L. Appelbaum, G. X. Wang, G. S. Maro, R. Mori, A. Tovin et al., Sleep-wake regulation and hypocretin-melatonin interaction in zebrafish, Proc. Natl. Acad, 2009.
DOI : 10.1016/0196-9781(80)90003-0

URL : http://www.pnas.org/content/106/51/21942.full.pdf

I. H. Bianco, A. R. Kampff, and F. Engert, Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish, Frontiers in Systems Neuroscience, vol.5, 2011.
DOI : 10.3389/fnsys.2011.00101

URL : http://doi.org/10.3389/fnsys.2011.00101

R. E. Blaser, L. Chadwick, and G. C. Mcginnis, Behavioral measures of anxiety in zebrafish (Danio rerio), Behavioural Brain Research, vol.208, issue.1, 2010.
DOI : 10.1016/j.bbr.2009.11.009

M. A. Borla, B. Palecek, S. Budick, O. Malley, and D. M. , Prey Capture by Larval Zebrafish: Evidence for Fine Axial Motor Control, Brain, Behavior and Evolution, vol.60, issue.4, pp.207-229, 1159.
DOI : 10.1159/000066699

K. Branson, A. A. Robie, J. Bender, P. Perona, and M. H. Dickinson, High-throughput ethomics in large groups of Drosophila, Nature Methods, vol.1, issue.6, pp.451-457, 2009.
DOI : 10.1073/pnas.76.7.3430

S. A. Budick, O. Malley, and D. M. , Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture, J. Exp. Biol, vol.203, pp.2565-2579, 2000.

H. A. Burgess and M. Granato, Modulation of locomotor activity in larval zebrafish during light adaptation, Journal of Experimental Biology, vol.210, issue.14, pp.2526-2539, 2007.
DOI : 10.1242/jeb.003939

C. Buske and R. Gerlai, Shoaling develops with age in Zebrafish (Danio rerio), Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol.35, issue.6, 2011.
DOI : 10.1016/j.pnpbp.2010.09.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021101

J. Cachat, A. Stewart, E. Utterback, P. Hart, S. Gaikwad et al., Three-Dimensional Neurophenotyping of Adult Zebrafish Behavior, PLoS ONE, vol.4, issue.3, 2011.
DOI : 10.1371/journal.pone.0017597.s006

URL : http://doi.org/10.1371/journal.pone.0017597

M. Chalfie, J. E. Sulston, J. G. White, E. Southgate, J. N. Thomson et al., The neural circuit for touch sensitivity in Caenorhabditis elegans, J. Neurosci, vol.5, pp.956-964, 1985.

N. Dale, Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord., The Journal of Physiology, vol.363, issue.1, pp.61-70, 1985.
DOI : 10.1113/jphysiol.1985.sp015695

H. Dankert, L. Wang, E. D. Hoopfer, D. J. Anderson, and P. Perona, Automated monitoring and analysis of social behavior in Drosophila, Nature Methods, vol.19, issue.4, pp.297-303, 2009.
DOI : 10.1109/TSMC.1979.4310076

P. Drapeau, L. Saint-amant, R. R. Buss, M. Chong, J. R. Mcdearmid et al., Development of the locomotor network in zebrafish, Progress in Neurobiology, vol.68, issue.2, pp.85-111, 2002.
DOI : 10.1016/S0301-0082(02)00075-8

W. Driever, L. Solnica-krezel, A. F. Schier, S. C. Neuhauss, J. Malicki et al., A genetic screen for mutations affecting embryogenesis in zebrafish, Development, vol.123, pp.37-46, 1996.

E. Fontaine, D. Lentink, S. Kranenbarg, U. K. Müller, J. L. Van-leeuwen et al., Automated visual tracking for studying the ontogeny of zebrafish swimming, Journal of Experimental Biology, vol.211, issue.8, 2008.
DOI : 10.1242/jeb.010272

E. Gahtan, P. Tanger, and H. Baier, Visual Prey Capture in Larval Zebrafish Is Controlled by Identified Reticulospinal Neurons Downstream of the Tectum, Journal of Neuroscience, vol.25, issue.40, 2005.
DOI : 10.1523/JNEUROSCI.2678-05.2005

J. Gautrais, F. Ginelli, R. Fournier, S. Blanco, M. Soria et al., Deciphering Interactions in Moving Animal Groups, PLoS Computational Biology, vol.8, issue.9, 2012.
DOI : 10.1371/journal.pcbi.1002678.s016

URL : http://doi.org/10.1371/journal.pcbi.1002678

M. Granato, F. J. Van-eeden, U. Schach, T. Trowe, M. Brand et al., Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva, Development, vol.123, pp.399-413, 1996.

S. Grillner, S. Grillner, T. Deliagina, O. Ekeberg, A. Manira et al., The motor infrastructure: from ion channels to neuronal networks Neural networks that co-ordinate locomotion and body orientation in lamprey Large scale genetics in a small vertebrate, the zebrafish, Nat. Rev. Neurosci. Trends Neurosci Int. J. Dev. Biol, vol.49580008, issue.40, pp.573-586, 1137.

H. Hirata, L. Saint-amant, G. B. Downes, W. W. Cui, W. Zhou et al., Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor ??-subunit, Proceedings of the National Academy of Sciences, vol.15, issue.6, pp.8345-8350, 2005.
DOI : 10.1038/ng0694-131

M. Kabra, A. A. Robie, M. Rivera-alba, S. Branson, and K. Branson, JAABA: interactive machine learning for automatic annotation of animal behavior, Nature Methods, vol.10, issue.1, pp.64-67, 2013.
DOI : 10.1073/pnas.0803697105

Y. Katz, K. Tunstrøm, C. C. Ioannou, C. Huepe, C. et al., Inferring the structure and dynamics of interactions in schooling fish, Proc. Natl. Acad, 2011.
DOI : 10.1038/445715a

A. M. Lambert, J. L. Bonkowsky, and M. A. Masino, The conserved dopaminergic dien- cephalospinal tract mediates vertebrate locomotor development in zebrafish larvae, 2012.

A. Lee, A. S. Mathuru, C. Teh, C. Kibat, V. Korzh et al., The Habenula Prevents Helpless Behavior in Larval Zebrafish, Current Biology, vol.20, issue.24, pp.2211-2216, 2010.
DOI : 10.1016/j.cub.2010.11.025

W. C. Li, S. Higashijima, D. M. Parry, A. Roberts, and S. R. Soffe, Primitive Roles for Inhibitory Interneurons in Developing Frog Spinal Cord, Journal of Neuroscience, vol.24, issue.25, 2004.
DOI : 10.1523/JNEUROSCI.1633-04.2004

Y. C. Liu, I. Bailey, H. , and M. E. , Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio), Journal of Comparative Physiology A, vol.184, issue.1, pp.11-24, 2012.
DOI : 10.1007/s003590050319

M. A. Masino and J. R. Fetcho, Fictive Swimming Motor Patterns in Wild Type and Mutant Larval Zebrafish, Journal of Neurophysiology, vol.93, issue.6, pp.3177-3188, 2004.
DOI : 10.1152/jn.01248.2004

M. B. Mcelligott, O. Malley, and D. M. , Prey Tracking by Larval Zebrafish: Axial Kinematics and Visual Control, Brain, Behavior and Evolution, vol.66, issue.3, pp.177-196, 2005.
DOI : 10.1159/000087158

N. Miller and R. Gerlai, From Schooling to Shoaling: Patterns of Collective Motion in Zebrafish (Danio rerio), PLoS ONE, vol.96, issue.11, 2012.
DOI : 10.1371/journal.pone.0048865.s020

M. S. Moore, J. Dezazzo, A. Y. Luk, T. Tully, C. M. Singh et al., Ethanol Intoxication in Drosophila: Genetic and Pharmacological Evidence for Regulation by the cAMP Signaling Pathway, Cell, vol.93, issue.6, pp.997-1007, 1998.
DOI : 10.1016/S0092-8674(00)81205-2

H. Nishimaru, M. J. Kakizaki, K. Rossnagel, P. Haffter, R. N. Kelsh et al., The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord, Acta Physiologica, vol.27, issue.2, pp.83-97, 1996.
DOI : 10.1113/jphysiol.1993.sp019814

A. M. Petzold, D. Balciunas, S. Sivasubbu, K. J. Clark, V. M. Bedell et al., Nicotine response genetics in the zebrafish, Proceedings of the National Academy of Sciences, vol.59, issue.3, pp.18662-18667, 2009.
DOI : 10.1016/S0091-679X(08)61821-X

J. Rihel, D. A. Prober, A. Arvanites, K. Lam, S. Zimmerman et al., Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation, Science, vol.37, issue.3, pp.348-351, 2010.
DOI : 10.1080/10408440601177855

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2830481

J. Rihel and A. F. Schier, Behavioral screening for neuroactive drugs in zebrafish, Developmental Neurobiology, vol.4, issue.Suppl 1, pp.373-385, 2012.
DOI : 10.1038/nrd1606

H. Scholz, J. Ramond, C. M. Singh, and U. Heberlein, Functional Ethanol Tolerance in Drosophila, Neuron, vol.28, issue.1, pp.261-271, 2000.
DOI : 10.1016/S0896-6273(00)00101-X

URL : http://doi.org/10.1016/s0896-6273(00)00101-x

G. J. Stephens, B. Johnson-kerner, W. Bialek, and W. S. Ryu, Dimensionality and Dynamics in the Behavior of C. elegans, PLoS Computational Biology, vol.71, issue.4, 2008.
DOI : 10.1371/journal.pcbi.1000028.g006

S. Suzuki, A. , and K. , Topological structural analysis of Frontiers in Neural Circuits www.frontiersin.org digital binary image by border following, 1985.

N. A. Swierczek, A. C. Giles, C. H. Rankin, and R. A. Kerr, High-throughput behavioral analysis in C. elegans, Nature Methods, vol.2010, issue.7, pp.592-598, 2011.
DOI : 10.1214/09-EJS419

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128206

K. Vermoesen, A. S. Serruys, E. Loyens, T. Afrikanova, A. Massie et al., Assessment of the convulsant liability of antidepressants using zebrafish and mouse seizure models, Epilepsy & Behavior, vol.22, issue.3, pp.450-460, 2011.
DOI : 10.1016/j.yebeh.2011.08.016

S. M. Zakhary, D. Ayubcha, F. Ansari, K. Kamran, M. Karim et al., A behavioral and molecular analysis of ketamine in zebrafish, Synapse, vol.29, issue.2, pp.160-167, 2011.
DOI : 10.1164/ajrccm.162.3.9903094

I. V. Zhdanova, S. Y. Wang, O. U. Leclair, and N. P. Danilova, Melatonin promotes sleep-like state in zebrafish, Brain Research, vol.903, issue.1-2, pp.263-268, 2001.
DOI : 10.1016/S0006-8993(01)02444-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.204.2040