H. K. Abbas, T. Tanaka, S. O. Duke, J. K. Porter, E. M. Wray et al., Fumonisin- and AAL-Toxin-Induced Disruption of Sphingolipid Metabolism with Accumulation of Free Sphingoid Bases, Plant Physiology, vol.106, issue.3, pp.1085-1093, 1994.
DOI : 10.1104/pp.106.3.1085

K. P. Alden, S. Dhondt-cordelier, K. L. Mcdonald, T. J. Reape, C. K. Ng et al., Sphingolipid long chain base phosphates can regulate apoptotic-like programmed cell death in plants, Biochemical and Biophysical Research Communications, vol.410, issue.3, pp.574-580, 2011.
DOI : 10.1016/j.bbrc.2011.06.028

R. Barsacchi, C. Perrotta, S. Bulotta, S. Moncada, N. Borgese et al., Activation of Endothelial Nitric-Oxide Synthase by Tumor Necrosis Factor-alpha : A Novel Pathway Involving Sequential Activation of Neutral Sphingomyelinase, Phosphatidylinositol-3' kinase, and Akt, Molecular Pharmacology, vol.63, issue.4, pp.886-895, 2003.
DOI : 10.1124/mol.63.4.886

E. R. Baudouin, X. , and S. , The language of nitric oxide signalling Sphingolipids and plant defense/disease: the " death " connection and beyond, Plant Biol. Front. Plant Sci, vol.13, issue.3, pp.233-24268, 2011.

A. Besson-bard, A. Pugin, and D. Wendehenne, New Insights into Nitric Oxide Signaling in Plants, Annual Review of Plant Biology, vol.59, issue.1, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092830

P. Brodersen, M. Petersen, H. M. Pike, B. Olszak, S. Skov et al., Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense, Genes & Development, vol.16, issue.4, pp.490-502, 2002.
DOI : 10.1101/gad.218202

J. Cacas, F. Furt, L. Guédard, M. Schmitter, J. Buré et al., Lipids of plant membrane rafts, Progress in Lipid Research, vol.51, issue.3, pp.272-299, 2012.
DOI : 10.1016/j.plipres.2012.04.001

P. Calcerrada, G. Peluffo, R. , and R. , Nitric Oxide-Derived Oxidants with a Focus on Peroxynitrite: Molecular Targets,Cellular Responses and Therapeutic Implications, Current Pharmaceutical Design, vol.17, issue.35, pp.3905-3932, 2011.
DOI : 10.2174/138161211798357719

C. Cantrel, T. Vazquez, J. Puyaubert, N. Reze, M. Lesch et al., Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana, New Phytologist, vol.151, issue.2, pp.415-427, 1038.
DOI : 10.1104/pp.109.140996

D. Silva, D. Lachaud, C. Cotelle, V. Brière, C. Grat et al., Nitric oxide production is not required for dihydrosphingosine-induced cell death in tobacco BY-2 cells, Plant Signaling & Behavior, vol.23, issue.5, pp.736-739, 2011.
DOI : 10.1016/j.cellsig.2010.08.003

M. Delledonne, Y. Xia, R. A. Dixon, and C. Lamb, Nitric oxide functions as a signal in plant disease resistance, Nature, vol.394, pp.585-588, 1998.

A. M. Distéfano, D. Scuffi, C. García-mata, L. Lamattina, and A. M. Laxalt, Phospholipase D?? is involved in nitric oxide-induced stomatal closure, Planta, vol.21, issue.6, pp.1899-1907, 2012.
DOI : 10.1105/tpc.108.062992

P. Falcone, S. Perrotta, C. De-palma, C. Pisconti, A. Sciorati et al., Arabidopsis response to chilling Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3 ,5 -monophosphate pathway: key events in Escherichia coli-elicited apoptosis of dendritic cells, New Phytol. J. Immunol, vol.194, issue.173, pp.181-191, 2004.

M. Fernández-marcos, L. Sanz, D. R. Lewis, G. K. Muday, L. et al., Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport, Proc. Natl, 2011.
DOI : 10.1105/tpc.109.071225

A. Filippov, G. Orädd, and G. Lindblom, Sphingomyelin Structure Influences the Lateral Diffusion and Raft Formation in Lipid Bilayers, Biophysical Journal, vol.90, issue.6, pp.2086-2092, 2006.
DOI : 10.1529/biophysj.105.075150

R. Franzen, D. Fabbro, A. Aschrafi, J. Pfeilschifter, and A. Huwiler, Nitric Oxide Induces Degradation of the Neutral Ceramidase in Rat Renal Mesangial Cells and Is Counterregulated by Protein Kinase C, Journal of Biological Chemistry, vol.3, issue.48, 2002.
DOI : 10.1046/j.1523-1755.2002.00225.x

M. Gaupels, F. Kuruthukulangarakoola, G. T. Durner, and J. , Upstream and downstream signals of nitric oxide in pathogen defence, Current Opinion in Plant Biology, vol.14, issue.6, pp.46184-46190, 2011.
DOI : 10.1016/j.pbi.2011.07.005

T. S. Gechev, I. Z. Gadjev, and J. Hille, An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants, Cell. Mol. Life Sci, vol.61, pp.1185-1197, 2004.

I. Guillas, A. Guellim, N. Rezé, and E. Baudouin, Long chain base changes triggered by a short exposure of Arabidopsis to low temperature are altered by AHb1 non-symbiotic haemoglobin overexpression, Plant Physiology and Biochemistry, vol.63, pp.191-195, 2013.
DOI : 10.1016/j.plaphy.2012.11.020

L. Guo, G. Mishra, K. Taylor, W. , and X. , Sphingosine Kinases, Journal of Biological Chemistry, vol.1791, issue.15, pp.13336-13345, 2011.
DOI : 10.1016/j.bbalip.2009.04.001

L. Guo, W. , and X. , Crosstalk between Phospholipase D and Sphingosine Kinase in Plant Stress Signaling, Frontiers in Plant Science, vol.3, 2012.
DOI : 10.3389/fpls.2012.00051

URL : http://doi.org/10.3389/fpls.2012.00051

A. Huwiler and J. Pfeilschifter, Nitric oxide signalling with a special focus on lipid-derived mediators. www.frontiersin, 2003.

A. Huwiler, J. Pfeilschifter, and H. Van-den-bosch, Nitric Oxide Donors Induce Stress Signaling via Ceramide Formation in Rat Renal Mesangial Cells, Journal of Biological Chemistry, vol.37, issue.11, 1999.
DOI : 10.1126/science.8456305

J. Igarashi, M. , and T. , S1P and eNOS regulation, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1781, issue.9, pp.489-495, 2008.
DOI : 10.1016/j.bbalip.2008.06.008

S. Jacques, B. Ghesquière, F. Van-breusegem, and K. Gevaert, Plant proteins under oxidative attack, PROTEOMICS, vol.8, issue.6, pp.932-940, 2013.
DOI : 10.1074/mcp.M900259-MCP200

S. Jeandroz, O. Lamotte, J. Astier, S. Rasul, P. Trapet et al., There's More to the Picture Than Meets the Eye: Nitric Oxide Cross Talk with Ca2+ Signaling, PLANT PHYSIOLOGY, vol.163, issue.2, pp.10-1104113220624, 2013.
DOI : 10.1104/pp.113.220624

A. Kihara, S. Mitsutake, Y. Mizutani, and Y. Igarashi, Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate, Progress in Lipid Research, vol.46, issue.2, 2007.
DOI : 10.1016/j.plipres.2007.03.001

M. J. Kohr, A. M. Aponte, J. Sun, G. Wang, E. Murphy et al., Characterization of potential S-nitrosylation sites in the myocardium, AJP: Heart and Circulatory Physiology, vol.300, issue.4, pp.1327-1335, 2010.
DOI : 10.1152/ajpheart.00997.2010

I. Kovacs and C. Lindermayr, Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation, Frontiers in Plant Science, vol.4, 2013.
DOI : 10.3389/fpls.2013.00137

C. Lachaud, D. Silva, D. Cotelle, V. Thuleau, P. Xiong et al., Nuclear calcium controls the apoptotic-like cell death induced by d-erythro-sphinganine in tobacco cells, Cell Calcium, vol.47, issue.1, pp.92-100, 2010.
DOI : 10.1016/j.ceca.2009.11.011

URL : https://hal.archives-ouvertes.fr/hal-01203919

A. M. Laxalt, N. Raho, A. T. Have, L. B. Lamattina, F. Furt et al., Nitric Oxide Is Critical for Inducing Phosphatidic Acid Accumulation in Xylanase-elicited Tomato Cells, Journal of Biological Chemistry, vol.39, issue.29, pp.21160-21168, 2007.
DOI : 10.1016/S1369-5266(02)00268-6

Y. C. Levine, G. K. Li, M. , and T. , Agonist-modulated regulation of AMP-activated protein kinase (AMPK) in endothelial cells. Evidence for an AMPK? Rac1?Akt?endothelial nitricoxide synthase pathway, J. Biol, 2007.

X. Li, X. Wang, Y. Yang, R. Li, Q. He et al., Single-Molecule Analysis of PIP2;1 Dynamics and Partitioning Reveals Multiple Modes of Arabidopsis Plasma Membrane Aquaporin Regulation, The Plant Cell, vol.23, issue.10, pp.3780-3797, 2011.
DOI : 10.1105/tpc.111.091454

URL : https://hal.archives-ouvertes.fr/hal-00662232

H. Liang, N. Yao, L. T. Song, S. Luo, H. Lu et al., Ceramides modulate programmed cell death in plants, Genes & Development, vol.17, issue.21, pp.2636-2641, 2003.
DOI : 10.1101/gad.1140503

M. C. Lombardo and L. Lamattina, Nitric oxide is essential for vesicle formation and trafficking in Arabidopsis root hair??growth, Journal of Experimental Botany, vol.63, issue.13, 2012.
DOI : 10.1093/jxb/ers166

J. Exp, J. E. Markham, D. V. Lynch, J. A. Napier, T. M. Dunn et al., Plant sphingolipids: function follows form, Curr. Opin. Plant Biol, vol.63, issue.16, pp.4875-4885, 2013.

A. Martínez-ruiz, S. Cadenas, and S. Lamas, Nitric oxide signaling: classical, less classical, and non-classical mechanisms, 2011.

A. Minami, M. Fujiwara, A. Furuto, Y. Fukao, T. Yamashita et al., Alterations in Detergent-Resistant Plasma Membrane Microdomains in Arabidopsis thaliana During Cold Acclimation, Plant and Cell Physiology, vol.50, issue.2, pp.341-359, 2009.
DOI : 10.1093/pcp/pcn202

A. Minami, A. Furuto, and M. Uemura, Dynamic compositional changes of detergent-resistant plasma membrane microdomains during plant cold acclimation, Plant Signaling & Behavior, vol.68, issue.9, pp.1115-1118, 2010.
DOI : 10.1128/AEM.68.12.5981-5989.2002

J. Morel, S. Claverol, S. Mongrand, F. Furt, J. Fromentin et al., Proteomics of Plant Detergent-resistant Membranes, Molecular & Cellular Proteomics, vol.1532, issue.1, pp.1396-1411, 2006.
DOI : 10.1007/s11103-004-1520-4

URL : https://hal.archives-ouvertes.fr/hal-00068719

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov et al., Nitric oxide in plants: an assessment of the current state of knowledge, AoB Plants, vol.5, issue.0, 2013.
DOI : 10.1093/aobpla/pls052

C. K. Ng, K. Carr, M. R. Mcainsh, B. Powell, and A. M. Hetherington, erratum: Drought-induced guard cell signal transduction involves sphingosine-1-phosphate, Nature, vol.410, issue.6834, pp.596-599, 1038.
DOI : 10.1038/35069092

M. O. Pata, Y. A. Hannun, C. K. Ng, -. M. Bach, M. Mueller et al., Plant sphingolipids: decoding the enigma of the Sphinx, New Phytologist, vol.133, issue.3, pp.611-630, 2010.
DOI : 10.1093/oxfordjournals.jbchem.a003215

C. Perrotta, L. Bizzozero, S. Falcone, P. Rovere-querini, A. Prinetti et al., Nitric Oxide Boosts Chemoimmunotherapy via Inhibition of Acid Sphingomyelinase in a Mouse Model of Melanoma, Cancer Research, vol.67, issue.16, pp.7559-7564, 2007.
DOI : 10.1158/0008-5472.CAN-07-0309

C. Perrotta, C. , and E. , Biological Roles of Acid and Neutral Sphingomyelinases and Their Regulation by Nitric Oxide, Physiology, vol.25, issue.2, 2009.
DOI : 10.1152/physiol.00048.2009

C. Perrotta, C. De-palma, C. , and E. , Nitric oxide and sphingolipids: mechanisms of interaction and role in cellular pathophysiology, Biological Chemistry, vol.276, issue.11, pp.1391-1397, 2008.
DOI : 10.1016/j.molmed.2007.06.002

C. M. Pilane and E. F. Labelle, NO induced apoptosis of vascular smooth muscle cells accompanied by ceramide increase, Journal of Cellular Physiology, vol.137, issue.2, pp.310-315, 2004.
DOI : 10.1042/bj3160025

M. Saucedo-garcia, A. Guevara-garcia, A. Gonzalez-solis, F. Cruz-garcia, S. Vazquez-santana et al., MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis, New Phytologist, vol.21, issue.4, pp.943-957, 2010.
DOI : 10.1105/tpc.108.062992

L. H. Shi, J. Bielawski, J. Y. Mu, H. L. Dong, C. Teng et al., Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis, Cell Research, vol.156, issue.12, pp.1030-1040, 2007.
DOI : 10.1105/tpc.014613

F. Simon-plas, A. Perraki, E. Bayer, P. Gerbeau-pissot, M. et al., An update on plant membrane rafts, Current Opinion in Plant Biology, vol.14, issue.6, pp.642-649, 2011.
DOI : 10.1016/j.pbi.2011.08.003

P. Ternes, K. Feussner, S. Werner, J. Lerche, T. Iven et al., Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana, New Phytologist, vol.20, issue.4, pp.841-854, 2004.
DOI : 10.1105/tpc.108.060053

M. Uraji, T. Katagiri, E. Okuma, W. Ye, M. A. Hossain et al., Cooperative Function of PLD?? and PLD??1 in Abscisic Acid-Induced Stomatal Closure in Arabidopsis, PLANT PHYSIOLOGY, vol.159, issue.1, pp.450-460, 2012.
DOI : 10.1104/pp.112.195578

J. Wang, L. Zheng, and R. Tan, Involvement of nitric oxide in cerebroside-induced defense responses and taxol production in Taxus yunnanensis suspension cells, Applied Microbiology and Biotechnology, vol.38, issue.5, 2007.
DOI : 10.1093/pcp/41.6.676

J. W. Wang, L. P. Zheng, B. Zhang, and T. Zou, Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots, Applied Microbiology and Biotechnology, vol.50, issue.2, 2009.
DOI : 10.1093/pcp/41.6.676

D. Worrall, Y. K. Liang, S. Alvarez, G. H. Holroyd, S. Spiegel et al., Involvement of sphingosine kinase in plant cell signalling, The Plant Journal, vol.578, issue.1, pp.64-72, 2008.
DOI : 10.1007/978-1-4757-3121-7

X. Zhan, D. M. Desiderio, H. Zhang, J. Zhai, J. Mo et al., Mass spectrometric identification of in vivo nitrotyrosine sites in the human pituitary tumor proteome Overexpression of rice sphingosine-1-phosphate lyase gene OsSPL1 in transgenic tobacco reduces salt and oxidative stress tolerance Phospholipase Dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABAmediated stomatal closure in Arabidopsis, Methods Mol. Biol. J. Integr. Plant Biol. Plant Cell, vol.566, issue.21, pp.137-163, 2009.