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Quantitative Static Analysis of Communication
Protocols using Abstract Markov Chains?

Abdelraouf Ouadjaout and Antoine Miné

Sorbonne Universités, UPMC, LIP6, Paris, France
{abdelraouf.ouadjaout,antoine.mine}@lip6.fr

Abstract. In this paper we present a static analysis of communication protocols
for inferring parametric bounds of performance metrics. Our analysis is formal-
ized within the theory of abstract interpretation and soundly takes all possible
executions into account. We model the concrete executions as Markov chains and
we introduce a novel notion of Abstract Markov Chains that provides a finite
and symbolic representation to over-approximate the (possibly unbounded) set of
concrete behaviors. Our analysis operates in two steps. The first step is a classic
abstract interpretation of the source code, using stock numerical abstract domains
and a specific automata domain, in order to extract the abstract Markov chain of
the program. The second step extracts from this chain particular invariants about
the stationary distribution and computes its symbolic bounds using a parametric
Fourier-Motzkin elimination algorithm. We present a prototype implementation
of the analysis and we discuss some preliminary experiments on a number of
communication protocols.

1 Introduction

The analysis of probabilistic programs represents a challenging problem. The difficulty
comes from the fact that execution traces are characterized by probability distributions
that are affected by the behavior of the program, resulting in very complex forms of
stochastic processes. In addition, in such particular context, programmers are interested
in quantitative properties not supported by conventional semantics analysis, such as the
inference of expected values of performance metrics or the probability of reaching bug
states. In this work, we focus on the analysis of communication protocols and we aim
at assessing their performance formally.

Stationary Distribution. Generally, the quantification of performance metrics for such
systems is based on computing the stationary distribution of the associated random
process. It gives the proportion of time spent in every reachable state of the system
by considering all possible executions. This information is fundamental to compute
the expected value of most common performance metrics. For instance, the throughput
represents the average number of transmitted packets per time unit. By identifying the
program locations where packets are transmitted and by computing the value of the

? This work is partially supported by the European Research Council under Consolidator Grant
Agreement 681393 – MOPSA.



1 int n = 0, a = 0;
2 while(1) {
3 data = sense();
4 //Uniform backoff
5 sleep(uniform(1, B));
6 //Transmission with ack
7 if (unicast(data)) a++;
8 n++;
9 //Save energy

10 sleep(S);
11 }
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Fig. 1: (a) Backoff-based transmission. (b) Associated discrete time Markov chain.

stationary distribution at these locations, we obtain therefore the proportion of packets
sent in one time unit. Similarly, many other metrics are based on this distribution, such
as the duty cycle (proportion of time where the transceiver is activated) or the goodput
(the proportion of successfully transmitted data).

To our knowledge, no existing approach can obtain such information (i) automati-
cally by analyzing the source code, (ii) soundly by considering all executions in possi-
bly infinite systems and (iii) symbolically by expressing the distribution in terms of the
protocol parameters. Indeed, while most proposed solutions focus on computing prob-
abilities of program assertions [26,4] or expectation invariants [5,1], only PRISM [16],
thanks to its extension PARAM [14], can compute stationary distributions of parametric
Markov chains, but is limited to finite state systems with parametric transition proba-
bilities only, while we also support systems where the number of states is a (possibly
unbounded) parameter.

Example 1. We illustrate our motivation with a simple wireless protocol shown in Fig.
1(a). This example illustrates a basic embedded application in which a set of sensing
devices transmit periodically their readings to a remote central station. To derive the
goodput Γ of a sensor, we model the protocol as a discrete time Markov chain as shown
in Fig. 1(b). The program begins by acquiring the sensor measurements by calling the
function sense. This operation corresponds to the state ss in which the chain remains
one time tick. To avoid collisions when sending the data, a random backoff is performed
using a uniform distribution on the range [1, B], whereB is a parameter of the protocol.
This is modeled as a fork from state ss to B backoff levels. Each transition is labeled
with probability 1

B and the chain remains i ticks at level i. An important random aspect
of the system is the lossy nature of the wireless links, which is modeled as a Bernoulli
distribution with parameter p. This means that at each call of the function unicast at
state tx, the packet is transmitted and acknowledged with probability p, or lost with
probability 1 − p. Finally, before transmitting the next reading, the program executes
the sleep statement to save energy for a duration determined by parameter S, which is
modeled with the transitions sl1

1→ . . .
1→ slS .

The goodput Γ of the protocol is the proportion of time spent in state ack, which
can be obtained by computing the stationary distribution π of the chain. To do so, we



first construct the stochastic matrix P where its entries correspond to the probabilities
of the chain’s transitions. After that, we compute the vector π as the eigenvector of
the stochastic matrix P associated to the eigenvalue 1. Since the structure and the size
of the matrix depend on the parameters B and S, existing solutions can not derive
automatically the stationary distribution symbolically in terms of B, S and p. ut

Contributions. We propose a solution for this problem based on two main contributions:

1. First, we introduce a novel notion of Abstract Markov Chains that approximates a
family of discrete time Markov chains. These abstract chains are inferred automat-
ically by analyzing the source code of the program. Thanks to a novel widening
algorithm, these chains are guaranteed to have a finite size while covering all pos-
sible probabilistic traces of the program.

2. Our second contribution is a result for extracting distribution invariants from an
abstract Markov chain in the form of a system of parametric linear inequalities
for bounding the concrete stationary distribution. Using a parametric-version of
the Fourier-Motzkin elimination algorithm, we can infer symbolic and guaranteed
bounds of the property of interest.

Example 2. By applying our analysis on the previous example, we can infer that:

B2(p− 1)−B(p− 3) + 2(p− 1)

3B2 + 2BS +B + 4
≤ Γ ≤

(
B2 −B + 2

)
p

3B2 + 2BS +B + 4
(1)

System designers can use this invariant to find appropriate parameter values that ensure
certain performance constraints. For instance, assume that we know that the deployment
zone is characterized by a link quality varying in [0.7, 0.9] and we want to figure out
which parameter configuration guarantees that Γ always fit within [1, 5] packets/s (with
the assumption that a time tick is 1ms). Using (1), we can show that the instance 〈B 7→
4, S 7→ 308〉 produces a chain that always verifies these constraints. ut

Limitations. Our approach is still in a preliminary development phase and presents
some limitations. The analysis supports only discrete probability distributions, such as
Bernoulli and discrete uniform distributions. Secondly, we limit the description herein
to a simple C-like language and we do not support yet the analysis of real-world imple-
mentations. Finally, we do not consider pure non-deterministic statements.

Outline. The remaining of the paper is organized as follows. We present in Section
2 the concrete semantics of the analysis. Section 3 introduces the domain of Abstract
Markov Chains and we detail in Section 4 the method to extract the stationary distri-
bution invariants from an abstract chain and how we can infer symbolic bounds of the
property of interest. The results of the preliminary experiments are presented in Section
5. We discuss the related work in Section 6 and we conclude the paper in Section 7.

2 Concrete Semantics

We consider communication protocols that can be represented as (possibly infinite) dis-
crete time Markov chains, since it is one of the most widespread stochastic models for



performance evaluation used by the networking community. For describing these pro-
tocols, we use a simplified probabilistic language having the following C-like syntax:

Stmt ::= x = e; Hx ∈ V, e ∈ ExpI
| if(e ./ 0){s1}{s2} Hs1, s2 ∈ Stmt, ./∈ {=, 6=,≤, <,≥, >}I
| while(e ./ 0){s}
| x = uniforml(e1, e2) He1, e2 ∈ Exp, l ∈ LI
| x = bernoullil()
| ticksl(e)

where V is the set of program variables, L is the set of program locations andExp is the
set of (non-probabilistic) numeric expressions the syntax of which is classic and omit-
ted here. In addition to the common statements of assignments, if conditionals and
while loops, we consider the following additional markovian statements. The func-
tion uniforml(e1, e2) draws a random integer value from a discrete uniform distribu-
tion over the interval [e1, e2], while the function bernoullil() returns a boolean value
according to a Bernoulli distribution with parameter pl. Finally, the function ticksl(e)
models the fact that the program will spend e ticks in the current control location, which
results in triggering a transition in the Markov chain of the program. Each of these func-
tions is annotated with the call site location l. Using these primitive functions, we can
define any markovian behavior. Since we are interested in communication protocols, we
defined a number of auxiliary functions based on these primitives, such as the functions
unicast() and sleep() presented previously.

2.1 Markovian Traces

We develop a particular stochastic semantics that is isomorphic to a discrete time Markov
chain. At the bottom level of this semantics, we have the notion of random events Ξ
representing the outcomes of the probability distributions generated during program
execution. We can distinguish between two types of random events. The events bl and
bl denote the two outcomes of a statement bernoullil(). Also, the outcomes of the
statement uniforml(e1, e2) are given by the set {ui,a,bl | i ∈ [a, b]}, where a and b are
the evaluation in the current execution environment of e1 and e2 respectively.

Naively, we can consider a Markov chain as a classic automaton over the alphabet
Ξ recognizing the probabilistic traces of the program as sequences of random events.
However, Markov chains are not just a set of probabilistic traces, but embed a notion
of time that is fundamental. Indeed, transitions in a Markov chain occur solely when at
least one time tick has elapsed, since a state of the chain can not have a null sojourn time.
As we consider that only the ticks(e) statement advances time, some of the program
transitions become non-observable at the time scale of the chain. This leads to a two-
level trace semantics making the distinction between observable and non-observable
transitions, which has been introduced by Radhia Cousot in her thesis [9, Section 2.5.4].
We give here a definition of these two types of traces adapted to our settings:

Definition 1 (Scenarios). A sequence of non-observable transitions is called a sce-
nario and is defined as ω ∈ Ω , Ξ∗ expressing sequences of random events that occur
between two observable states. In the sequel, we denote by ε the empty scenario word.



SJx = eKR = {(τ, ρ[x 7→ v], ω) | (τ, ρ, ω) ∈ R ∧ v ∈ EJeK{ρ}}
SJif(e ./ 0){s1}{s2}KR = (SJs1K ◦ SJ(e ./ 0)KR) ∪ (SJs2K ◦ SJ(e 6./ 0)KR)
SJwhile(e ./ 0){s}KR = SJ(e 6./ 0)K(lfpλX. R ∪ SJsK ◦ SJ(e ./ 0)KX)
SJ(e ./ 0)KR = {(τ, ρ, ω) ∈ R | ∃v ∈ EJeK{ρ} : v ./ 0}
SJticksl(e)KR = {(τ ω→ (l, ρ, ν), ρ, ε) | (τ, ρ, ω) ∈ R ∧ ν ∈ EJeK{ρ}}
SJx = bernoullil()KR = {(τ, ρ[x 7→ b], ω.ξ) | (τ, ρ, ω) ∈ R ∧ (b, ξ) ∈ {(1, bl), (0, bl)}}
SJx = uniforml(e1, e2)KR = {(τ, ρ[x 7→ i], ω.ui,a,b

l ) | (τ, ρ, ω) ∈ R ∧ a ∈ EJe1K{ρ}∧
b ∈ EJe2K{ρ} ∧ i ∈ [a, b]}

Fig. 2: Concrete transfer functions.

Definition 2 (Markovian traces). The observable markovian traces are the set T Ω
Σ ,

{σ0
ω1→ σ1

ω2→ . . . | σi ∈ Σ ∧ ωi ∈ Ω} of transitions among observable states labeled
with scenarios. An observable state is a tuple (l, ρ, ν) ∈ Σ , L×E×N where (i) l ∈ L
is a program location, (ii) ρ ∈ E , V → Z is a program environment and (iii) ν ∈ N is
a sojourn time representing the number of ticks spent in that state.

This notion of markovian traces is a set-based representation of Markov chains that
fits well within the framework of abstract interpretation. It allows a fluent extension
of the classical trace semantics for supporting the particular stochastic and temporal
features of discrete time Markov chains. In the following paragraph, we define this
semantics domain and we present the most important transfer functions.

2.2 Semantics Domain

The concrete semantics domain of our analysis is defined as D , ℘(T Ω
Σ × E × Ω). An

element (τ, ρ, ω) ∈ T Ω
Σ × E × Ω encodes the set of traces reaching a given program

location and is composed of three parts: (i) the observable trace τ ∈ T Ω
Σ containing

the past markovian transitions before the current time tick, (ii) the current memory
environment ρ ∈ E , and (iii) the partial scenario ω ∈ Ω of non-observable random
events that occurred between the last tick and the current execution moment.

To obtain the set of all traces of a program P , we proceed by induction on its ab-
stract syntax tree using a set of concrete transfer functions SJ.K ∈ D → D. We give in
Fig. 2 a summary of these functions. We assume given (in a standard way) the function
EJeK ∈ ℘(E)→ ℘(E) that provides the possible evaluations of an expression in a set of
environments. Non-probabilistic statements have a standard definition. The assignment
statement updates the current memory environment by mapping the left-hand variable
to the evaluation of the expression. For the if assignment, we filter the current envi-
ronments depending on the evaluation of the condition, and we analyze each branch
independently before merging the results. Also, a loop statement is formalized as a fix-
point on the sequences of body evaluation with a filter to extract the iterations violating
the loop condition.

The semantics of the statement x = bernoullil() is to fork the current partial
scenarios ω depending on the result of the function. We append the event bl in the true
case, or the event bl in the false case and we update the variable x with the returned
value in the current memory environment. For the statement x = uniforml(e1, e2), we



also fork the partial scenarios and update the variable x accordingly, but the difference
is that the number of branches depends on the evaluations of e1 and e2 in the current
memory environment. More precisely, the number of forks corresponds to the number
of integer points between the values of e1 and e2. Note that, for these two statements,
the markovian traces part is not modified since they are tick-less. This is not the case
for the ticksl(e) statement that appends the markovian traces with a new transition to
a state where the sojourn time is equal to the evaluation of the expression e. The label of
this new transition is simply the computed partial scenario, which is reset to the empty
word ε since we keep track of events traces only between two ticks statements.

2.3 Stationary Distribution

After collecting the set T ⊆ T Ω
Σ of all possible markovian traces, we want to compute

the stationary distribution of the associated Markov chain, which reflects the proportion
of time spent in every observable state. To do that, we have first to construct a particular
transition matrix P, that differs slightly from the classic stochastic matrix of discrete
time Markov chains since states in our model embed different values of sojourn time:

P(l,ρ,ν),(l′,ρ′,ν′) ,
ν′

ν

∑
(l,ρ,ν)

ω→(l′,ρ′,ν′)∈T

Pr(ω) (2)

where (l, ρ, ν) and (l′, ρ′, ν′) are two reachable states in the traces T . The function
Pr ∈ Ω→ [0, 1] gives the probability of the scenarios and is computed as follows:{

Pr(ε) , 1,Pr(bl) , pl,Pr(bl) , 1− pl,Pr(ui,a,bl ) , 1
b−a+1

Pr(ωξ) , Pr(ω)Pr(ξ)
(3)

Finally, as for the classic matrix, the stationary distribution of the chain represents
the eigenvector π of P associated to the eigenvalue 1, which is obtained by solving
the system π = πP with the additional normalization constraint

∑
(l,ρ,ν) π(l,ρ,ν) = 1.

Since the size of P depends on the size of the reachable states space, π can not be com-
puted automatically in general. In the following, we propose a computable abstraction
of Markov chains to over-approximate the traces T . Afterwards, we show how we can
infer guaranteed bounds of π using information provided by our abstract chain.

3 Abstract Semantics

In order to analyze a program statically, we need a computable abstraction of the con-
crete semantics domain D. The basic idea is to first partition the set of observable pro-
gram states L×E ×N with respect to the program locations, resulting into the interme-
diate abstraction L × ℘(E × N). For each location, the set of associated environments
is then abstracted with a stock numerical domain E], by considering the sojourn time
as a program variable ν. We obtain the abstract states domain Σ] , L × E]. As a con-
sequence of this partitioning, observable states at the same program location will be
merged. Therefore, we obtain a special structure in which observable abstract states are
connected through possibly multiple scenarios coming from the merged concrete states.



1 void* sense() {
2 warmup(); //~ticks(1);
3 int count = 0, success = 0;
4 do {
5 if (check()) //~bernoulli()
6 success = 1;
7 else
8 count++;
9 } while (count < 10 && !success);

10 if (success)
11 return doDetection(); //~ticks(4)
12 else
13 return doAbsence(); //~ticks(2)
14 }

(a)

l = 2

ν = 1

l = 11

ν = 4
count ∈ [0, 9]
success = 1

l = 13

ν = 2
count = 10
success = 0

b
∗
5 b5 b

+
5

(b)

Fig. 3: (a) A simple probabilistic model for the sense() function. (b) An abstraction
of observable traces represented as a hierarchical automaton.

Example 3. We illustrate this fact in Fig. 3(a) depicting a more complex probabilistic
modeling of the previous sense() function using a bounded geometric distribution
that works as follows. We start by warming up the sensing device during one tick. After
that, we check whether the sensor detects some external activity (high temperature,
sound noise, etc.) and we perform this check for at most 10 times. We assume that
these external activities follow a Bernoulli distribution. At the end, we perform some
processing during 4 ticks in case of detection and 2 ticks in case of non-detection.

We can see in Fig. 3(b) that between the observable program locations 2 and 11
many scenarios are possible, which are abstracted with the regular expression b

∗
5 b5 that

encodes the pattern of having a number of Bernoulli failure outcomes at line 5 before
a successful one. However, between lines 2 and 13, we can have only a sequence of
failures, which is expressed as b

+

5 . ut

The presence of these multi-words transitions leads to a hierarchical automata
structure organized in two levels. On the one hand, one automata structure is used
to encode the transitions between observable abstract states. On the other hand, and
for each observable transition, another automata structure is used to encode the regu-
lar expressions of scenarios connecting the endpoints of the transition. In other words,
we abstract markovian traces with an automaton, the transitions of which have also an
automata structure representing a set of scenarios. For modularity reasons, we present
however a single generic automata domain to represent regular languages over any ab-
stract alphabet. Afterwards, we instantiate two automata-based domains for abstracting
events words and markovian traces.

3.1 Abstract Automata

Le Gall et al. proposed a lattice automata domain [17] to represent words over an ab-
stract alphabet having a lattice structure. We extend this domain to support also ab-
straction at the state level by merging states into abstract states, which is important to
approximate markovian traces. To do so, we define a functor domain A (A],S]) pa-
rameterized by an abstract alphabet domain A] and an abstract state domain S]:



Definition 3 (Abstract automata). An abstract automaton A ∈ A (A],S]) is a tuple
A = (S, s]0, F,∆), where S ⊆ S] is the set of states, s]0 ∈ S is the initial state, F ⊆ S
is the set of final states and ∆ ⊆ S × A] × S is the transition relation.

We assume that the parameter domain A] is an abstraction of some concrete alpha-
bet symbols A, having a concretization function γA ∈ A] → ℘(A), a partial order vA,
a join operator tA, a meet operator uA, a least element ⊥A and a widening operator
OA. The second parameter domain S] is assumed to be an abstraction of some concrete
states S equipped with a concretization function γS ∈ S] → ℘(S), a partial ordervS,
a join operator tS, a least element ⊥S and a widening operator OS.

Let us define some important operators for the A functor domain. In the following,
we denote by A = (S, s]0, F,∆), A1 = (S1, s

]
01
, F1,∆1) and A2 = (S2, s

]
02
, F2,∆2)

three instances of A
(
A],S]

)
. We also define the auxiliary functions L ∈ A

(
A],S]

)
→

℘
(
A]

?
)

and T ∈ A (A],S]) → ℘
(
T A]

S]

)
giving respectively the set of accepted ab-

stract words and abstract traces.

Definition 4 (Concretization). The sets of concrete words and traces abstracted by an
abstract automaton A are given by:{

γLA (A) = {a1a2 . . . | ∃a]1a
]
2 . . . ∈ L(A),∀i : ai ∈ γA(a]i)}

γTA (A) = {s1
a1→ . . . | ∃s]1

a]1→ . . . ∈ T(A),∀i : si ∈ γS(s]i) ∧ ai ∈ γA(a]i)}
(4)

Order. To compare two abstract automata, we define the following simulation relation
that extends the classical simulation concept found in transition systems by considering
the abstraction in the alphabet and states:

Definition 5 (Simulation relation). A binary relation R ⊆ S] × S] is a simulation
between A1 and A2 iff ∀(s]1, s

]
2) ∈ R we have s]1 vS s]2 and:

∀s]1
a]1→ q]1 ∈ ∆1,∃s]2

a]2→ q]2 ∈ ∆2 : a]1 vA a]2 ∧ q
]
1Rq

]
2 (5)

We denote 4 the smallest simulation relation between A1 and A2 verifying s]01
4 s]02

.

Using this notion we define the partial order relation vA as:

A1 vA A2 ⇔ ∀(s]1, s
]
2) ∈4: s]1 ∈ F1 ⇒ s]2 ∈ F2 (6)

which means that A2 should simulate and accept every accepted trace in A1.

Join. To compute the union of two abstract automata A1 and A2, we need to extend the
simulation-based traversal in a way to include traces contained in one automaton only,
which is formalized with the following concept of product relation. The intuition behind
it is depicted in Fig. 4 in which we consider transitions decorated with an illustrative

regular language over an alphabet {b, b}. In Fig. 4(a), the input transitions s]1
b?b→ q]1 and

s]2
bb?→ q]2 are combined into a single product transition that accepts the merged alphabet

symbol b?b + bb?. While proceeding similarly for all cases preserves the soundness of



s]1 q]1

s]2 q]2

→ (s]1, s
]
2) (q]1, q

]
2)

b?b

bb?

b?b+bb?

(a)

s]1 q]1

s]2 q]2

→ (s]1, s
]
2)

(q]1,⊥S)

(⊥S, q
]
2)

b

b

b

b

(b)

Fig. 4: Cases of construction of a product transition.

the operator, we can gain in precision by separating singular transitions as shown in Fig.

4(b). In this case, no intersection exists between the transitions s]1
b→ q]1 and s]2

b→ q]2.
This means that the automata A1 and A2 can not perform a simultaneous transition at
s]1 and s]2, which is expressed as two singular transitions to (q]1,⊥S) and (⊥S, q

]
2).

Note that comparing alphabet symbols is not the only means to detect singular tran-
sitions. Indeed, in some situations, destination states q]1 and q]2 should be kept separated
in order for the analysis to preserve some of its precision. To illustrate this point, let
us consider the computation of the goodput of a protocol. In order to obtain a precise
quantification of this metric, it is necessary to avoid merging states encapsulating dif-
ferent situations of packet transmission status (reception, loss). To do so, we assume
that the abstract states domain A] is provided with some equivalence relation ≡S that
partitions the states into a finite set of equivalence classes depending on the property of
interest. Using this information, we define our product relation as follows:

Definition 6 (Product relation). A binary relationR ⊆ S×S is a product of A1 and
A2 iff ∀(s]1, s

]
2) ∈ R we have s]1 ≡S s]2 and:

q]1Rq
]
2 if ∃s]1

a]1→ q]1 ∈ ∆1,∃s]2
a]2→ q]2 ∈ ∆2 : a]1 uA a

]
2 6= ⊥A ∧ q]1 ≡S q2

q]1R⊥S if ∃s]1
a]1→ q]1 ∈ ∆1,∀s]2

a]2→ q]2 ∈ ∆2 : q]1 6≡S q]2 ∨ a
]
1 uA a

]
2 = ⊥A

⊥SRq]2 if ∃s]2
a]2→ q]2 ∈ ∆2,∀s]1

a]2→ q]1 ∈ ∆1 : q]1 6≡S q]2 ∨ a
]
1 uA a

]
2 = ⊥A

(7)

with the convention that s] ≡S ⊥S,∀s] ∈ S]. The smallest product relation contain-
ing (s]01

, s]02
) is denoted ⪤.

Consequently, to derive the join automaton A, we simply map product state s]1 ⪤ s]2 to
s]1 tS s]2. The final states are the subset of these images where at least s]1 or s]2 is final.

Append. We introduce also the append operator �φ ∈ A (A],S])×A] → A (A],S])
that extends an abstract automaton with a set of new leave transitions labeled with a
given abstract alphabet symbol. From every final state s]i ∈ F , a new edge is created to a
new final state, computed as the image of s]i through the transfer function φ ∈ S] → S]

that annotates the operator �φ. This operator can be formulated as follows:

A�φ a] , letF ′ = {φ(s]) | s] ∈ F} in (S∪F ′, s]0, F ′,∆∪{s]
a]→ φ(s]) | s] ∈ F})

(8)



Input : Two automata A1 and A2

1 A = (S, s]0, F,∆)← A1;
H Find the increment transitions I

2 δ ← increments(A,A2);
3 repeat

4 (s]1, s
]
2

a
]
2→ q]2)← head(δ);

5 q]≡ ← q]2;
H Search in A for better candidates I

6 Q≡ ← {s] ∈ S | s] ≡S q]2};
7 if Q≡ 6= ∅ then
8 q≡ ← head ◦ sort(IA,A2

q
]
2

, Q≡);

9 end
10 S′ ← S ∪ {q]≡};
11 F ′ ← F ∪ (q]≡ ∈ F2)? {q]≡} : ∅;

12 ∆′ ← ∆∪ {s]1
a
]
1OAa

]
2−→ q]≡ | s]1

a
]
1→ q]≡ ∈ ∆∨ a]1 = a]2};

13 A← (S′, s]0, F
′,∆′);

14 δ ← increments(A,A2);
15 until δ 6= ∅;

(a)

A = A1

1 0

b5 b5

A2

b5 b5

b5 b5

A

1 1

b5 b5

b5

A2

b5 b5

b5 b5

A

b5 b5

b5 b5

A2

b5 b5

b5 b5

(b)

Fig. 5: (a) Structural widening algorithm. (b) Result of (b5 +b5)OA (b5 +b5(b5 +b5)?).

Widening. Finally, we present a widening operator to avoid growing an automaton in-
definitely during loop iterations. The original lattice automata domain [17] proposed
a widening operator, inspired from [29,11], that employs a bisimulation-based mini-
mization to merge similar states by comparing their transitions at some given depth.
However, it assumes that the abstract alphabet domain is provided with an equivalence
relation that partitions the symbols into a finite set of equivalence classes. We believe
that it is more meaningful to perform this partitioning on the abstract states as explained
earlier for the computation of the product relation. Therefore, we employ a different ap-
proach inspired from graph widening [28,18,30]. Basically, we compare the result of
successive loop iterations and we try to detect the increment transitions to extrapolate
them by creating cycles. However, existing graph widening is limited to finite alphabets
and may not ensure the convergence on ascending chains, so we propose an extension
to alleviate these shortcomings.

The proposed algorithm is executed in two phases. Firstly, we perform a structural
widening to extrapolate the language recognized by the input automata and we ignore
for the moment the abstract states. We show in Fig. 5(a) the main steps of this widening.
Assume that A1 and A2 are the results of two successive iterations. Without loss of
generality, we assume that A1 vA A2. First, we compare A1 and A2 in order to extract
the increment transitions using the following function:

increments(A1, A2) = {(s]1, s
]
2

a]2→ q]2) | s]1 ⪤ s]2 ∧ s
]
1, s

]
2 6= ⊥S∧

∃s]2
a]2→ q]2 ∈ ∆2,∀s]1

a]1→ q]1 : q]1 6≡S q]2 ∨ a
]
2 6vA a]1}



Basically, an increment (s]1, s
]
2

a]→ q]2) means that A1 at state s]1 can not recognize
the symbol a] while A2 recognizes it through a move from s]2 to q]2. Now, we need to
extrapolate A1 in order to recover this difference, which is done by adding the missing
word suffix a]2 while trying not to grow A1 in size. The basic idea is to sort states in A1

depending on how they compare to the missing state q]2. The comparison is performed
with the following similarity index expressing the proportion of common partial traces
that a state shares with q]2:

IA1,A2

q]2
(q]1) =

∣∣∣{a]1 . . . a]n ∈↔LA2,k (q]2) | ∃a]′1 . . . a]
′
n ∈
↔
LA1,k (q]1),∀i : a]i vA a]

′
i}
∣∣∣

where
↔
LA,k (s]) is the set of words, of length less than k, starting from s] (reachable

words) or ending at s] (co-reachable words), where k is a parameter of the analysis.
After selecting the state q]≡ with the highest similarity index, we add the missing transi-
tions after widening the alphabet symbol if a transition already exists in A. By iterating
over all increment transitions, we obtain an automata structure that does not grow indef-
initely since we add new states only if no existing one is equivalent. By assuming that
the number of equivalence classes of ≡S is finite, the widening ensures termination.

After the structural widening, we inspect the states of the resulting automaton to
extrapolate them if necessary. We simply compute the simulation relation 4 between
A2 and the widened automaton A, and we replace every state s] ∈ S with s]OS(s]1 tS
s]2 tS . . . ) where s]i 4 s],∀i.

Example 4. We show in Fig. 5(b) the result of applying this structural widening on the
do-while loop of the previous sense() function of Fig. 3(a). The first two iterations
of the loop produce the regular expressions b5+b5 and b5+b5(b5+b5) respectively. The
widening algorithm starts by detecting the leaf increment transition b5 and computes the
different distances to select an adequate equivalent state. By adding the new transition,
we obtain the regular expression b5 +b5b5. The next increment transition is labeled with
the event b5 and its addition to the widened automaton produces a loop which results in
the final regular expression b

∗
5b5. ut

3.2 Abstract Scenarios

Using the functor domain A , we instantiate an abstract scenario domain for approxi-
mating words of random events. Two considerations are important to take into account.
First, the length of the these words may depend on some variables of the program. It is
clear that ignoring these relations may lead to imprecise computations of the stationary
distribution. Consequently, we enrich the domain with an abstract Parikh vector [25] to
count the number of occurrences of random event within accepted words. By using a
relational numerical domain, such as octagons [21] or polyhedra [7], we preserve some
relationships between the number of events and program variables.

The second consideration is related to the uniform distribution. As shown previously
in the concrete transfer function in Fig. 2, the number of outcomes depends on the
bounds provided as argument to the function uniform. Since these arguments are



evaluated in the running environment, we can have an infinite number of outcomes at a
given control location when considering all possible executions.

We perform a simplifying abstraction of the random events Ξ in order to obtain a fi-
nite size alphabet and avoid the explosion of the uniform distribution outcomes. Assume
that we are analyzing the statement x = uniforml(e1, e2) in abstract environment ρ].
Several abstractions are possible. In this work, we choose to partition the outcomes into
a fixed number U of abstract outcomes, where U is a parameter of the analysis. The first
U−1 partitions represent the individual outcomes {min(e1+i−1, e2) | i ∈ [1, U−1]},
to which we associate the abstract events {uil | i ∈ [1, U − 1]}. For the remaining out-
comes, we merge them into a single abstract event uI

l .
Formally, we obtain a simple finite set of abstract events Ξ] defined as Ξ] ,

{bl,bl | bl ∈ Ξ} ∪ {uil,uI
l | u

−
l ∈ Ξ ∧ 1 ≤ i ≤ U − 1}. For the Parikh vector,

we associate to every abstract event ξ] ∈ Ξ] a counter variable κξ] ∈ N that will be
incremented whenever the event ξ] occurs.

Therefore, we define the domain of abstract scenarios as Ω] , A (℘(Ξ]),Σ]) where
Σ] is our previous mapping L → E] from program locations to the stock numeric
abstract domain. Let us now describe how probabilistic statements affect an abstract
scenario. For the bernoullil() statement, we create two new transitions labeled with
the abstract events bl and bl respectively and we update the Parikh vector accordingly:

SJx = bernoullil()K
]
Ωω

] ,
letφ0(−, ρ]) = (l,SJκbl

++K]E ◦ SJx = 0K]Eρ
])

andφ1(−, ρ]) = (l,SJκbl
++K]E ◦ SJx = 1K]Eρ

])

in
(
ω] �φ0 {bl}

)
tA

(
ω] �φ1 {bl}

)
Similarly, we give the following abstract transfer function for the uniforml(e1, e2)

statement that generates U new transitions with appropriate state updates:

SJx = uniforml(e1, e2)K]Ωω
] ,

letφ(i) = λ (−, ρ]). (l,SJκui
l
++K]E ◦ SJ(x ≤ e2)K]E ◦ SJx = e1 + i− 1K]Eρ

])

andφI = λ (−, ρ]). (l,SJκ
uI

l

++K]E ◦ SJ(e1 + U ≤ x ≤ e2)K]E ◦ SJx = >K]Eρ
])

in (
⊔

1≤i≤U−1

ω] �φ(i) {uil}) tA (ω] �
φI {uI

l })

3.3 Abstract Markov Chains

The product D] , T ] × Ω] defines the domain of Abstract Markov Chains. It is com-
posed of two parts. The first one is an abstraction of the markovian traces and is defined
as the instance T ] , A (Ω],Σ]). This automaton is used to approximate the set of
past observable traces reaching a given program location. The second part is an abstrac-
tion of the current partial scenarios starting from the last ticks statement. Since the
states of an abstract scenario automaton already embed an abstraction of the program
environments, we also employ this part to encode the current environments.

The concretization function gives the set of concrete markovian traces and partial
scenarios encoded by an abstract Markov chain, and employs the previous trace and
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Fig. 6: Abstract Markov chain of the motivating example.

word concretizations (see Definition 4) as follows:

γ(τ ], ω]) = {(τ, ρ, ω) | τ ∈ γTA (τ ]) ∧ ∃(l1, ρ]1)
ξ]1→ . . .

ξ]n−1→ (ln, ρ
]
n) ∈ T(ω]) :

ρ ∈ γE(ρ]n) ∧ ω ∈ γLA (ξ]1 . . . ξ
]
n−1)}

Let us define now the abstract transfer function for the ticksl(e) statement since
it is the only one that modifies the structure of the abstract Markov chain. It indicates
that a new observable state has been encountered and that the pending scenarios are no
longer partial and should be used to label the new transition, as shown by the following:

SJx = ticksl(e)K](τ ], ω]) , letφ(−, ρ]) = (l,SJν = eK]Eρ
]) in (τ ] �φ ω], ε])

where ε] is the empty scenario word where all Parikh counters are reset to 0. The re-
maining statements are passed to the underlying Ω] and E] domains and affect only the
partial scenarios part. We can show that the following soundness condition is preserved:

(SJsK ◦ γ) (τ ], ω]) ⊆
(
γ ◦ SJsK]

)
(τ ], ω]),∀s ∈ Stmt,∀(τ ], ω]) ∈ D] (9)

Example 5. The abstract markovian traces of our motivating example are depicted in
Fig. 6 as an abstract automaton corresponding to the result of the analysis with U = 2.
For the sake of clarity, we give to each abstract state a unique identifier and we show
the inferred invariants about the sojourn time variable ν. The program locations and the
remaining environment invariants are not represented. ut

4 Stationary Distribution

In this section, we present a method for extracting safe bounds of the stationary distri-
bution using information embedded in an abstract Markov chain. We do so by deriving a
distribution invariant that establishes a set of parametric linear inequalities over the ab-
stract states. Using the Fourier-Motzkin elimination algorithm, we can find guaranteed
bounds of time proportion spent in a given abstract state.

We begin with some preliminary definitions. Let T ] = (S, s]0, F,∆) be the marko-
vian traces part of the program’s abstract Markov chain over-approximating a set T ⊆
T Ω

Σ of concrete markovian traces. For each statement uniforml(e1, e2), we denote by
←
uel= e1 and

→
uel= e2 the bounds expressions of the distribution. Also, we define the



functions m̂axJeK, m̂inJeK ∈ Σ] → Exp ∪ {∞} giving respectively the evaluation
of the maximal and minimal values of an expression e in a given abstract state, which
is generally provided for free by the underlying numerical domain. In the case of re-
lational domains, the returned bounds can be symbolic. For the sake of simplicity, we
write m̂in?JeK and m̂ax?JeK to denote respectively the minimal and maximal evalua-
tions over the set of all reachable abstract states. The following definition gives a means
to compute the probability of given abstract scenario.

Definition 7. Let ω] ∈ Ω] be an abstract scenario. Its probability is given by:
P̂r(ε]) = 1, P̂r(bl) = pl, P̂r(bl) = 1− pl,
P̂r(uil) = 1

m̂in?J
→
uelK−m̂ax?J

←
uelK+1

, P̂r(uI
l ) = m̂ax?J

→
uelK−m̂in?J

←
uelK+2−U

m̂in?J
→
uelK−m̂ax?J

←
uelK+1

P̂r(ω]ξ]) = P̂r(ω])P̂r(ξ]), P̂r(ω]1 + ω]2) = P̂r(ω]1) + P̂r(ω]2)

(10)

By combining the sojourn and probability invariants embedded in the abstract chain,
we construct an abstract transition matrix that characterizes completely the stochastic
properties of the program inside one finite data structure:

Definition 8 (Abstract transition matrix). The abstract transition matrix P̂ is a square
matrix of size |S| where the entry for every abstract states σ]i , σ

]
j ∈ S is defined as:

P̂σ]
i ,σ

]
j
,

m̂axJνK(σ]j)

m̂inJνK(σ]i )

∑
σ]
i

ω]
→σ]

j∈∆

P̂r(ω]) (11)

Example 6. Consider our previous motivating example and its abstract chain repre-
sented in Fig. 6. Let S = 〈ss, bk1, bkI, tx, ack, ack, sl〉 be the vector of abstract states.
To obtain the matrix P̂, we iterate over all the transitions of the abstract chain. Con-

sider for example the case of the transition ss
uI

5→ bkI. First, we apply (10) to compute
the transitions probabilities P̂r(uI

5 ) = B−1
B . Afterwards, we extract the sojourn time

bounds m̂axJνK(bkI) = B and m̂inJνK(ss) = 1 from the embedded numeric environ-
ments. Finally, we apply (11) to obtain the matrix cell P̂ss,bkI

= B(B−1)
B = B − 1. By

iterating the same process for all transitions we obtain:

P̂ =



0 0 0 0 0 0 1
S

1
B 0 0 0 0 0 0

B − 1 0 0 0 0 0 0
0 1 1

2 0 0 0 0
0 0 0 1− p 0 0 0
0 0 0 p 0 0 0
0 0 0 0 S S 0


ut

The vector π̂ containing the proportion of time spent in every abstract state is called
the abstract stationary distribution. It is defined as:

π̂σ] ,
∑

σ∈γΣ(σ])

πσ,∀σ] ∈ S (12)



where π is the concrete stationary distribution described in Section 2.3. It is important
to note that since spurious concrete states σ ∈ γΣ(σ]) have a null concrete stationary
probability πσ , the abstract stationary probability π̂σ] represents the exact sum of the
stationary probabilities of the real concrete states abstracted by σ]. Therefore, any lower
and/or upper bounds that can be found about π̂σ] are also valid for the concrete states
abstracted by σ]. To compute such bounds, we use P̂ with the following result:

Theorem 1 (Distribution invariant). π̂ ≤ π̂P̂.

This theorem allows us to establish a system of parametric linear inequalities where
the unknowns are the entries of the vector π̂. By adding the normalization condition∑
σ]∈S π̂σ] = 1, we can use this system to find safe bounds of the property of interest.

Without loss of generality, assume that the time proportion of this property is associated
to the stationary probability of some state s]. To compute a safe range of π̂s] , we just
have to perform a projection of the linear system π̂ ≤ π̂P̂ that keeps only π̂s] and
removes the other unknowns while preserving all constraints.

To do so, we have implemented a parametric Fourier-Motzkin projection algorithm
[13,27] that returns parametric solutions to such problems. It eliminates the unneces-
sary unknowns sequentially and builds a decision tree that gives the system solutions
depending on adequate parameters conditions. The general idea of the algorithm is the
following. Assume that we are at the step of eliminating the unknown π̂s]i . We iterate
over all leaves of the current decision tree {〈C, I〉}, where I is a set of linear inequali-
ties on the remaining unknowns and C is the condition on the parameters for obtaining
the solution I . We examine the coefficients {ai,j} of π̂s]i in I and we partition the
inequalities depending on the sign of these coefficients. When the sign can not be de-
termined, we create new branches within the decision tree to eliminate this ambiguity
and we append the appropriate sign condition (ai,j > 0, ai,j < 0 and ai,j = 0) to the
branch condition C. At the end, we obtain a set of new leaves where all coefficients of
π̂s]i

have known signs. At this point, we can transform I into a new system of inequal-
ities by combining every couple of inequalities having opposite coefficient signs in a
way to eliminate π̂s]i , and we keep the inequalities where the coefficient is null. After
eliminating all untargeted unknowns, we obtain a set of bounding inequalities of π̂s]
annotated by some parameters conditions.

Two important points should be noted. Firstly, this algorithm may not scale well
for complex problems because the size of the decision tree can grow considerably in
the presence of too many parametric coefficients. 1. To improve the efficiency of the
algorithm, we can reduce the precision of these linear parametric inequalities by us-
ing more abstract representations such as the domain of interval linear inequalities [6].
The second point is related to the soundness of the result. In our current implementation,
we rely on an underlying symbolic environment to determine the sign of coefficients,
which prevents us from ensuring the soundness of floating points operations during
these computations. Nevertheless, we believe that we can inspire from guaranteed lin-
ear programming [24] to strengthen the resolution process and overcome this problem.

1 That being said, this algorithm has shown to be more effective than built-in functions of many
off-the-shelf symbolic environments, such as Sage and Mathematica, that did not return solu-
tions for most benchmarks.



Protocol PRISM
MARCHAL

Box Octagon Polyhedra

Single backoff
B = 2, S = 100 2.96 1.92 2.57 1.94
B = 4, S = 100 2.94 2.19 4.54 2.65

Unbounded backoffs
B = 2, S = 100 5.06 3.38 10.69 4.75
B = 4, S = 100 5.44 7.98 42.98 15.89

Bounded backoffs
B = 2, S = 100, N = 2 4.12 8.96 28.59 14.52
B = 4, S = 100, N = 2 6.37 22.64 100.6 45.70

(a)

Protocol PRISM

MARCHAL

Box Octagon Polyhedra
U = 2 U = 4 U = 2 U = 4 U = 2 U = 4

Single backoff
B = 20, S = 1000 13.75 1.87 2.16 2.64 4.73 2.03 2.78
B ∈ [2, 20], S ∈ [100, 1000] 674.80 1.77 2.31 2.40 4.39 2.30 3.07
B ≥ 2, S ≥ 100 ∞ 1.7 1.84 2.57 4.10 2.11 2.69

Unbounded backoffs
B = 20, S = 1000 45.11 5.12 10.28 12.81 44.10 6.87 17.72
B ∈ [2, 20], S ∈ [100, 1000] ∞ 6.91 33.99 10.43 105.75 33.88 86.30
B ≥ 2, S ≥ 100 ∞ 2.87 4.95 39.09 102.44 35.0 83.20

Bounded backoffs
B = 20, S = 1000, N = 7 50.24 7.01 17.58 43.33 173.10 17.64 61.84
B ∈ [2, 20], S ∈ [100, 1000], N ∈ [1, 7] ∞ 16.82 57.77 120.34 338.45 110.31 252.79
B ≥ 2, S ≥ 100, N ≥ 1 ∞ 6.49 16.51 75.79 251.78 55.32 150.66

(b)

Table 1: Analysis time in seconds with (a) complete and (b) approximate partitioning.

5 Experiments

The proposed approach has been implemented in a prototype analyzer called MAR-
CHAL (MARkov CHains AnaLyzer) using the OCaml language, the CIL frontend [23]
and the Apron library [15]. Also, we implemented the parametric Fourier-Motzkin elim-
ination algorithm in Mathematica. For our benchmarks, we compare MARCHAL to
PRISM on three commonly used backoff mechanisms and we compute for each case
the expected value of the throughput. The first backoff mechanism is the motivating ex-
ample shown in Fig. 1 in which a single backoff is performed before transmitting every
packet. In the second backoff mechanism, the sender tries to enhance the transmission
reliability by performing an unbounded number of backoffs until receiving an acknowl-
edgment from the destination. Finally, the third case study employs a bounded number
of backoffs in which the number of successive attempts is limited by a parameter N .
For all these cases, the backoff window is chosen uniformly from [1, B] and the sleep
period after the transmission transaction is determined by a parameter S.

The benchmarks consist in two categories of experiments in order to highlight the
differences between MARCHAL and PRISM. For the first category, we fix the parameters
to some small values and we configure MARCHAL to perform a complete partitioning



□ Box ○ Oct × Poly

□ □ □ □ □ □ □

□

□ □ □ □ □ □ □ □ □ □ □ □

○○○○○○○

○

○○○○○○○○○○○○

× × × × × × ×

×

× × × × × × × × × × × ×

0.001 0.010 0.100 1
Error0.0

0.2

0.4

0.6

0.8

1.0

Probability

(a) Single backoff

□ Box ○ Oct × Poly

□ □ □ □ □ □ □ □ □
□
□
□ □ □ □ □ □ □ □ □

○○○○○○○○○
○
○
○○○○○○○○○

× × × × × × × × ×
×
×
× × × × × × × × ×

0.001 0.010 0.100 1
Error0.0

0.2

0.4

0.6

0.8

1.0

Probability

(b) Unbounded backoffs

□ Box ○ Oct × Poly

□ □ □ □ □ □ □ □ □
□
□ □ □ □ □ □ □ □ □ □

○○○○○○○○○
○
○○○○○○○○○○

× × × × × × × × ×
×
× × × × × × × × × ×

0.001 0.010 0.100 1
Error0.0

0.2

0.4

0.6

0.8

1.0

Probability

(c) Bounded backoffs

Fig. 7: Error distribution for the case B = 20, S = 103 with U = 4.
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Fig. 8: Error distribution for the case B ∈ [2, 20], S ∈ [102, 103] with U = 4.

of the uniform distribution. In this case, both tools are able to obtain the exact station-
ary distributions within a small delay, as summarized in Table 1(a), with an advantage
of PRISM in many cases. In the second category, we extend the parameters space by
considering three sub-cases: (i) the parameters have fixed large value, (ii) the param-
eters are not fixed but are bounded in some intervals, and finally (iii) the parameters
are unbounded. To cover these cases in finite time, MARCHAL applies an approximate
partitioning (into U = 2 and U = 4 partitions) and therefore can infer approximate
and safe bounds of the throughput. However, PRISM can obtain only precise results
and therefore can not provide an answer in most cases within a timeout of 30mn. The
analysis times of this category of experiments are summarized in Table 1(b).

Let us now discuss the precision of the proposed approach. To evaluate it, we first
compute the distance between the maximal and minimal bounds of the throughput over
a large sample of parameters values, which results in a discrete set of observations of
the maximal error of the analysis. From the resulting set of values, we compute the em-
pirical distribution that gives the fraction of observations having a given maximal error.
After that, we compute the cumulative distribution function for a better visualization of
the variation of the error for the parameters sample.

We depict in Figs. 7, 8 and 9 the obtained results when setting U = 4. We can
notice that the analysis with the octagon and polyhedra domains returned always the
same precision level. Also, all domains give the same precision for the case of fixed
parameters values. This is justified by the fact that the choice of the numerical domain
affects the form of the sojourn time invariants used to compute the abstract transition
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(c) Bounded backoffs

Fig. 9: Error distribution for the case B ≥ 2, S ≥ 102 with U = 4.

matrix. In the studied programs, all invariants have an octagonal form, so there is no
need to infer more precise invariants. For the particular case of fixed parameters values,
these invariants are just numeric intervals, which justifies that all domains offered the
same precision level.

Additionally, we notice that the precision of the analysis for the unbounded and
bounded backoff mechanisms is lower than the single backoff case, which is princi-
pally due to the partitioning of the uniform distribution that was too coarse in these
cases. In practice, we were able to improve the precision of the inferred bounds by in-
creasing the partition parameter U , but at the cost of analysis time. It is clear that more
adequate partitioning techniques are necessary to obtain more precise results. Another
source of precision loss is related to the current construction of the abstract transition
matrix. We can see in (11) that the entries of the matrix reflect numeric constraints of
the sojourn time over individual states only. However, some programs may constrain
also the sojourn time over a sequence of abstract states, which is the case for example
of the bounded backoff protocol that imposes a limit on the number of retransmissions.
Since a retransmission involves a succession of many states, some invarants are ignored
in the construction of P̂ which affects the precision of the analysis.

6 Related Work

The analysis of probabilistic programs has gained great interest over the last years.
Many techniques have been proposed for extracting automatically quantiative properties
from programs with varying precision/scalability tradeoffs.

PRISM [16] is a famous model checker that has been successfully applied for an-
alyzing many probabilistic systems. It supports several interesting stochastic models,
but is limited to finite state systems. Probabilistic symbolic execution [12,26] is another
approach that annotates classical symbolic execution states with information about the
past random events to be used in recovering the path probability. However, in most
solutions, volume counting techniques are required, which limit their scalability.

Monniaux [22] and Di Pierro et al. [10] were the first propositions to extend abstract
interpretation to probabilistic programs. Later, several works were proposed in the same
direction [19,2,3], but they lack the ability to analyze some classical program constructs
such as loops. In [8], Cousot et al. proposed a more general framework for probabilistic



abstract interpretation that introduces the concept of law abstraction as a means to ap-
proximate probability distributions on program states. This formalism provides general
theoretic guidelines to build sound probabilistic abstract interpretations, but does not
provide practical solutions for widening loop iterations.

Another family of approaches is based on a weakest pre-expectation calculus in-
troduced by McIver et al. [20] in order to infer quantitative invariants expressed as
expectations of some program expressions. Chakarov et al. [4] extended this work in
order to infer bounds of the probability of program assertions using the theory of Mar-
tingales. In [5], Chakarov et al. proposed another pre-expectation based analysis using
abstract interpretation for discovering expectation invariants through the abstract do-
main of polyhedra with an appropriate widening operator. More recently, Barthe et al.
[1] described a symbolic execution method that uses Doob’s decomposition in order
to infer Martingale expressions that help in deriving post-loop expectation of program
variables.

7 Conclusion

We have presented a novel approach for obtaining guaranteed bounds of performance
metrics of communication protocols. The method is based on the framework of abstract
interpretation and proposes an Abstract Markov Chains domain for approximating the
probabilistic semantics of programs. We have also explained how to exploit the in-
formation encapsulated within this domain in order to infer a sound approximation of
the stationary distribution of the protocol, which is the key ingredient for computing a
large range of performance metrics such as the throughput and the energy consumption.
A prototype of the analysis have been presented along with some preliminary results.
Many problems are still open to enhance the proposed approach. To enhance precision,
we believe that is important to consider (i) developing more adequate partitioning of
the uniform distribution and (ii) inferring multi-state sojourn time invariants. Finally,
we have presented the analysis of a single process and we are interested in extending it
to networked concurrent programs.
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