J. K. Abat and R. Deswal, Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: Change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity, PROTEOMICS, vol.57, issue.18, pp.4368-4380, 2009.
DOI : 10.1042/bj3210325

J. K. Abat, A. K. Mattoo, and R. Deswal, S-nitrosylated proteins of a medicinal CAM plant Kalanchoe???pinnata- ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition, FEBS Journal, vol.20, issue.11, pp.2862-2872, 2008.
DOI : 10.1046/j.1365-3040.1997.d01-85.x

L. E. Anderson, Dithiothreitol activation of some chloroplast enzymes in extracts of etiolated pea seedlings, Plant Science Letters, vol.1, issue.8, pp.331-334, 1973.
DOI : 10.1016/0304-4211(73)90098-9

L. E. Anderson, Regulation of pea leaf ribulose-5-phosphate kinase activity, Biochimica et Biophysica Acta (BBA) - Enzymology, vol.321, issue.2, pp.484-488, 1973.
DOI : 10.1016/0005-2744(73)90190-3

L. E. Anderson, Activation of pea leaf chloroplast sedoheptulose 1,7- diphosphate phosphatase by light and dithiothreitol, Biochem. Biophys. Res. Commun, vol.5974, pp.907-913, 1974.

L. E. Anderson and M. Avron, Light Modulation of Enzyme Activity in Chloroplasts: Generation of Membrane-bound Vicinal-Dithiol Groups by Photosynthetic Electron Transport, PLANT PHYSIOLOGY, vol.57, issue.2, pp.209-213, 1976.
DOI : 10.1104/pp.57.2.209

L. E. Anderson and T. C. Lim, Chloroplast glyceraldehyde 3-phosphate dehydrogenase: Light-dependent change in the enzyme, FEBS Letters, vol.150, issue.2, pp.189-191, 1972.
DOI : 10.1126/science.150.3697.776

B. Arsova, U. Hoja, M. Wimmelbacher, E. Greiner, S. Ustun et al., Plastidial Thioredoxin z Interacts with Two Fructokinase-Like Proteins in a Thiol-Dependent Manner: Evidence for an Essential Role in Chloroplast Development in Arabidopsis and Nicotiana benthamiana, THE PLANT CELL ONLINE, vol.22, issue.5, pp.1498-1515, 2010.
DOI : 10.1105/tpc.109.071001

J. Astier, S. Rasul, E. Koen, H. Manzoor, A. Besson-bard et al., S-nitrosylation: An emerging post-translational protein modification in plants, Plant Science, vol.181, issue.5, pp.527-533, 2011.
DOI : 10.1016/j.plantsci.2011.02.011

P. A. Austin, I. Stuart-ross, and J. D. Mills, Light/dark regulation of photosynthetic enzymes within intact cells of the cyanobacterium Nostoc sp. Mac, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1099, issue.3, pp.226-232, 1992.
DOI : 10.1016/0005-2728(92)90031-V

L. Avilan, B. Gontero, S. Lebreton, R. , and J. , Memory and Imprinting Effects in Multienzyme Complexes. I. Isolation, Dissociation, and Reassociation of a Phosphoribulokinase-Glyceraldehyde-3-Phosphate Dehydrogenase Complex from Chlamydomonas Reinhardtii Chloroplasts, European Journal of Biochemistry, vol.107, issue.1, pp.78-84, 1997.
DOI : 10.1111/j.1432-1033.1997.t01-2-00085.x

M. Avron and M. Gibbs, Properties of Phosphoribulokinase of Whole Chloroplasts, PLANT PHYSIOLOGY, vol.53, issue.2, pp.136-139, 1974.
DOI : 10.1104/pp.53.2.136

E. Baalmann, J. E. Backhausen, C. Kitzmann, and R. Scheibe, Regulation of NADP-Dependent Glyceraldehyde 3-Phosphate Dehydrogenase Activity in Spinach Chloroplasts*, Botanica Acta, vol.65, issue.5, pp.313-320, 1994.
DOI : 10.1007/BF00385415

E. Baalmann, R. Scheibe, R. Cerff, M. , and W. , Functional studies of chloroplast glyceraldehyde-3-phosphate dehydrogenase subunits A and B expressed in Escherichia coli: formation of highly active A4 and B4 homotetramers and evidence that aggregation of the B4 complex is mediated by the B subunit carboxy terminus, Plant Molecular Biology, vol.26, issue.3, pp.505-513, 1996.
DOI : 10.1515/bchm3.1993.374.1-6.395

D. Baier and E. Latzko, Properties and regulation of C-1-fructose-1,6-diphosphatase from spinach chloroplasts, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.396, issue.1, pp.141-148, 1975.
DOI : 10.1016/0005-2728(75)90197-8

M. A. Ballicora, J. B. Frueauf, Y. Fu, P. Schürmann, and J. Preiss, Activation of the Potato Tuber ADP-glucose Pyrophosphorylase by Thioredoxin, Journal of Biological Chemistry, vol.275, issue.2, pp.1315-1320, 2000.
DOI : 10.1074/jbc.275.2.1315

Y. Balmer, A. Koller, D. Val, G. Manieri, W. Schürmann et al., Proteomics gives insight into the regulatory function of chloroplast thioredoxins, Proceedings of the National Academy of Sciences, vol.2, issue.9, pp.370-375, 2003.
DOI : 10.1002/1615-9861(200209)2:9<1090::AID-PROT1090>3.0.CO;2-1

Y. Balmer, A. Koller, G. D. Val, P. Schürmann, and B. B. Buchanan, Proteomics Uncovers Proteins Interacting Electrostatically with Thioredoxin in Chloroplasts, Photosynthesis Research, vol.79, issue.3, pp.275-280, 2004.
DOI : 10.1023/B:PRES.0000017207.88257.d4

Y. Balmer, W. H. Vensel, C. K. Tanaka, W. J. Hurkman, E. Gelhaye et al., Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria, Proceedings of the National Academy of Sciences, vol.410, issue.6825, pp.2642-2647, 2004.
DOI : 10.1038/35065626

Y. Balmer, W. H. Vensel, N. Cai, W. Manieri, P. Schürmann et al., A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts, Proceedings of the National Academy of Sciences, vol.22, issue.22, pp.2988-2993, 2006.
DOI : 10.1093/nar/22.22.4673

Y. Balmer, W. H. Vensel, W. J. Hurkman, and B. B. Buchanan, Thioredoxin Target Proteins in Chloroplast Thylakoid Membranes, Antioxidants & Redox Signaling, vol.8, issue.9-10, pp.1829-1834, 2006.
DOI : 10.1089/ars.2006.8.1829

J. A. Bassham, Photosynthetic carbon metabolism., Proceedings of the National Academy of Sciences, vol.68, issue.11, 1971.
DOI : 10.1073/pnas.68.11.2877

J. A. Bassham, A. A. Benson, C. , and M. , The path of carbon in photosynthesis, J. Biol. Chem, vol.185, pp.781-787, 1950.

M. Benhar, M. T. Forrester, D. T. Hess, and J. S. Stamler, Regulated Protein Denitrosylation by Cytosolic and Mitochondrial Thioredoxins, Science, vol.33, issue.1, pp.1050-1054, 2008.
DOI : 10.1146/annurev.genet.33.1.29

M. Benhar, M. T. Forrester, and J. S. Stamler, Protein denitrosylation: enzymatic mechanisms and cellular functions, Nature Reviews Molecular Cell Biology, vol.2, pp.721-732, 1038.
DOI : 10.1161/01.HYP.28.3.354

A. Besson-bard, A. Pugin, and D. Wendehenne, New Insights into Nitric Oxide Signaling in Plants, Annual Review of Plant Biology, vol.59, issue.1, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092830

R. Blankenship, Molecular Mechanisms of Photosynthesis, pp.10-1002, 2002.
DOI : 10.1002/9780470758472

A. S. Bohrer, V. Massot, G. Innocenti, J. P. Reichheld, E. Issakidis-bourguet et al., New insights into the reduction systems of plastidial thioredoxins point out the unique properties of thioredoxin z from Arabidopsis, Journal of Experimental Botany, vol.63, issue.18, pp.6315-6323, 2012.
DOI : 10.1093/jxb/ers283

M. B. Bosco, M. C. Aleanzi, and A. A. Iglesias, Plastidic Phosphoglycerate Kinase from Phaeodactylum tricornutum: On the Critical Role of Cysteine Residues for the Enzyme Function, Protist, vol.163, issue.2, 2012.
DOI : 10.1016/j.protis.2011.07.001

M. Broin, S. Cuine, F. Eymery, R. , and P. , The Plastidic 2-Cysteine Peroxiredoxin Is a Target for a Thioredoxin Involved in the Protection of the Photosynthetic Apparatus against Oxidative Damage, THE PLANT CELL ONLINE, vol.14, issue.6, pp.1417-1432, 2002.
DOI : 10.1105/tpc.001644

B. B. Buchanan, Role of Light in the Regulation of Chloroplast Enzymes, Annual Review of Plant Physiology, vol.31, issue.1, pp.341-374, 1980.
DOI : 10.1146/annurev.pp.31.060180.002013

B. B. Buchanan, B. B. Buchanan, W. Gruissem, and R. L. Jones, Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development, Arch. Biochem. Biophys. Biochemistry and Molecular Biology of Plants, vol.288, pp.1-9, 1991.

B. B. Buchanan, A. Holmgren, J. P. Jacquot, and R. Scheibe, Fifty years in the thioredoxin field and a bountiful harvest, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1820, issue.11, 2012.
DOI : 10.1016/j.bbagen.2012.07.006

A. E. Carmo-silva, L. Marri, F. Sparla, and M. E. Salvucci, Isolation and Compositional Analysis of a CP12-Associated Complex of Calvin Cycle Enzymes from Nicotiana tabacum, Protein & Peptide Letters, vol.18, issue.6, pp.618-624, 2011.
DOI : 10.2174/092986611795222740

A. E. Carmo-silva and M. E. Salvucci, The Regulatory Properties of Rubisco Activase Differ among Species and Affect Photosynthetic Induction during Light Transitions, PLANT PHYSIOLOGY, vol.161, issue.4, pp.1645-1655, 2013.
DOI : 10.1104/pp.112.213348

P. D. Carr, D. Verger, A. R. Ashton, and D. L. Ollis, Chloroplast NADP-malate dehydrogenase: structural basis of light-dependent regulation of activity by thiol oxidation and reduction, Structure, vol.7, issue.4, pp.461-475, 1999.
DOI : 10.1016/S0969-2126(99)80058-6

R. M. Cerff and E. Bismuth, Glyceraldehyde-3-phosphate dehydrogenase (NADP) from Sinapis alba L. NAD(P)-induced conformation changes of the enzyme Role of photosynthetic electron transfer in light activation of calvin cycle enzymes, Eur. J. Biochem. Physiol. Plant, vol.82, issue.36, pp.45-53, 1976.
DOI : 10.1515/bchm.1978.359.1.769

M. Chiadmi, A. Navaza, M. Miginiac-maslow, J. P. Jacquot, C. et al., Redox signalling in the chloroplast: structure of oxidized pea fructose-1,6-bisphosphate phosphatase, The EMBO Journal, vol.18, issue.23, pp.6809-6815, 1999.
DOI : 10.1093/emboj/18.23.6809

K. Chibani, L. Tarrago, P. Schürmann, J. P. Jacquot, and N. Rouhier, Biochemical properties of poplar thioredoxin z, FEBS Letters, vol.132, issue.7, 2011.
DOI : 10.1016/j.cell.2007.12.031

I. Cohen, Y. Sapir, and M. Shapira, A Conserved Mechanism Controls Translation of Rubisco Large Subunit in Different Photosynthetic Organisms, PLANT PHYSIOLOGY, vol.141, issue.3, pp.1089-1097, 2006.
DOI : 10.1104/pp.106.079046

V. Collin, E. Issakidis-bourguet, C. Marchand, M. Hirasawa, J. M. Lancelin et al., Plastidial Thioredoxins, Journal of Biological Chemistry, vol.266, issue.26, pp.23747-23752, 2003.
DOI : 10.1093/protein/10.12.1425

V. Collin, P. Lamkemeyer, M. Miginiac-maslow, M. Hirasawa, D. B. Knaff et al., Characterization of Plastidial Thioredoxins from Arabidopsis Belonging to the New y-Type, PLANT PHYSIOLOGY, vol.136, issue.4, pp.4088-4095, 2004.
DOI : 10.1104/pp.104.052233

A. Courteille, S. Vesa, R. Sanz-barrio, A. C. Cazale, N. Becuwe-linka et al., Thioredoxin m4 Controls Photosynthetic Alternative Electron Pathways in Arabidopsis, PLANT PHYSIOLOGY, vol.161, issue.1, pp.508-520, 2013.
DOI : 10.1104/pp.112.207019

J. Couturier, C. S. Koh, M. Zaffagnini, A. M. Winger, J. M. Gualberto et al., Structure-Function Relationship of the Chloroplastic Glutaredoxin S12 with an Atypical WCSYS Active Site, Journal of Biological Chemistry, vol.266, issue.14, pp.9299-9310, 2009.
DOI : 10.1006/jmbi.2000.4145

URL : https://hal.archives-ouvertes.fr/hal-00400240

S. Dai, R. Friemann, D. A. Glauser, F. Bourquin, W. Manieri et al., Structural snapshots along the reaction pathway of ferredoxin???thioredoxin reductase, Nature, vol.30, issue.7149, pp.92-96, 1038.
DOI : 10.1038/nature05937

S. Dai, K. Johansson, M. Miginiac-maslow, P. Schürmann, E. et al., Structural Basis of Redox Signaling in Photosynthesis: Structure and Function of Ferredoxin:thioredoxin Reductase and Target Enzymes, Photosynthesis Research, vol.79, issue.3, pp.233-248, 2004.
DOI : 10.1023/B:PRES.0000017194.34167.6d

K. J. Dietz, Peroxiredoxins in Plants and Cyanobacteria, Antioxidants & Redox Signaling, vol.15, issue.4, pp.1129-1159, 2011.
DOI : 10.1089/ars.2010.3657

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135184

R. Dunford, M. Durrant, M. Catley, and T. Dyer, Location of the redoxactive cysteines in chloroplast sedoheptulose-1,7-bisphosphatase indicates that its allosteric regulation is similar but not identical to that of fructose-1,6- bisphosphatase, Photosynthesis Research, vol.58, issue.3, pp.221-230, 1998.
DOI : 10.1023/A:1006178826976

G. Falini, S. Fermani, A. Ripamonti, P. Sabatino, F. Sparla et al., Dual coenzyme specificity of photosynthetic glyceraldehyde- 3-phosphate dehydrogenase interpreted by the crystal structure of A4 isoform complexed with NAD Proteomics investigation of endogenous S-nitrosylation in Arabidopsis, Biochemistry Biochem. Biophys. Res. Commun, vol.42, issue.416, pp.4631-4639, 2003.

S. Fermani, A. Ripamonti, P. Sabatino, G. Zanotti, S. Scagliarini et al., Crystal structure of the non-regulatory A 4 isoform of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase complexed with NADP 1 1Edited by R. Huber, Journal of Molecular Biology, vol.314, issue.3, pp.527-5425172, 2001.
DOI : 10.1006/jmbi.2001.5172

S. Fermani, F. Sparla, G. Falini, P. L. Martelli, R. Casadio et al., Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase, Proceedings of the National Academy of Sciences, vol.17, issue.4, pp.11109-11114, 2007.
DOI : 10.1002/prot.340170404

S. Fermani, X. Trivelli, F. Sparla, A. Thumiger, M. Calvaresi et al., Conformational Selection and Folding-upon-binding of Intrinsically Disordered Protein CP12 Regulate Photosynthetic Enzymes Assembly, Journal of Biological Chemistry, vol.271, issue.25, pp.21372-21383, 2012.
DOI : 10.1002/prot.340230412

M. W. Foster, D. T. Hess, and J. S. Stamler, Protein S-nitrosylation in health and disease: a current perspective, Trends in Molecular Medicine, vol.15, issue.9, pp.391-404, 2009.
DOI : 10.1016/j.molmed.2009.06.007

C. H. Foyer, A. J. Bloom, G. Queval, and G. Noctor, Photorespiratory Metabolism: Genes, Mutants, Energetics, and Redox Signaling, Annual Review of Plant Biology, vol.60, issue.1, pp.455-484, 2009.
DOI : 10.1146/annurev.arplant.043008.091948

C. H. Foyer and G. Noctor, Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses, THE PLANT CELL ONLINE, vol.17, issue.7, 2005.
DOI : 10.1105/tpc.105.033589

URL : http://www.plantcell.org/content/plantcell/17/7/1866.full.pdf

X. H. Gao, M. Zaffagnini, M. Bedhomme, L. Michelet, C. Cassier-chauvat et al., : Kinetics and specificity in deglutathionylation reactions, FEBS Letters, vol.318, issue.11, pp.2242-2248, 2010.
DOI : 10.1126/science.1143609

P. Geigenberger, A. Kolbe, and A. Tiessen, Redox regulation of carbon storage and partitioning in response to light and sugars, Journal of Experimental Botany, vol.56, issue.416, pp.1469-1479, 2005.
DOI : 10.1093/jxb/eri178

A. Goyer, C. Haslekas, M. Miginiac-maslow, U. Klein, L. Maréchal et al., Isolation and characterization of a thioredoxin-dependent peroxidase from Chlamydomonas reinhardtii, European Journal of Biochemistry, vol.92, issue.1, pp.272-282, 2002.
DOI : 10.1073/pnas.92.22.10237

E. Graciet, P. Gans, N. Wedel, S. Lebreton, J. M. Camadro et al., The small protein CP12: a protein linker for supramolecular complex assembly Emergence of new regulatory mechanisms in the Benson-Calvin pathway via protein-protein interactions: a glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase complex, Thioredoxins function as deglutathionylase enzymes in the yeast Saccharomyces cerevisiae, pp.1245-1254, 1186.

R. Groben, D. Kaloudas, C. A. Raines, B. Offmann, S. C. Maberly et al., Comparative sequence analysis of CP12, a small protein involved in the formation of a Calvin cycle complex in photosynthetic organisms, Photosynthesis Research, vol.18, issue.3, pp.183-194, 2010.
DOI : 10.1093/oxfordjournals.molbev.a003851

URL : https://hal.archives-ouvertes.fr/hal-00677735

G. T. Hanke, Y. Kimata-ariga, I. Taniguchi, and T. Hase, A Post Genomic Characterization of Arabidopsis Ferredoxins, PLANT PHYSIOLOGY, vol.134, issue.1, pp.255-264, 2004.
DOI : 10.1104/pp.103.032755

M. R. Hara, N. Agrawal, S. F. Kim, M. B. Cascio, M. Fujimuro et al., S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding, Nature Cell Biology, vol.92, issue.7, pp.665-674, 1021.
DOI : 10.1016/S0092-8674(03)00355-6

A. P. Hertle, T. Blunder, T. Wunder, P. Pesaresi, M. Pribil et al., PGRL1 Is the Elusive Ferredoxin-Plastoquinone Reductase in Photosynthetic Cyclic Electron Flow, Molecular Cell, vol.49, issue.3, pp.511-523, 2013.
DOI : 10.1016/j.molcel.2012.11.030

D. T. Hess, A. Matsumoto, S. O. Kim, H. E. Marshall, and J. S. Stamler, Protein S-nitrosylation: purview and parameters, Nature Reviews Molecular Cell Biology, vol.2002, issue.2, pp.150-166, 2005.
DOI : 10.1042/bj3220609

M. Hirasawa, E. Ruelland, I. Schepens, E. Issakidis-bourguet, M. Miginiac-maslow et al., Oxidation-reduction properties of the regulatory disulfides of sorghum chloroplast nicotinamide adenine dinucleotide phosphate-malate dehydrogenase Oxidation-reduction properties of chloroplast thioredoxins , ferredoxin:thioredoxin reductase, and thioredoxin f-regulated enzymes The biochemistry and physiology of Snitrosothiols, Biochemistry Biochemistry Annu. Rev. Pharmacol. Toxicol, vol.39, issue.42, pp.3344-3350, 1999.

S. Holtgrefe, J. Gohlke, J. Starmann, S. Druce, S. Klocke et al., Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications, Physiologia Plantarum, vol.129, issue.2, pp.211-228, 2008.
DOI : 10.1111/j.1742-4658.2006.05577.x

N. Hosoya-matsuda, K. Motohashi, H. Yoshimura, A. Nozaki, K. Inoue et al., Anti-oxidative Stress System in Cyanobacteria, Journal of Biological Chemistry, vol.44, issue.1, pp.840-846, 2005.
DOI : 10.1093/bioinformatics/15.3.211

T. P. Howard, M. J. Fryer, P. Singh, M. Metodiev, A. Lytovchenko et al., Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco Alters Carbon Partitioning and Severely Restricts Growth, PLANT PHYSIOLOGY, vol.157, issue.2, pp.620-631, 2011.
DOI : 10.1104/pp.111.183806

T. P. Howard, J. C. Lloyd, and C. A. Raines, Inter-species variation in the oligomeric states of the higher plant Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase, Journal of Experimental Botany, vol.62, issue.11, pp.3799-3805, 2011.
DOI : 10.1093/jxb/err057

T. P. Howard, M. Metodiev, J. C. Lloyd, and C. A. Raines, Thioredoxin-mediated reversible dissociation of a stromal multiprotein complex in response to changes in light availability, Proceedings of the National Academy of Sciences, vol.199, issue.2, pp.4056-4061, 2008.
DOI : 10.1016/0003-2697(91)90094-A

S. C. Huber, ) chloroplasts, FEBS Letters, vol.44, issue.1, pp.12-16, 1978.
DOI : 10.1104/pp.44.3.396

R. S. Hutchison, Q. Groom, D. R. Ort, P. Decottignies, and M. Miginiac-maslow, Differential effects of chillinginduced photooxidation on the redox regulation of photosynthetic enzymes A thioredoxinindependent fully active NADP-malate dehydrogenase obtained by sitedirected mutagenesis, Biochemistry FEBS Lett, vol.39, issue.32193, pp.6679-6688, 1978.

E. Issakidis, M. Lemaire, P. Decottignies, J. P. Jacquot, and M. Miginiac-maslow, Direct evidence for the different roles of the N- and C-terminal regulatory disulfides of sorghum leaf NADP-malate dehydrogenase in its activation by reduced thioredoxin, FEBS Letters, vol.271, issue.2, pp.121-124, 1996.
DOI : 10.1074/jbc.271.7.3333

E. Issakidis, M. Miginiac-maslow, P. Decottignies, J. P. Jacquot, C. Cretin et al., Site-directed mutagenesis reveals the involvement of an additional thioredoxin-dependent regulatory site in the activation of recombinant sorghum leaf NADP-malate dehydrogenase, J. Biol. Chem, vol.267, pp.21577-21583, 1992.

E. Issakidis, M. Saarinen, P. Decottignies, J. P. Jacquot, C. Cretin et al., Identification and characterization of the second regulatory disulfide bridge of recombinant sorghum leaf NADP-malate dehydrogenase, J. Biol. Chem, vol.269, pp.3511-3517, 1994.

E. Issakidis-bourguet, D. Lavergne, X. Trivelli, P. Decottignies, and M. Miginiac-maslow, Transferring redox regulation properties from sorghum NADP-malate dehydrogenase to Thermus NAD-malate dehydrogenase, Photosynthesis Research, vol.244, issue.2-3, pp.213-223, 2006.
DOI : 10.1042/bj3230841

H. Ito, M. Iwabuchi, and K. Ogawa, The Sugar-Metabolic Enzymes Aldolase and Triose-Phosphate Isomerase are Targets of Glutathionylation in Arabidopsis thaliana: Detection using Biotinylated Glutathione, Plant and Cell Physiology, vol.44, issue.7, pp.655-660, 2003.
DOI : 10.1093/pcp/pcg098

J. Jacquot, J. Vidal, P. Gadal, and P. Schürmann, Evidence for the existence of several enzyme-specific thioredoxins in plants, FEBS Letters, vol.11, issue.2, pp.243-246, 1978.
DOI : 10.1016/0304-4211(78)90015-9

J. P. Jacquot, J. Lopez-jaramillo, A. Chueca, J. Cherfils, S. Lemaire et al., High-Level Expression of Recombinant Pea Chloroplast Fructose-1,6-Bisphosphatase and Mutagenesis of Its Regulatory Site, European Journal of Biochemistry, vol.32, issue.3, pp.675-681, 1995.
DOI : 10.1104/pp.97.4.1596

J. P. Jacquot, J. Lopez-jaramillo, M. Miginiac-maslow, S. Lemaire, J. Cherfils et al., Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase, FEBS Letters, vol.401, issue.2-3, pp.143-147, 1997.
DOI : 10.1016/S0014-5793(96)01459-7

H. S. Johnson, NADP-malate dehydrogenase: Photoactivation in leaves of plants with Calvin cycle photosynthesis, Biochemical and Biophysical Research Communications, vol.43, issue.4, pp.703-709, 1971.
DOI : 10.1016/0006-291X(71)90672-3

H. S. Johnson and M. D. Hatch, -dicarboxylic acid pathway of photosynthesis, Biochemical Journal, vol.119, issue.2, pp.273-280, 1970.
DOI : 10.1042/bj1190273

URL : https://hal.archives-ouvertes.fr/halshs-00250206

W. Kaaki, M. Woudstra, B. Gontero, H. , and F. , Exploration of CP12 conformational changes and of quaternary structural properties using electrospray ionization traveling wave ion mobility mass spectrometry, Rapid Communications in Mass Spectrometry, vol.273, issue.1, pp.179-186, 2013.
DOI : 10.1111/j.1742-4658.2006.05342.x

URL : https://hal.archives-ouvertes.fr/hal-01122181

H. Kato, D. Takemoto, and K. Kawakita, Proteomic analysis of S-nitrosylated proteins in potato plant, Physiologia Plantarum, vol.38, issue.3, pp.371-386, 2013.
DOI : 10.1016/j.freeradbiomed.2004.12.016

G. J. Kelly, G. Zimmermann, E. Latzko, J. R. Keown, M. D. Griffin et al., Light induced activation of fructose-1,6-bisphosphatase in isolated intact chloroplasts, Biochemical and Biophysical Research Communications, vol.70, issue.1, pp.193-199, 1976.
DOI : 10.1016/0006-291X(76)91127-X

J. A. Knopf and M. Shapira, Degradation of Rubisco SSU during oxidative stress triggers aggregation of Rubisco particles in Chlamydomonas reinhardtii, Planta, vol.114, issue.5, pp.787-793, 2005.
DOI : 10.1104/pp.109.1.221

M. D. Kornberg, N. Sen, M. R. Hara, K. R. Juluri, J. V. Nguyen et al., GAPDH mediates nitrosylation of nuclear proteins, Nature Cell Biology, vol.100, issue.11, pp.1094-1100, 1038.
DOI : 10.1038/ncb2114

E. Latzko, V. Garnier, R. Gibbs, and M. , Effect of photosynthesis, photosynthetic inhibitors and oxygen on the activity of ribulose 5-phosphate kinase, Biochemical and Biophysical Research Communications, vol.39, issue.6, pp.1140-1144, 1970.
DOI : 10.1016/0006-291X(70)90678-9

M. Lemaire, J. M. Schmitter, E. Issakidis, M. Miginiac-maslow, P. Gadal et al., Essential histidine at the active site of sorghum leaf NADP-dependent malate dehydrogenase, J. Biol. Chem, vol.269, pp.27291-27296, 1994.

S. D. Lemaire, B. Guillon, L. Maréchal, P. Keryer, E. Miginiac-maslow et al., New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii, Proceedings of the National Academy of Sciences, vol.21, issue.14, pp.7475-7480, 2004.
DOI : 10.1093/emboj/cdf372

S. D. Lemaire, L. Michelet, M. Zaffagnini, V. Massot, and E. Bourguet, Thioredoxins in chloroplasts, Current Genetics, vol.99, issue.Suppl 1, pp.343-365, 2007.
DOI : 10.1016/S0167-4838(01)00178-9

S. D. Lemaire, A. Quesada, F. Merchan, J. M. Corral, M. I. Igeno et al., NADP-malate dehydrogenase from unicellular green alga Chlamydomonas reinhardtii. A first step toward redox regulation? Plant Physiol, pp.514-521, 2005.

M. Li, Q. Yang, L. Zhang, H. Li, Y. Cui et al., Identification of novel targets of cyanobacterial glutaredoxin, Archives of Biochemistry and Biophysics, vol.458, issue.2, pp.220-228, 2007.
DOI : 10.1016/j.abb.2006.12.010

M. F. Liaud, U. Brandt, M. Scherzinger, C. , and R. , Evolutionary origin of cryptomonad microalgae: Two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components, Journal of Molecular Evolution, vol.26, issue.S1, pp.28-37, 1007.
DOI : 10.1016/0304-4157(88)90013-5

M. F. Liaud, C. Lichtle, K. Apt, W. Martin, C. et al., Compartment-Specific Isoforms of TPI and GAPDH are Imported into Diatom Mitochondria as a Fusion Protein: Evidence in Favor of a Mitochondrial Origin of the Eukaryotic Glycolytic Pathway, Molecular Biology and Evolution, vol.17, issue.2, pp.213-223, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026301

A. Lin, Y. Wang, J. Tang, P. Xue, C. Li et al., Nitric Oxide and Protein S-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice, PLANT PHYSIOLOGY, vol.158, issue.1, pp.451-464, 2012.
DOI : 10.1104/pp.111.184531

M. Lindahl, F. , and F. J. , Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different, Proc. Natl, 2003.
DOI : 10.1093/jxb/erg076

M. Lindahl and T. Kieselbach, Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria, Journal of Proteomics, vol.72, issue.3, 2009.
DOI : 10.1016/j.jprot.2009.01.003

M. Lindahl, A. Mata-cabana, and T. Kieselbach, The Disulfide Proteome and Other Reactive Cysteine Proteomes: Analysis and Functional Significance, Antioxidants & Redox Signaling, vol.14, issue.12, pp.2581-2642, 2011.
DOI : 10.1089/ars.2010.3551

C. Lindermayr, G. Saalbach, and J. Durner, Proteomic Identification of S-Nitrosylated Proteins in Arabidopsis, PLANT PHYSIOLOGY, vol.137, issue.3, pp.921-930, 2005.
DOI : 10.1104/pp.104.058719

K. Finnie, C. Svensson, and B. , Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms, J. Exp. Bot. Biochem. J, vol.61, issue.378, pp.735-745, 1042.

W. Majeran, Y. Cai, Q. Sun, V. Wijk, and K. J. , Functional Differentiation of Bundle Sheath and Mesophyll Maize Chloroplasts Determined by Comparative Proteomics, THE PLANT CELL ONLINE, vol.17, issue.11, pp.3111-3140, 2005.
DOI : 10.1105/tpc.105.035519

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1276033

C. Marchand, L. Marechal, P. Meyer, Y. Decottignies, and P. , Comparative proteomic approaches for the isolation of proteins interacting with thioredoxin, PROTEOMICS, vol.138, issue.1, pp.6528-6537, 2006.
DOI : 10.1002/pmic.200600443

URL : https://hal.archives-ouvertes.fr/hal-00164223

C. Marchand, L. Maréchal, P. Meyer, Y. Miginiac-maslow, M. Issakidis-bourguet et al., New targets of Arabidopsis thioredoxins revealed by proteomic analysis, PROTEOMICS, vol.4, issue.9, pp.2696-2706, 2004.
DOI : 10.1002/pmic.200400805

URL : https://hal.archives-ouvertes.fr/hal-00169106

C. H. Marchand, H. Vanacker, V. Collin, E. Issakidis-bourguet, P. L. Marechal et al., Thioredoxin targets in Arabidopsis roots, PROTEOMICS, vol.278, issue.13, pp.2418-2428, 2010.
DOI : 10.1074/mcp.M600250-MCP200

URL : https://hal.archives-ouvertes.fr/hal-01183616

Y. Marcus, H. Altman-gueta, A. Finkler, and M. Gurevitz, Dual Role of Cysteine 172 in Redox Regulation of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase Activity and Degradation, Journal of Bacteriology, vol.185, issue.5, pp.1509-1517, 2003.
DOI : 10.1128/JB.185.5.1509-1517.2003

J. Marin-navarro, J. Moreno, and J. Loscalzo, Cysteines 449 and 459 modulate the reduction-oxidation conformational changes of ribulose 1.5-bisphosphate carboxylase/oxygenase and the translocation of the enzyme to membranes during stress S-nitrosothiols and the Snitrosoproteome of the cardiovascular system, Plant Cell Environ. Antioxid. Redox Signal, vol.29, issue.18, pp.898-908, 2006.

L. Marri, A. Pesaresi, C. Valerio, D. Lamba, P. Pupillo et al., In vitro characterization of Arabidopsis CP12 isoforms reveals common biochemical and molecular properties, Journal of Plant Physiology, vol.167, issue.12, pp.939-950, 2010.
DOI : 10.1016/j.jplph.2010.02.008

L. Marri, P. Trost, P. Pupillo, and F. Sparla, Reconstitution and Properties of the Recombinant Glyceraldehyde-3-Phosphate Dehydrogenase/CP12/Phosphoribulokinase Supramolecular Complex of Arabidopsis, PLANT PHYSIOLOGY, vol.139, issue.3, pp.1433-1443, 2005.
DOI : 10.1104/pp.105.068445

L. Marri, P. Trost, X. Trivelli, L. Gonnelli, P. Pupillo et al., Spontaneous Assembly of Photosynthetic Supramolecular Complexes as Mediated by the Intrinsically Unstructured Protein CP12, Journal of Biological Chemistry, vol.270, issue.4, pp.1831-1838, 2008.
DOI : 10.1110/ps.2760102

URL : https://hal.archives-ouvertes.fr/hal-00642077

L. Marri, M. Zaffagnini, V. Collin, E. Issakidis-bourguet, S. D. Lemaire et al., Prompt and Easy Activation by Specific Thioredoxins of Calvin Cycle Enzymes of Arabidopsis thaliana Associated in the GAPDH, PRK Supramolecular Complex. Mol. Plant, vol.12, issue.2, pp.259-269, 1093.

W. Martin, A. Z. Mustafa, K. Henze, and C. Schnarrenberger, Higher-plant chloroplast and cytosolic fructose-1,6-bisphophosphatase isoenzymes: origins via duplication rather than prokaryote-eukaryote divergence, Plant Molecular Biology, vol.9, issue.3, pp.485-491, 1007.
DOI : 10.1007/BF00019100

C. Marx, J. H. Wong, and B. B. Buchanan, Thioredoxin and germinating barley: targets and protein redox changes, Planta, vol.216, pp.454-460, 2003.

H. Matsumura, A. Kai, T. Maeda, M. Tamoi, A. Satoh et al., Structure Basis for the Regulation of Glyceraldehyde-3-Phosphate Dehydrogenase Activity via the Intrinsically Disordered Protein CP12, Structure, vol.19, issue.12, pp.1846-1854, 2011.
DOI : 10.1016/j.str.2011.08.016

D. W. Mckinney, B. B. Buchanan, and R. A. Wolosiuk, Activation of chloroplast ATPase by reduced thioredoxin, Phytochemistry, vol.17, issue.4, pp.794-795, 1978.
DOI : 10.1016/S0031-9422(00)94230-4

D. W. Mckinney, B. B. Buchanan, and R. A. Wolosiuk, Association of a thioredoxin-like protein with chloroplast coupling factor (CF1), Biochemical and Biophysical Research Communications, vol.86, issue.4, pp.1178-1184, 1979.
DOI : 10.1016/0006-291X(79)90241-9

B. A. Melandri, A. Baccarini, and P. Pupillo, Glyceraldehyde-3-phosphate dehydrogenase in photosynthetic tissues: Kinetic evidence for competitivity between NADP and NAD, Biochemical and Biophysical Research Communications, vol.33, issue.1, pp.160-164, 1968.
DOI : 10.1016/0006-291X(68)90272-6

L. Meng, J. H. Wong, L. J. Feldman, P. G. Lemaux, and B. B. Buchanan, A membrane-associated thioredoxin required for plant growth moves from cell Frontiers in Plant Science | Plant Physiology, p.18, 2010.

?. Calvin and . Benson, cycle redox regulation to cell, suggestive of a role in intercellular communication, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.3900-3905

D. Mestres-ortega, M. , and Y. , The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin, Gene, vol.240, issue.2, pp.307-316, 1999.
DOI : 10.1016/S0378-1119(99)00448-5

L. Michelet, M. Zaffagnini, C. Marchand, V. Collin, P. Decottignies et al., Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants, Proceedings of the National Academy of Sciences, vol.335, issue.1, pp.16478-16483, 2005.
DOI : 10.1006/abbi.1996.0482

L. Michelet, M. Zaffagnini, V. Massot, E. Keryer, H. Vanacker et al., Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore, Photosynthesis Research, vol.279, issue.112, pp.225-245, 2006.
DOI : 10.1016/S0167-4838(99)00119-3

A. K. Michels, N. Wedel, and P. G. Kroth, Diatom Plastids Possess a Phosphoribulokinase with an Altered Regulation and No Oxidative Pentose Phosphate Pathway, PLANT PHYSIOLOGY, vol.137, issue.3, pp.911-920, 2005.
DOI : 10.1104/pp.104.055285

J. J. Mieyal, M. M. Gallogly, S. Qanungo, E. A. Sabens, and M. D. Shelton, -Glutathionylation, Antioxidants & Redox Signaling, vol.10, issue.11, 1941.
DOI : 10.1089/ars.2008.2089

M. Miginiac-maslow and J. M. And-lancelin, Intrasteric inhibition in redox signalling: light activation of NADP-malate dehydrogenase, Photosynthesis Research, vol.72, issue.1, pp.1-12, 2002.
DOI : 10.1023/A:1016099228450

. Alpha-glucan and . Water-dikinase, GWD): a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.1785-1790

S. Milanez, R. J. Mural, and F. C. Hartman, Roles of cysteinyl residues of phosphoribulokinase as examined by site-directed mutagenesis, J. Biol. Chem, vol.266, pp.10694-10699, 1991.

J. Moreno, M. J. Garcia-murria, and J. Marin-navarro, Redox modulation of Rubisco conformation and activity through its cysteine residues, Journal of Experimental Botany, vol.59, issue.7, pp.1605-1614, 2008.
DOI : 10.1093/jxb/erm310

J. Moreno and R. J. Spreitzer, C172S Substitution in the Chloroplast-encoded Large Subunit Affects Stability and Stress-induced Turnover of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase, Journal of Biological Chemistry, vol.200, issue.38, pp.26789-26793, 1999.
DOI : 10.1111/j.1432-1033.1991.tb16192.x

K. Motohashi, T. K. Hisabori, and T. Hisabori, CcdA Is a Thylakoid Membrane Protein Required for the Transfer of Reducing Equivalents from Stroma to Thylakoid Lumen in the Higher Plant Chloroplast, Antioxidants & Redox Signaling, vol.13, issue.8, pp.1169-11763138, 2006.
DOI : 10.1089/ars.2010.3138

K. Motohashi, A. Kondoh, M. T. Stumpp, and T. Hisabori, Comprehensive survey of proteins targeted by chloroplast thioredoxin, Proceedings of the National Academy of Sciences, vol.276, issue.32, pp.11224-11229, 2001.
DOI : 10.1074/jbc.M101822200

O. Mueller-cajar, M. Stotz, and A. Bracher, Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases, Photosynthesis Research, vol.27, issue.2, 2013.
DOI : 10.1046/j.1365-3040.2004.01142.x

M. Muthuramalingam, A. Matros, R. Scheibe, H. P. Mock, and K. J. Dietz, The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo, Frontiers in Plant Science, vol.4, 2013.
DOI : 10.3389/fpls.2013.00054

N. Navrot, E. Gelhaye, J. P. Jacquot, and N. Rouhier, Identification of a new family of plant proteins loosely related to glutaredoxins with four CxxC motives, Photosynthesis Research, vol.136, issue.2-3, pp.71-79, 2006.
DOI : 10.1074/jbc.M203496200

G. Nee, M. Zaffagnini, P. Trost, and E. Bourguet, Redox regulation of chloroplastic glucose-6-phosphate dehydrogenase: A new role for f-type thioredoxin, FEBS Letters, vol.3, issue.17, pp.2827-2832, 2009.
DOI : 10.1371/journal.pone.0001994

S. Nicholson, J. S. Easterby, R. A. Powls, and B. B. Buchanan, Properties of a multimeric protein complex from chloroplasts possessing potential activities of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase, European Journal of Biochemistry, vol.722, issue.2, pp.423-431, 1981.
DOI : 10.1016/0005-2744(78)90318-2

G. Noctor, A. Mhamdi, S. Chaouch, Y. Han, J. Neukermans et al., Glutathione in plants: an integrated overview Algal glyceraldehyde- 3-phosphate dehydrogenases. Conversion of the NADH-linked enzyme of Scenedesmus obliquus into a form which preferentially uses NADPH as coenzyme, Plant Cell Environ. Biochim. Biophys. Acta, vol.35, issue.44976, pp.454-484, 1976.

O. Ocheretina, I. Haferkamp, H. Tellioglu, and R. Scheibe, Light-modulated NADP-malate dehydrogenases from mossfern and green algae: insights into evolution of the enzyme's regulation, Gene, vol.258, issue.1-2, pp.147-154, 2000.
DOI : 10.1016/S0378-1119(00)00409-1

T. A. Pedersen, M. Kirk, and J. A. Bassham, Light-Dark Transients in Levels of Intermediate Compounds during Photosynthesis in Air-Adapted Chlorella, Physiologia Plantarum, vol.112, issue.1, 1966.
DOI : 10.1021/ja01627a050

M. E. Pérez-pérez, F. J. Florencio, and M. Lindahl, Selecting thioredoxins for disulphide proteomics: Target proteomes of three thioredoxins from the cyanobacterium Synechocystis sp. PCC 6803, PROTEOMICS, vol.181, issue.S1, pp.186-195, 2006.
DOI : 10.1128/jb.179.14.4513-4522.1997

M. E. Pérez-pérez, E. Martin-figueroa, F. , F. J. Petersen, J. Teich et al., Photosynthetic regulation of the cyanobacterium Synechocystis sp. PCC 6803 thioredoxin system and functional analysis of TrxB (Trx x) and TrxQ (Trx y) thioredoxins The GapA/B gene duplication marks the origin of Streptophyta (charophytes and land plants) The hidden function of photosynthesis: a sensing system for environmental conditions that regulates plant acclimation responses, Mol. Plant Mol. Biol. Evol. Protoplasma, vol.2, issue.249, pp.270-283, 2006.

K. Pohlmeyer, B. K. Paap, J. Soll, and N. Wedel, CP12: a small nuclear-encoded chloroplast protein provides novel insights into higher-plant GAPDH evolution, Plant Molecular Biology, vol.79, issue.5, pp.969-978, 1007.
DOI : 10.1007/BF00020493

M. A. Porter and F. C. Hartman, Catalytic nonessentiality of an active-site cysteinyl residue of phosphoribulokinase, J. Biol. Chem, vol.263, pp.14846-14849, 1988.

M. A. Porter and F. C. Hartman, Exploration of the function of a regulatory sulfhydryl of phosphoribulokinase from spinach, Archives of Biochemistry and Biophysics, vol.281, issue.2, pp.330-334, 1990.
DOI : 10.1016/0003-9861(90)90452-5

M. A. Porter, S. Milanez, C. D. Stringer, and F. C. Hartman, Purification and characterization of ribulose-5-phosphate kinase from spinach, Archives of Biochemistry and Biophysics, vol.245, issue.1, pp.14-23, 1986.
DOI : 10.1016/0003-9861(86)90185-2

A. R. Portis and . Jr, Rubisco activase -Rubisco's catalytic chaperone, Photosynthesis Research, vol.75, issue.1, pp.11-27, 2003.
DOI : 10.1023/A:1022458108678

A. R. Portis, . Jr, C. Li, D. Wang, and M. E. Salvucci, Regulation of Rubisco activase and its interaction with Rubisco, Journal of Experimental Botany, vol.59, issue.7, pp.1597-1604, 2008.
DOI : 10.1093/jxb/erm240

P. Pupillo and G. G. Piccari, The effect of NADP on the subunit structure and activity of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase, Archives of Biochemistry and Biophysics, vol.154, issue.1, pp.324-331, 1973.
DOI : 10.1016/0003-9861(73)90064-7

C. A. Raines, J. C. Lloyd, N. M. Willingham, S. Potts, and T. A. Dyer, cDNA and gene sequences of wheat chloroplast sedoheptulose-1,7-bisphosphatase reveal homology with fructose-1,6-bisphosphatases, European Journal of Biochemistry, vol.70, issue.3, pp.1053-1059, 1992.
DOI : 10.1146/annurev.arplant.39.1.533

P. Rey, S. Cuine, F. Eymery, J. Garin, M. Court et al., Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses, The Plant Journal, vol.98, issue.235, pp.31-42, 2005.
DOI : 10.1042/bst0110591

S. Rivas, A. Rougon-cardoso, M. Smoker, L. Schauser, H. Yoshioka et al., CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence, The EMBO Journal, vol.268, issue.10, pp.2156-2165, 2004.
DOI : 10.1016/0092-8674(95)90208-2

S. Robbens, J. Petersen, H. Brinkmann, P. Rouze, Y. Van-de-peer et al., Unique regulation of the Calvin cycle in the ultrasmall green alga Ostreococcus Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability, J. Mol. Evol. Mol. Cell Biol, vol.64, issue.28, pp.601-604, 1128.

R. J. Rodriguez-suarez, S. Mora-garcia, and R. A. Wolosiuk, Characterization of Cysteine Residues Involved in the Reductive Activation and the Structural Stability of Rapeseed (Brassica napus) Chloroplast Fructose-1,6-bisphosphatase, Biochemical and Biophysical Research Communications, vol.232, issue.2, pp.388-3936242, 1997.
DOI : 10.1006/bbrc.1997.6242

M. C. Romero-puertas, N. Campostrini, A. Matte, P. G. Righetti, M. Perazzolli et al., Proteomic analysis of S-nitrosylated proteins inArabidopsis thaliana undergoing hypersensitive response, PROTEOMICS, vol.19, issue.7, pp.1459-1469, 2008.
DOI : 10.1104/pp.111.3.735

N. Rouhier, S. D. Lemaire, and J. P. Jacquot, The Role of Glutathione in Photosynthetic Organisms: Emerging Functions for Glutaredoxins and Glutathionylation, Annual Review of Plant Biology, vol.59, issue.1, pp.143-166, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092811

N. Rouhier, A. Villarejo, M. Srivastava, E. Gelhaye, O. Keech et al., Identification of Plant Glutaredoxin Targets, Antioxidants & Redox Signaling, vol.7, issue.7-8, pp.919-929, 2005.
DOI : 10.1089/ars.2005.7.919

E. Ruelland, M. Lemaire-chamley, L. Maréchal, P. Issakidis-bourguet, E. Djukic et al., An Internal Cysteine Is Involved in the Thioredoxin-dependent Activation of Sorghum Leaf NADP-malate Dehydrogenase, Journal of Biological Chemistry, vol.275, issue.32, 1997.
DOI : 10.1016/S0014-5793(96)01459-7

E. Ruelland and M. Miginiac-maslow, Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition?, Trends in Plant Science, vol.4, issue.4, pp.136-141, 1999.
DOI : 10.1016/S1360-1385(99)01391-6

M. E. Salvucci, F. J. Van-de-loo, and D. Stecher, Two isoforms of Rubisco activase in cotton, the products of separate genes not alternative splicing, Planta, vol.216, pp.736-744, 2003.

M. E. Salvucci, J. M. Werneke, W. L. Ogren, and A. R. Portis, Purification and Species Distribution of Rubisco Activase, PLANT PHYSIOLOGY, vol.84, issue.3, pp.930-936, 1987.
DOI : 10.1104/pp.84.3.930

S. Scagliarini, P. Trost, P. Pupillo, and V. Valenti, Light activation and molecular-mass changes of NAD(P)-glyceraldehyde 3-phosphate dehydrogenase of spinach and maize leaves, Planta, vol.190, issue.3, pp.313-319, 1007.
DOI : 10.1007/BF00196959

R. Scheibe, Malate valves to balance cellular energy supply, Physiologia Plantarum, vol.17, issue.1, 2004.
DOI : 10.1046/j.1365-313x.2000.00840.x

R. Scheibe and K. J. Dietz, Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells, Plant, Cell & Environment, vol.19, issue.2, pp.202-216, 2012.
DOI : 10.1016/j.tcb.2009.05.007

Y. Steiner, S. Matthai, K. Pfannschmidt, and T. , Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression, Eur. J. Biochem. Proteomics, vol.269, issue.10, pp.5617-5624, 2010.

P. Schürmann and B. B. Buchanan, Role of ferredoxin in the activation of sedoheptulose diphosphatase in isolated chloroplasts, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.376, issue.1, pp.189-192, 1975.
DOI : 10.1016/0005-2728(75)90217-0

P. Schürmann and B. B. Buchanan, The Ferredoxin/Thioredoxin System of Oxygenic Photosynthesis, Antioxidants & Redox Signaling, vol.10, issue.7, pp.1235-1274, 1931.
DOI : 10.1089/ars.2007.1931

P. Schürmann and J. P. Jacquot, PLANT THIOREDOXIN SYSTEMS REVISITED, Annual Review of Plant Physiology and Plant Molecular Biology, vol.51, issue.1, 2000.
DOI : 10.1146/annurev.arplant.51.1.371

R. Sengupta and A. Holmgren, -Nitrosylation, Antioxidants & Redox Signaling, vol.18, issue.3, pp.259-269, 2013.
DOI : 10.1089/ars.2012.4716

URL : https://hal.archives-ouvertes.fr/in2p3-01323136

F. Sparla, A. Costa, F. Lo-schiavo, P. Pupillo, and P. Trost, Redox Regulation of a Novel Plastid-Targeted beta-Amylase of Arabidopsis, PLANT PHYSIOLOGY, vol.141, issue.3, pp.840-850, 2006.
DOI : 10.1104/pp.106.079186

F. Sparla, P. Pupillo, and P. Trost, The C-terminal Extension of Glyceraldehyde-3-phosphate Dehydrogenase Subunit B Acts as an Autoinhibitory Domain Regulated by Thioredoxins and Nicotinamide Adenine Dinucleotide, Journal of Biological Chemistry, vol.9, issue.47, pp.44946-44952, 2002.
DOI : 10.1104/pp.95.4.1131

F. Sparla, M. Zaffagnini, N. Wedel, R. Scheibe, P. Pupillo et al., Regulation of Photosynthetic GAPDH Dissected by Mutants, PLANT PHYSIOLOGY, vol.138, issue.4, pp.2210-2219, 2005.
DOI : 10.1104/pp.105.062117

D. N. Stanley, C. A. Raines, and C. A. Kerfeld, Comparative Analysis of 126 Cyanobacterial Genomes Reveals Evidence of Functional Diversity Among Homologs of the Redox-Regulated CP12 Protein, PLANT PHYSIOLOGY, vol.161, issue.2, pp.824-835, 2013.
DOI : 10.1104/pp.112.210542

M. Stotz, O. Mueller-cajar, S. Ciniawsky, P. Wendler, F. U. Hartl et al., Structure of green-type Rubisco activase from tobacco, Nature Structural & Molecular Biology, vol.15, issue.12, pp.1366-1370, 2011.
DOI : 10.1093/bioinformatics/15.4.305

M. Tamoi, T. Ishikawa, T. Takeda, and S. Shigeoka, Molecular Characterization and Resistance to Hydrogen Peroxide of Two Fructose-1,6-bisphosphatases fromSynechococcusPCC 7942, Archives of Biochemistry and Biophysics, vol.334, issue.1, pp.27-360425, 1996.
DOI : 10.1006/abbi.1996.0425

M. Tamoi, T. Miyazaki, T. Fukamizo, and S. Shigeoka, The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions, The Plant Journal, vol.396, issue.4, pp.504-513, 2005.
DOI : 10.1093/oxfordjournals.pcp.a029536

G. Tanou, P. Filippou, M. Belghazi, D. Job, G. Diamantidis et al., Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress, The Plant Journal, vol.56, issue.4, pp.585-599, 2009.
DOI : 10.1093/jxb/eri319

L. Tarrago, E. Laugier, M. Zaffagnini, C. Marchand, L. Marechal et al., Methionine Sulfoxide Reductases B by Glutaredoxins and Thioredoxins, Journal of Biological Chemistry, vol.25, issue.28, pp.18963-18971, 2009.
DOI : 10.1042/BST20051375

URL : http://www.jbc.org/content/284/28/18963.full.pdf

L. Tarrago, E. Laugier, M. Zaffagnini, C. H. Marchand, L. Marechal et al., Plant Thioredoxin CDSP32 Regenerates 1-Cys Methionine Sulfoxide Reductase B Activity through the Direct Reduction of Sulfenic Acid, Journal of Biological Chemistry, vol.396, issue.20, pp.14964-14972, 2010.
DOI : 10.1021/bi973035t

URL : https://hal.archives-ouvertes.fr/hal-01183617

L. R. Thompson, Q. Zeng, L. Kelly, K. H. Huang, A. U. Singer et al., Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism, Proceedings of the National Academy of Sciences, vol.12, issue.11, pp.757-764, 2011.
DOI : 10.1111/j.1462-2920.2010.02280.x

P. Trost, S. Fermani, L. Marri, M. Zaffagnini, G. Falini et al., Thioredoxin-dependent regulation of photosynthetic glyceraldehyde-3-phosphate dehydrogenase: autonomous vs. CP12-dependent mechanisms, Photosynthesis Research, vol.65, issue.2-3, pp.263-2753, 1007.
DOI : 10.1016/0167-4838(96)00074-X

Y. Tsukamoto, Y. Fukushima, S. Hara, and T. Hisabori, Redox Control of the Activity of Phosphoglycerate Kinase in Synechocystis sp. PCC6803, Plant and Cell Physiology, vol.54, issue.4, pp.484-491, 2013.
DOI : 10.1093/pcp/pct002

M. Vescovi, M. Zaffagnini, M. Festa, P. Trost, F. Lo-schiavo et al., Nuclear Accumulation of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Cadmium-Stressed Arabidopsis Roots, PLANT PHYSIOLOGY, vol.162, issue.1, pp.333-346, 2013.
DOI : 10.1104/pp.113.215194

V. Villeret, S. Huang, Y. Zhang, Y. Xue, and W. N. Lipscomb, Crystal structure of spinach chloroplast fructose-1,6-bisphosphatase at 2.8 .ANG. resolution, Biochemistry, vol.34, issue.13, pp.4299-4306, 1021.
DOI : 10.1021/bi00013a019

A. Wadano, K. Nishikawa, T. Hirahashi, R. Satoh, and T. Iwaki, Reaction mechanism of phosphoribulokinase from a cyanobacterium, Synechococcus PCC7942, Photosynthesis Research, vol.56, issue.1, pp.27-33, 1998.
DOI : 10.1023/A:1005979801741

D. Wang, A. R. Portis, and . Jr, Increased sensitivity of oxidized large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase to ADP inhibition is due to an interaction between its carboxyl Frontiers in Plant Science | Plant Physiology, p.20, 2006.

O. Wara-aswapati, R. J. Kemble, and J. W. Bradbeer, Activation of Glyceraldehyde-Phosphate Dehydrogenase (NADP) and Phosphoribulokinase in Phaseolus vulgaris Leaf Extracts Involves the Dissociation of Oligomers, PLANT PHYSIOLOGY, vol.66, issue.1, pp.25241-25249, 1980.
DOI : 10.1104/pp.66.1.34

N. Wedel and J. Soll, Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/ glyceraldehyde-3-phosphate dehydrogenase complex dissociation, Proc. Natl, 1998.
DOI : 10.1006/abbi.1995.0031

N. Wedel, J. Soll, and B. K. Paap, CP12 provides a new mode of light regulation of Calvin cycle activity in higher plants, Proceedings of the National Academy of Sciences, vol.13, issue.1, pp.10479-10484, 1997.
DOI : 10.1007/BF00027337

I. Wenderoth, R. Scheibe, V. Schaewen, and A. , Identification of the Cysteine Residues Involved in Redox Modification of Plant Plastidic Glucose-6-phosphate Dehydrogenase, Journal of Biological Chemistry, vol.269, issue.43, pp.26985-26990, 1997.
DOI : 10.1104/pp.85.2.598

J. M. Werneke and W. L. Ogren, Structure of an Arabidopsis thaliana cDNA encoding rubisco activase, Nucleic Acids Res, vol.17, 1989.

R. A. Wolosiuk and B. B. Buchanan, Studies on the regulation of chloroplast NADP-linked glyceraldehyde-3-phosphate dehydrogenase, J. Biol. Chem, vol.251, pp.6456-6461, 1976.

R. A. Wolosiuk and B. B. Buchanan, Activation of Chloroplast NADP-linked Glyceraldehyde-3-Phosphate Dehydrogenase by the Ferredoxin/Thioredoxin System, PLANT PHYSIOLOGY, vol.61, issue.4, pp.669-671, 1978.
DOI : 10.1104/pp.61.4.669

R. A. Wolosiuk and B. B. Buchanan, Regulation of chloroplast phosphoribulokinase by the ferredoxin/thioredoxin system, Archives of Biochemistry and Biophysics, vol.189, issue.1, pp.97-101, 1978.
DOI : 10.1016/0003-9861(78)90119-4

R. A. Wolosiuk, N. A. Crawford, B. C. Yee, and B. B. Buchanan, Isolation of three thioredoxins from spinach leaves, J. Biol. Chem, vol.254, pp.1627-1632, 1979.

J. H. Wong, Y. Balmer, N. Cai, C. K. Tanaka, W. H. Vensel et al., Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics, FEBS Letters, vol.46, issue.1-3, pp.151-156, 2003.
DOI : 10.1023/A:1010697331184

J. H. Wong, N. Cai, Y. Balmer, C. K. Tanaka, W. H. Vensel et al., Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches, Phytochemistry, vol.65, issue.11, pp.1629-1640, 2004.
DOI : 10.1016/j.phytochem.2004.05.010

D. Yamazaki, K. Motohashi, T. Kasama, Y. Hara, and T. Hisabori, Target Proteins of the Cytosolic Thioredoxins in Arabidopsis thaliana, Plant and Cell Physiology, vol.45, issue.1, pp.18-27, 2004.
DOI : 10.1093/pcp/pch019

H. Yano and M. Kuroda, Disulfide proteome yields a detailed understanding of redox regulations: A model study of thioredoxin-linked reactions in seed germination, PROTEOMICS, vol.101, issue.1, pp.294-300, 2006.
DOI : 10.1002/pmic.200402033

H. Yano, J. H. Wong, Y. M. Lee, M. J. Cho, and B. B. Buchanan, A strategy for the identification of proteins targeted by thioredoxin, Proceedings of the National Academy of Sciences, vol.314, issue.2, pp.4794-4799, 2001.
DOI : 10.1006/abbi.1994.1439

Z. Yin, F. Meng, H. Song, X. Wang, X. Xu et al., Expression Quantitative Trait Loci Analysis of Two Genes Encoding Rubisco Activase in Soybean, PLANT PHYSIOLOGY, vol.152, issue.3, pp.1625-1637, 2010.
DOI : 10.1104/pp.109.148312

I. Yosef, V. Irihimovitch, J. A. Knopf, I. Cohen, I. Orr-dahan et al., RNA binding activity of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit from Chlamydomonas reinhardtii Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey, J. Biol. Chem. Mol. Cell Proteomics, vol.279, issue.11, pp.10148-10156, 2004.

M. Zaffagnini, M. Bedhomme, S. D. Lemaire, and P. Trost, The emerging roles of protein glutathionylation in chloroplasts, Plant Science, vol.185, issue.186, pp.185-186, 2012.
DOI : 10.1016/j.plantsci.2012.01.005

M. Zaffagnini, M. Bedhomme, C. H. Marchand, S. Morisse, P. Trost et al., Redox Regulation in Photosynthetic Organisms: Focus on Glutathionylation, Antioxidants & Redox Signaling, vol.16, issue.6, pp.567-5864255, 2011.
DOI : 10.1089/ars.2011.4255

M. Zaffagnini, L. Michelet, C. Marchand, F. Sparla, P. Decottignies et al., The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation, FEBS Journal, vol.138, issue.1, pp.212-226, 2007.
DOI : 10.1104/pp.105.062117

M. Zaffagnini, L. Michelet, V. Massot, P. Trost, and S. D. Lemaire, Reveals the Unique Properties of a Chloroplastic CGFS-type Glutaredoxin, Journal of Biological Chemistry, vol.348, issue.14, pp.8868-8876, 2008.
DOI : 10.1007/s00294-007-0128-z

M. Zaffagnini, L. Michelet, C. Sciabolini, D. Giacinto, N. Morisse et al., High-Resolution Crystal Structure and Redox Properties of Chloroplastic Triosephosphate Isomerase from Chlamydomonas reinhardtii, Molecular Plant, vol.7, issue.1, 2013.
DOI : 10.1093/mp/sst139

N. Zhang, P. Schürmann, A. R. Portis, and . Jr, Characterization of the regulatory function of the 46-kDa isoform of Rubisco activase from Arabidopsis, Photosynthesis Research, vol.68, issue.1, pp.29-37, 2001.
DOI : 10.1023/A:1011845506196

H. Ziegler and I. Ziegler, The influence of light on the NADP+-dependent glycerinaldehyde-3-phosphate-dehydrogenase, Planta, vol.70, issue.4, pp.369-380, 1965.
DOI : 10.1007/BF00385415

H. Ziegler and I. Ziegler, The light-induced synthesis of the NADP+-dependent glycerin-aldehyde-3-phosphate-dehydrogenase, Planta, vol.41, issue.2, pp.111-123, 1966.
DOI : 10.1007/BF00386559