF] (that is, able to recover from any initial configuration) in the classical fair model considers only odd sets of robots (so, a bivalent configuration cannot exist in this setting). Other self-stabilizing algorithms impose stricter assumptions on the scheduler [START_REF] Défago | Fault and byzantine tolerant self-stabilizing mobile robots gathering[END_REF][START_REF] Défago | Fault-tolerant and self-stabilizing mobile robots gathering: Feasibility study[END_REF].

2. Crash faults: when robots may stop executing their algorithm unexpectedly (and correct robots are not able to distinguish a correct robot from a crashed one at first sight), guaranteeing that correct robots still gather in finite time is a challenge. All proposed solutions so far [START_REF] Agmon | Fault-tolerant gathering algorithms for autonomous mobile robots[END_REF][START_REF] Bouzid | Gathering of mobile robots tolerating multiple crash faults[END_REF][START_REF] Bhagat | Fault-tolerant gathering of asynchronous oblivious mobile robots under one-axis agreement[END_REF][START_REF] Bramas | Wait-free gathering without chirality[END_REF][START_REF] Défago | Fault and byzantine tolerant self-stabilizing mobile robots gathering[END_REF][START_REF] Défago | Fault-tolerant and self-stabilizing mobile robots gathering: Feasibility study[END_REF] are restricted to the SSYNC model.

3.

Byzantine faults: when robots may have completely arbitrary (and possibly malicious) behavior, there exists no deterministic gathering protocol in the SSYNC model even assuming that at most one robot may be Byzantine [START_REF] Agmon | Fault-tolerant gathering algorithms for autonomous mobile robots[END_REF]. This impossibility extends to the ASYNC case.

To circumvent the aforementioned impossibility results, it was proposed to endow each robot with a light [START_REF] Das | Autonomous mobile robots with lights[END_REF], that is, it is capable of emitting a fixed number of colors visible to all other robots. This additional capacity allows to solve gathering of two robots in the most general ASYNC model, provided that robots lights are capable to emit at least four colors. In the more restricted SSYNC model, Viglietta [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF] proved that being able to emit two colors is sufficient to solve the gathering problem. In the same paper [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF], he also proved that an algorithm that only makes use of observed colors to decide on its next move cannot gather two robots in the ASYNC model using only two colors. Finally, Viglietta proves [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF] that three colors and the ability to detect null distances is sufficient in ASYNC. Both solutions in ASYNC [START_REF] Das | Autonomous mobile robots with lights[END_REF][START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF] and SSYNC [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF] output a correct behavior independently of the initial value of the lights' colors. Recently, Okumura et al. [START_REF] Okumura | Optimal asynchronous rendezvous for mobile robots with lights[END_REF] presented an algorithm with two colors that gathers robots in ASYNC assuming rigid moves (that is, the move of every robot is never stopped by the scheduler before completion), or assuming non-rigid moves but robots are aware of δ (the minimum distance before which the scheduler cannot interrupt their Our Contribution. We present a solution to the gathering of two robots that is optimal with respect to all considered criteria: it uses the minimum number of colors (compared to the 4 colors required by the algorithm of Das et al. [START_REF] Das | Autonomous mobile robots with lights[END_REF] and the 3 colors of the algorithm of Viglietta [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF] that operates in the same system ASYNC setting), it performs in the most general ASYNC model (unlike the SSYNC algorithm of Viglietta [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF]), while still not requiring additional assumptions such as rigid moves, initial colors, or knowledge about δ (unlike the algorithms of Okumura et al. [START_REF] Okumura | Optimal asynchronous rendezvous for mobile robots with lights[END_REF]). Characteristics of our solution and comparison with previous work are summarized in Table 1, where boldface characteristics are optimal.

Model

We consider the ASYNC model of robots with lights introduced in [START_REF] Das | Autonomous mobile robots with lights[END_REF]. In more details, we assume a system of two robots endowed with colored lights (with two possible colors, Black and White) that are modeled as mobile colored points in the Euclidean plane R 2 .

Both robots execute cycles that consist of three phases : LOOK, COMPUTE and MOVE. When a robot is not executing a LOOK-COMPUTE-MOVE (LCM) cycle, it is considered to be in a WAIT phase. Each phase can be described as follows:

• WAIT: The robot is idle and waiting for activation.

• LOOK: The robot is taking a snapshot of the position of the other robot, as well as the colors of both robots. This phase is assumed instantaneous.

• COMPUTE: The robot computes its next destination using the snapshot. A robot is able to change the color of its own light at the end of its COMPUTE phase.

• MOVE: The robot moves towards its destination.

The duration of the COMPUTE and MOVE phases, and the delay between two phases, are chosen by an adversary and can be arbitrary long, but finite. The adversary decides when robots are activated assuming a fair scheduling i.e., in any configuration, all robots are activated within finite time. The adversary also controls the robots movement along their target path and can stop a robot before reaching its destination, but not before traveling at least a distance δ > 0 (δ being unknown to the robots). In other words, if a robot has a target at a distance x, we assume that, at the end of its MOVE phase, the robot has moved a distance in the interval [min(δ, x), x]. The exact position reached is determined by the adversary scheduler. Robots are anonymous, meaning they are indistinguishable and they execute the exact same algorithm. However, for the sake of practicality, they are called A and B in the sequel. Each robot has a local coordinate system about which we make no assumptions, in particular, A and B may have distinct North, chirality, and unit distance. We also assume that, except from their light color, robots have no mean of explicitly communicating with each other.

The robots are also oblivious, in that they do not remember their past actions. This implies that the COMPUTE phase can have no other input than the snapshot from the last LOOK phase.

3 Our Algorithm

Previous Results

Viglietta observes [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF] that, in order to solve the gathering problem in SSYNC, an algorithm must accomplish two things:

• In case robots are synchronized, they need to move towards the midpoint.

• In case robots are activated alternatively, one needs to move towards the other. In that case, the other robot must not move.

In ASYNC, Viglietta also shows [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF] that no algorithm using only two colors can solve gathering if the destination computation solely relies on this form of calculation:

me.destination = (1 -λ) • me.position + λ • other.position With: λ = f (me.color, other.color)
Where f is a function (that is, it associates to a 2-tuple a single image). It is similarly assumed that the next color of a robot only depends on the current colors of the two robots and not on the distance between the robots.

Algorithms that follow these rules of computation are called class L algorithms. Then, the only algorithm of class L that satisfies these criteria is presented in Figure 1. Now, there exists an execution of this algorithm that does not solve ASYNC gathering (see Lemma 4.9 in Viglietta's paper [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF]) when both robots start in the Black color:

1. Let both robots perform a Look phase, so that both will turn White. As a result, both robots are again set to Black, are in a Wait phase, both have executed at least one cycle, and their distance has halved. Thus, by repeating the same pattern of moves, they approach one another but never gather.

Let robot

Because of this execution, it is not possible to solve gathering with two colors with an L class algorithm.

As a result, we do not design our algorithm to be of class L, as our computation of the next color not only depends on the respective colors of the two robots, but also on their respective distance.

Our Algorithm

We observe that in the problematic aforementioned execution, there is an instant when both robots are actually gathered, but are later separated because of pending moves.

We thus introduce a behavior change in the White state of Viglietta's [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF] algorithm to obtain our proposal, presented in Figure 2 Let us observe that our new algorithm no longer belongs to class L, since the same observed 2-tuple of colors may yield different outcomes depending on the distance between A and B. In particular, when both robots are observed White, the next color depends on whether the two robots are gathered. So, the assumption of Viglietta [START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF] that a new color is solely determined by the current colors no longer holds. 2We now need to prove that this new algorithm actually solves the gathering problem in ASYNC in a self-stabilizing manner. Our main result can be stated as follows:

Theorem 1. Algorithm 1 solves the gathering problem for two robots in a self-stabilizing fashion for the non-rigid ASYNC model.

Correctness

Describing configurations

We wish to prove the self-stabilizing property of our algorithm in the most general ASYNC model for the gathering specification. As a result, possible configurations must include all possible relative positions of the two robots, but also their current light color, and most importantly their current phase (and phase status) in the look-compute-move cycle. Indeed, the current phase can be seen as a program pointer whose value can be initially corrupted in an arbitrary initial setting. A direct consequence of this observation is that all possible combinations of those parameters must be considered as possible initial configurations. Let us first list in Figure 3 the various phases that can be reached by the algorithm, for two robots A and B: • C2O: Compute to Other (at the end of his COMPUTE phase, A stays White and moves towards the other robot),

• M2O: Move to the Other robot's position,

• C2W: Compute to White (COMPUTE phase that leads to color change and no motion),

• C2B: Compute to Black (COMPUTE phase that leads to no color change and no motion),

• M2H: Move to Half point,

• C2N: Compute to Nothing (COMPUTE phase that leads to no motion).

Since robots are anonymous, we only need to consider half of the possible configurations (i.e., the combination (W, C2H) is the same as (C2H, W)). In a given configuration, the scheduler may activate either A, B, or both. In most cases, activating both robots has the same effect as activating A then B, or B then A. However, in a few cases, the outcome of simultaneously activating A and B is not deterministic, and may lead to two different configurations. Those non-deterministic configuration are outlined in yellow color in Figure 3.

To ease the description and reasoning about the various phases of the algorithm, we divide the complete set of configurations into six subsets. Each subset of configurations is drawn as a graph whose vertices represent configurations and (directed) edges represent the possibility to reach another configuration by executing the algorithm of either one or both robots (3 cases). Some vertices appear in several subsets as the subsets we consider do not form a partition of all configurations. To facilitate the reading of each subset, we adopted a color code for vertices described in Figure 4, and the rest of the diagram notations are presented in Figure 5.

Each graph is divided in two parts : the top part, called nominal behavior and a bottom part called terminal behavior. The behavior of the algorithm is called nominal when the robots are not gathered. Some nodes, represented in the bottom part, change their behavior if the gathering is achieved during their activation. This is the case e.g. when a White robot starts its LOOK phase and perceives the other robot and itself on the same location. Specific gathered behavior is called terminal.

Definition 1 (Nominal Configuration).

A configuration c is nominal when the two robots are not located in the same position in c.

Definition 2 (Terminal Configuration).

A configuration c is terminal when the two robots are located in the same position in c.

Definition 3 (Valid Configurations).

A subset C v of configurations is valid if for any configuration c ∈ C v , either (i) c is nominal and every execution leads to a terminal configuration in a finite number of steps, or (ii) c is terminal and mandates the robots to eventually remain in a gathered configuration forever.

Definition 4 (Faulty Configurations).

A subset C v of configurations is faulty if for at least one configuration c ∈ C v , A and B are moving towards different targets.

We now list the subsets we consider in the sequel, assuming A and B denotes the two robots in the system: (a) SYM: configurations where A and B can remain synchronized indefinitely. Those configurations would be considered the regular behavior in a FSYNC model where robots initially share the same color. The SYM configurations are presented in Figure 6.

(b) ASYM: configurations where A and B are different colors, and no possibility of being synchronized again. The ASYM configurations are presented in Figure 7.

(c) FAULTY 1: configurations that can be reached after a White to Black de-synchronization which allow different targets for A and B and cannot lead back to SYM. The FAULTY 1 configurations are presented in Figure 8. (e) ILLEGAL: configurations that cannot be reached by the algorithm but need to be taken into account as possible starting configurations to ensure self-stabilization. The ILLEGAL configurations are presented in Figure 10.

(f) GATHERED: configurations that can only be reached if the gathering is complete. The GATHERED configurations are presented in Figure 11.

Proof of correctness

Our main result (Theorem 1) is directly obtained by Lemmas 1 and 2, that are presented in the sequel.

Lemma 1. If every subset of configurations is valid, then the Algorithm 1 solves gathering in a self-stabilizing manner.

Proof. If all subsets are valid and all configurations are included in the subsets, then it means that all configurations eventually lead to gathering. Thus the algorithm solves the gathering problem in a finite number of steps.

Lemma 2. Every subset of configurations of Algorithm 1 is valid.

Proof. To prove this, we proceed in order: We first prove the validity of ASYM (Lemma 3). We then show that FAULTY 1 can only lead to ASYM and is therefore valid (Lemma 4).

As SYM and FAULTY 2 are interdependent, we use a series of Lemmas to obtain validity results for those subsets (see Corollaries 1 and 2 for FAULTY 2 and SYM subsets, respectively).

Finally, we prove ILLEGAL (Lemma 10) and GATHERED (Lemma 11) to be valid subsets.

Lemma 3. The ASYM subset is valid.

Proof. ASYM is the subset reached after a successful de-synchronization between A and B, where A and B now have distinct colors with no option to get identical colors again. The ASYM subset has no possible exit to another subset, and from a nominal configuration, fair activations of the robots lead to:

• A moves towards B

• B does not move

As A progresses by at least δ or reaches B, nominal behavior leads to both robots sharing the same coordinates in a finite number of steps. Then, the next activation of A least to either configuration B1 or B2. One more activation of A leads to either F 5 or F 7 configuration, which in turn, leads to B1 or B2. Overall, the system is stuck in a no-movement infinite loop. So, the ASYM subset is valid. Lemma 4. The FAULTY 1 subset is valid.

Proof. The FAULTY 1 subset is reached after a White to Black de-synchronization. It is then possible to have robot A move towards the midpoint between A and B, and B moving towards A.

We observe that in the FAULTY 1 subset, from a nominal configuration, the system can only exit FAULTY 1 through ASYM, which is a valid subset (Lemma 3). It is also worth noticing that, while three cycles exist in FAULTY 1, none of them can actually be traversed forever under the fair scheduler assumption, i.e. it would require one robot to never be activated. Also, while it is possible to switch from the first cycle to the second, and from the second to the third, it is not possible to move back to a previous cycle, and breakage of the third cycle leads the system to the ASYM subset.

Therefore, the nominal behavior of FAULTY 1 leads to ASYM, which is valid, and is therefore also valid.

Note that the only configuration of FAULTY 1 whose behavior is modified by reaching gathering is C1. C1 can then lead to either B1 or ASYM, or F 5 and ASYM. Finally, if only the White robot is activated, it is possible to cycle between C1 and F 8. However, the fair scheduler assumption requires this cycle to be broken and the system to move to the ASYM subset. We can conclude that, despite being a faulty subset, FAULTY 1 is merely a temporary subset leading to ASYM, provided that the scheduler is fair.

Another possible proof of the validity of FAULTY 1 is found in [START_REF] Okumura | Optimal asynchronous rendezvous for mobile robots with lights[END_REF], Lemma 2. It is proven that if robot A performs a LOOK right after B performed a COMPUTE while robots are of different colors, gathering is unavoidable. This happens when reaching C2 from either C1 or A2. Since the only paths in FAULTY 1 either crosses C2 or immediately exits through ASYM, it is easily proven that FAULTY 1 is valid.

Lemma 5. If we exclude the exit to FAULTY 2, the SYM subset is valid.

Proof. The SYM subset is considered the normal starting starting subset (A and B waiting in White). It includes the FSYNC states (A1 to A1 through simultaneous activations), and every state that can be reached by A1 and lead back to A1 (except through FAULTY 2 by Hypothesis).

In SYM, it is possible to exit through ASYM, FAULTY 1, or FAULTY 2. It is also possible to cycle through SYM. This can either be done from A6 to A2, A7 to A5 or by cycling back to A1. In each case, cycling through SYM implies both robots target the midpoint while not moving, and then both of them moving towards the midpoint. As the distance between robots decreases by 2δ in each cycle, this behavior is valid. We have already proven ASYM and FAULTY 1 to be valid (Lemmas 3 and 4). Therefore, SYM nominal behavior is valid if we do not consider exits to FAULTY 2.

Achieving gathering implies terminal behavior in configurations A1, A2, A3, A4, and A6. Possible terminal behaviors are:

• A1 can lead to F 1, which leads back to A1,

• A1 can lead to F 9 which leads back to A1,

• A2 can lead to ASYM,

• A2 can lead to F 2 or F 8, which leads back to A2, FAULTY 1, or ASYM,

• A3 can lead to F 3 or F 4, which leads back to A3, A4 or A1,

• A3 can lead to A4,

• A4 can lead to A1,

• A4 can lead to F 1, which leads to A1,

• A4 can lead to F 4, which leads to A1 or back to A4,

• A6 can lead to A1,

• A6 can lead to F 1, which leads to A1,

• A6 can lead to F 6, which leads to A1 or back to A6.

From a terminal configuration, it is thus impossible to reach FAULTY 2, as neither A6 nor A2 can lead to their faulty targets any longer. Furthermore, Reaching A2 with an invalid target after achieving gathering now leads to FAULTY 1 or ASYM, which are valid subsets. In turn, looping though A2 requires an unfair scheduler. Let us observe that, once gathering is complete, SYM can either loop without motion, or lead to a valid subset. Therefore, SYM has a valid terminal behavior.

Overall, SYM, excluding exits to FAULTY 2, is a valid subset.

Lemma 6. If we exclude the exits to SYM, the FAULTY 2 subset is valid.

Proof. Excluding the path to SYM through A2 leaves FAULTY 1 as the only possible exit for FAULTY 2. Because we have proven FAULTY 1 to be valid (Lemma 4), FAULTY 2 is also valid.

Lemma 7. The FAULTY 2 → SYM → FAULTY 2 cycle reduces the distance x between A and B by at least min(x 2 , 3δ).

Proof. Looping through the FAULTY 2 → SYM → FAULTY 2 cycle requires to traverse configuration A6, and then configuration A2.

Let us assume that in A6, we have:

• A is White, in position 0 with no target,

• B is Black, in position x with no target.

Then, by exploring every possible path, when reaching A2, the following holds:

• A is in position [min(δ, x), x] with no target,

• B is in position x with either x 2 or [x 2

, x] as a target. Now, to go back to A6, the system first needs to exit A2, which necessarily makes A target the midpoint between A and B. It then needs to execute both targets. This implies that, when back in A6, the distance between A and B is now in the interval [-

x 2 , x -3δ].
Lemma 8. After reaching A6 with a distance less than δ, reaching A2 again implies gathering has been achieved.

Proof. If the distance x between A and B in configuration A6 is less than δ, then at the end of D2, gathering is achieved, as A would have moved to B. However, a robot still has an invalid target as it enters A2.

Lemma 9. Repeating the FAULTY 2 → SYM → FAULTY 2 cycle leads to a terminal configuration.

Proof. As we have proven in Lemma 7, looping this cycle reduces the distance by at least min(x 2 , 3δ).

Because of this, an scheduler repeating this pattern cannot prevent the robots from getting (strictly) closer than δ from one another in a finite number of steps. Once this has happened, the next use of the cycle necessarily leads to a gathering (by Lemma 8). The nominal behavior of FAULTY 2 is then valid.

Corollary 1. FAULTY 2 is valid.

Proof. By Lemma 9, the nominal behavior of FAULTY 2 is valid. Now, FAULTY 2 does not have a terminal behavior. We can, however, note that in terminal behavior, A2 cannot lead to A6, as we have proven in Lemma 5. This implies that the cycle leads to gathering, and is then broken when reaching A2.

Therefore, FAULTY 2 is a valid subset.

Corollary 2. SYM is valid.

Proof. From Corollary 1 and Lemma 5.

Lemma 10. The ILLEGAL subset is valid.

Proof. The ILLEGAL subset covers configurations that cannot be reached except through transient errors. Proving its validity is necessary to ensure self-stabilization. We can quickly notice that no cycle exists within the ILLEGAL subset, and that this subset necessarily exits to either SYM or FAULTY 1. As those subsets are valid (Corrolary 2 and Lemma 4), the ILLEGAL subset is also valid.

Lemma 11. The GATHERED subset is valid.

Proof. This GATHERED subset corresponds to the terminal configuration of all other subsets, which have been proved to be valid.

Conclusions

In this paper we presented a new algorithm to solve gathering of two robots in a self-stabilizing fashion for the non-rigid ASYNC model with an optimal number of lights. Despite being simple to describe, its proof (and the possibility to start from any possible configuration in an asynchronous execution model) mandated significant effort and systematic consideration of all possible cases. A natural open question is the possibility of self-stabilizing gathering with an arbitrary number of robots (in particular, a solution that starts from a bivalent configuration with two piles of n 2 robots would be of interest), and the minimal number of colors that is required in case the problem is solvable. However, we expect the complexity of the proof to go beyond what is tractable by a human, and would like to consider the possibility of using formal methods. Currently, modelchecking [START_REF] Devismes | Optimal grid exploration by asynchronous oblivious robots[END_REF][START_REF] Bérard | Formal verification of mobile robot protocols[END_REF][START_REF] Thi | Model checking of a mobile robots perpetual exploration algorithm[END_REF][START_REF] Sangnier | Parameterized verification of algorithms for oblivious robots on a ring[END_REF] and program synthesis [START_REF] Bonnet | Discovering and assessing fine-grained metrics in robot networks protocols[END_REF][START_REF] Millet | On the synthesis of mobile robots algorithms: The case of ring gathering[END_REF] cannot scale to an arbitrary number of robots, and proof assistant techniques [START_REF] Auger | Certified impossibility results for byzantine-tolerant mobile robots[END_REF][START_REF] Courtieu | Impossibility of Gathering, a Certification[END_REF][START_REF] Courtieu | Certified universal gathering in \mathbb R ˆ2 for oblivious mobile robots[END_REF][START_REF] Balabonski | Synchronous gathering without multiplicity detection: A certified algorithm[END_REF] do not yet permit to reason about the ASYNC model. Most likely, solving self-stabilizing gathering with n robots in ASYNC will require significant advances in mobile robot formalization.

Figure 3 :

 3 Figure 3: Possible configurations

Figure 4 :Figure 5 :

 45 Figure 4: Vertex color code

Figure 6 :

 6 Figure 6: SYM configurations

Figure 7 :Figure 10 :

 710 Figure 7: ASYM configurations

 A finish the current cycle and perform a new Look, while the B waits. Hence, A remains White and moves to B's position. Now, we let B finish the current cycle and perform a new Look. So, B turns Black and moves to the midpoint m between A and B. Let A finish the current cycle, thus reaching B, and perform a whole new cycle, thus turning Black.

	other is Black
	other is White
	other is Black
	⇒ move to other
	other is White
	⇒ move to midpoint
	Figure 1: Viglietta's [23] Algorithm
	3.

4. Finally, let B finish the current cycle, thus turning Black and moving to m.

 and Algorithm 1.Our proposal breaks the infinite loop in the problematic execution, as it prevents robot A from switching to color Black after reaching B and forces it to remain White. This implies that activating Algorithm 1 ASYNC Robot gathering with two colors if me.color = White then if (me.position = other.position) then do nothing else if other.color = White then me.destination ⇐ other.position/2 me.color ⇐ Black else if other.color = Black then me.destination ⇐ other.position end if else if me.color = Black and other.color = Black then me.color ⇐ White end if B afterwards actually separates the robots into different colors, and prevents them from going back to both being Black.

	other is Black	other is Black: ⇒ move to other
	other is White	
	other is White ∧ ¬Gathered: ⇒ move to midpoint	Gathered ⇒ do nothing
	Figure 2: Our Algorithm	

It is worth noting that, while the definition of class L does not explicitly mention that the new color is also obtained as a function of the two observed colors, the Lemma 4.4 of Viglietta's paper[START_REF] Viglietta | Rendezvous of two robots with visible bits[END_REF] entirely relies on this implicit fact, and so does the

3-color algorithm for the ASYNC model.