J. Thiery, H. Acloque, R. Huang, and M. Nieto, Epithelial-Mesenchymal Transitions in Development and Disease, Cell, vol.139, issue.5, pp.871-890, 2009.
DOI : 10.1016/j.cell.2009.11.007

URL : http://doi.org/10.1016/j.cell.2009.11.007

J. Yang, S. Mani, J. Donaher, S. Ramaswamy, R. Itzykson et al., Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis, Cell, vol.117, issue.7, pp.927-939, 2004.
DOI : 10.1016/j.cell.2004.06.006

A. Ghoul, M. Serova, L. Astorgues-xerri, I. Bieche, G. Bousquet et al., Epithelial-to-Mesenchymal Transition and Resistance to Ingenol 3-Angelate, a Novel Protein Kinase C Modulator, in Colon Cancer Cells, Cancer Research, vol.69, issue.10, pp.4260-4269, 2009.
DOI : 10.1158/0008-5472.CAN-08-2837

Z. Wang, Y. Li, D. Kong, S. Banerjee, A. Ahmad et al., Acquisition of Epithelial-Mesenchymal Transition Phenotype of Gemcitabine-Resistant Pancreatic Cancer Cells Is Linked with Activation of the Notch Signaling Pathway, Cancer Research, vol.69, issue.6, pp.2400-2407, 2009.
DOI : 10.1158/0008-5472.CAN-08-4312

C. Creighton, X. Li, M. Landis, J. Dixon, V. Neumeister et al., Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features, Proceedings of the National Academy of Sciences, vol.172, issue.7, pp.13820-13825, 2009.
DOI : 10.1083/jcb.200601018

URL : http://www.pnas.org/content/106/33/13820.full.pdf

S. Mani, W. Guo, M. Liao, E. Eaton, A. Ayyanan et al., The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells, Cell, vol.133, issue.4, pp.704-715, 2008.
DOI : 10.1016/j.cell.2008.03.027

S. Hiraguri, T. Godfrey, H. Nakamura, J. Graff, C. Collins et al., Mechanisms of inactivation of E-cadherin in breast cancer cell lines, Cancer Res, vol.58, pp.1972-1977, 1998.

L. Vrba, J. Garbe, M. Stampfer, and B. Futscher, Epigenetic regulation of normal human mammary cell type-specific miRNAs, Genome Research, vol.21, issue.12, pp.2026-2037, 2011.
DOI : 10.1101/gr.123935.111

O. Mcdonald, H. Wu, W. Timp, A. Doi, and A. Feinberg, Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition, Nature Structural & Molecular Biology, vol.18, issue.8, pp.867-874, 2011.
DOI : 10.1016/j.ymeth.2006.07.030

Y. Ruike, Y. Imanaka, F. Sato, K. Shimizu, and G. Tsujimoto, Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing, BMC Genomics, vol.11, issue.1, p.137, 2010.
DOI : 10.1186/1471-2164-11-137

C. Wu, Y. Tsai, M. Wu, S. Teng, and K. Wu, Epigenetic reprogramming and post-transcriptional regulation during the epithelial???mesenchymal transition, Trends in Genetics, vol.28, issue.9, pp.454-463, 2012.
DOI : 10.1016/j.tig.2012.05.005

B. Bernstein, T. Mikkelsen, X. Xie, M. Kamal, D. Huebert et al., A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells, Cell, vol.125, issue.2, pp.315-326, 2006.
DOI : 10.1016/j.cell.2006.02.041

R. Lister, M. Pelizzola, R. Dowen, R. Hawkins, G. Hon et al., Human DNA methylomes at base resolution show widespread epigenomic differences, Nature, vol.10, issue.7271, pp.315-322, 2009.
DOI : 10.1038/nature08514

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857523

K. Hansen, W. Timp, H. Bravo, S. Sabunciyan, B. Langmead et al., Increased methylation variation in epigenetic domains across cancer types, Nature Genetics, vol.48, issue.8, pp.768-775, 2011.
DOI : 10.1016/j.freeradbiomed.2008.09.028

R. Lister, M. Pelizzola, Y. Kida, R. Hawkins, J. Nery et al., Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells, Nature, vol.133, issue.7336, pp.68-73, 2011.
DOI : 10.1016/j.cell.2008.03.029

D. Aran, G. Toperoff, M. Rosenberg, and A. Hellman, Replication timing-related and gene body-specific methylation of active human genes, Human Molecular Genetics, vol.20, issue.4, pp.670-680, 2011.
DOI : 10.1093/hmg/ddq513

C. Popp, W. Dean, S. Feng, S. Cokus, S. Andrews et al., Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency, Nature, vol.324, issue.7284, pp.1101-1105, 2010.
DOI : 10.1038/nature08829

Y. Shann, C. Cheng, C. Chiao, D. Chen, P. Li et al., Genome-wide mapping and characterization of hypomethylated sites in human tissues and breast cancer cell lines, Genome Research, vol.18, issue.5, pp.791-801, 2008.
DOI : 10.1101/gr.070961.107

D. Schroeder, P. Lott, I. Korf, and J. Lasalle, Large-scale methylation domains mark a functional subset of neuronally expressed genes, Genome Research, vol.21, issue.10, pp.1583-1591, 2011.
DOI : 10.1101/gr.119131.110

G. Hon, R. Hawkins, O. Caballero, C. Lo, R. Lister et al., Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer, Genome Research, vol.22, issue.2, pp.246-258, 2012.
DOI : 10.1101/gr.125872.111

G. Dontu, W. Abdallah, J. Foley, K. Jackson, M. Clarke et al., In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells, Genes & Development, vol.17, issue.10, pp.1253-1270, 2003.
DOI : 10.1101/gad.1061803

N. Dumont, M. Wilson, Y. Crawford, P. Reynolds, M. Sigaroudinia et al., Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers, Proceedings of the National Academy of Sciences, vol.6, issue.3, pp.14867-14872, 2008.
DOI : 10.1186/bcr778

J. Jelinek, S. Liang, Y. Lu, R. He, L. Ramagli et al., Conserved DNA methylation patterns in healthy blood cells and extensive changes in leukemia measured by a new quantitative technique, Epigenetics, vol.59, issue.12, pp.1368-1378, 2012.
DOI : 10.1093/nar/30.1.207

B. Berman, D. Weisenberger, J. Aman, T. Hinoue, Z. Ramjan et al., Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina???associated domains, Nature Genetics, vol.12, issue.1, pp.40-46, 2011.
DOI : 10.1186/gb-2009-10-7-r79

C. Hader, A. Marlier, and L. Cantley, Mesenchymal???epithelial transition in epithelial response to injury: the role of Foxc2, Oncogene, vol.66, issue.7, pp.1031-1040, 2010.
DOI : 10.1038/nrm1331

S. Mani, Y. J. Brooks, M. Schwaninger, G. Zhou, A. Miura et al., Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers, Proceedings of the National Academy of Sciences, vol.17, issue.5, pp.10069-10074, 2007.
DOI : 10.1016/j.ceb.2005.08.001

B. Hollier, A. Tinnirello, S. Werden, K. Evans, J. Taube et al., expression links epithelialmesenchymal transition and stem cell properties in breast cancer, Cancer Res, vol.73, pp.21981-1992, 2013.
DOI : 10.1158/0008-5472.can-12-2962

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602160

A. Subramanian, P. Tamayo, V. Mootha, S. Mukherjee, B. Ebert et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proceedings of the National Academy of Sciences, vol.19, issue.18, pp.15545-15550, 2005.
DOI : 10.1093/bioinformatics/btg363

URL : http://www.pnas.org/content/102/43/15545.full.pdf

T. Onder, P. Gupta, S. Mani, Y. J. Lander, E. Weinberg et al., Loss of E-Cadherin Promotes Metastasis via Multiple Downstream Transcriptional Pathways, Cancer Research, vol.68, issue.10, pp.3645-3654, 2008.
DOI : 10.1158/0008-5472.CAN-07-2938

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.314.2823

M. Toyota, H. Suzuki, Y. Sasaki, R. Maruyama, K. Imai et al., Epigenetic Silencing of MicroRNA-34b/c and B-Cell Translocation Gene 4 Is Associated with CpG Island Methylation in Colorectal Cancer, Cancer Research, vol.68, issue.11, pp.4123-4132, 2008.
DOI : 10.1158/0008-5472.CAN-08-0325

E. Charafe-jauffret, C. Ginestier, F. Monville, P. Finetti, A. J. Cervera et al., Gene expression profiling of breast cell lines identifies potential new basal markers, Oncogene, vol.109, issue.15, pp.2273-2284, 2006.
DOI : 10.1155/2001/850531

URL : https://hal.archives-ouvertes.fr/hal-01431970

J. Taube, J. Herschkowitz, K. Komurov, A. Zhou, S. Gupta et al., Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes, Proceedings of the National Academy of Sciences, vol.1, issue.1, pp.15449-15454, 2010.
DOI : 10.1007/BF02096306

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2932589

M. Eckert, T. Lwin, A. Chang, J. Kim, E. Danis et al., Twist1-Induced Invadopodia Formation Promotes Tumor Metastasis, Cancer Cell, vol.19, issue.3, pp.372-386, 2011.
DOI : 10.1016/j.ccr.2011.01.036

URL : http://doi.org/10.1016/j.ccr.2011.01.036

L. Reinke, Y. Xu, and C. Cheng, Snail Represses the Splicing Regulator Epithelial Splicing Regulatory Protein 1 to Promote Epithelial-Mesenchymal Transition, Journal of Biological Chemistry, vol.287, issue.43, pp.36435-36442, 2012.
DOI : 10.1158/0008-5472.CAN-09-2788

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3476309

S. Bapat, J. V. Berry, N. Balch, C. Sharma, N. Kurrey et al., Multivalent epigenetic marks confer microenvironment-responsive epigenetic plasticity to ovarian cancer cells, Epigenetics, vol.25, issue.8, pp.716-729, 2010.
DOI : 10.1073/pnas.95.25.14863

URL : http://www.tandfonline.com/doi/pdf/10.4161/epi.5.8.13014?needAccess=true

C. Rosty, M. Sheffer, D. Tsafrir, N. Stransky, I. Tsafrir et al., Identification of a proliferation gene cluster associated with HPV E6/E7 expression level and viral DNA load in invasive cervical carcinoma, Oncogene, vol.9, issue.47, pp.7094-7104, 2005.
DOI : 10.1038/nrc798

C. Sotiriou, P. Wirapati, S. Loi, A. Harris, S. Fox et al., Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis, JNCI Journal of the National Cancer Institute, vol.98, issue.4, pp.262-272, 2006.
DOI : 10.1093/jnci/djj052

T. Cha, B. Zhou, W. Xia, Y. Wu, C. Yang et al., Akt-Mediated Phosphorylation of EZH2 Suppresses Methylation of Lysine 27 in Histone H3, Science, vol.310, issue.5746, pp.306-310, 2005.
DOI : 10.1126/science.1118947

S. Lee, Z. Li, Z. Wu, M. Aau, P. Guan et al., Context-Specific Regulation of NF-??B Target Gene Expression by EZH2 in Breast Cancers, Molecular Cell, vol.43, issue.5, pp.798-810, 2011.
DOI : 10.1016/j.molcel.2011.08.011

J. Tan, X. Yang, L. Zhuang, X. Jiang, W. Chen et al., Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells, Genes & Development, vol.21, issue.9, pp.1050-1063, 2007.
DOI : 10.1101/gad.1524107

E. Pujadas and A. Feinberg, Regulated Noise in the Epigenetic Landscape of Development and Disease, Cell, vol.148, issue.6, pp.1123-1131, 2012.
DOI : 10.1016/j.cell.2012.02.045

E. Vire, C. Brenner, R. Deplus, L. Blanchon, M. Fraga et al., The Polycomb group protein EZH2 directly controls DNA methylation, Nature, vol.439, issue.7078, pp.871-874, 2006.
DOI : 10.1038/sj.emboj.7600509

Y. Kondo, L. Shen, A. Cheng, S. Ahmed, Y. Boumber et al., Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation, Nature Genetics, vol.223, issue.6, pp.741-750, 2008.
DOI : 10.1093/nar/22.15.2990

K. Mcgarvey, E. Greene, J. Fahrner, T. Jenuwein, and S. Baylin, DNA Methylation and Complete Transcriptional Silencing of Cancer Genes Persist after Depletion of EZH2, Cancer Research, vol.67, issue.11, pp.5097-5102, 2007.
DOI : 10.1158/0008-5472.CAN-06-2029

S. Song, L. Poliseno, M. Song, U. Ala, K. Webster et al., MicroRNA-Antagonism Regulates Breast Cancer Stemness and Metastasis via TET-Family-Dependent Chromatin Remodeling, Cell, vol.154, issue.2, pp.311-324, 2013.
DOI : 10.1016/j.cell.2013.06.026

URL : http://doi.org/10.1016/j.cell.2013.06.026

R. Brown, L. Reinke, M. Damerow, D. Perez, L. Chodosh et al., CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression, Journal of Clinical Investigation, vol.121, issue.3, pp.1064-1074, 2011.
DOI : 10.1172/JCI44540DS1

C. Kleer, Q. Cao, S. Varambally, R. Shen, I. Ota et al., EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells, Proceedings of the National Academy of Sciences, vol.6, issue.10, pp.11606-11611, 2003.
DOI : 10.1016/S0092-8674(00)81683-9

C. Chang, J. Yang, W. Xia, C. Chen, X. Xie et al., EZH2 Promotes Expansion of Breast Tumor Initiating Cells through Activation of RAF1-??-Catenin Signaling, Cancer Cell, vol.19, issue.1, pp.86-100, 2011.
DOI : 10.1016/j.ccr.2010.10.035

G. Challen, D. Sun, M. Jeong, M. Luo, J. Jelinek et al., Dnmt3a is essential for hematopoietic stem cell differentiation, Nature Genetics, vol.75, issue.1, pp.23-31, 2011.
DOI : 10.1182/blood-2007-11-126227

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637952

Y. Zhang, T. Liu, C. Meyer, J. Eeckhoute, D. Johnson et al., Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137

C. Zang, D. Schones, C. Zeng, K. Cui, K. Zhao et al., A clustering approach for identification of enriched domains from histone modification ChIP-Seq data, Bioinformatics, vol.25, issue.15, pp.1952-1958, 2009.
DOI : 10.1093/bioinformatics/btp340

Z. Wang, C. Zang, K. Cui, D. Schones, A. Barski et al., Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes, Cell, vol.138, issue.5, pp.1019-1031, 2009.
DOI : 10.1016/j.cell.2009.06.049

W. Da-huang, B. Sherman, and R. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature Protocols, vol.99, issue.1, pp.44-57, 2009.
DOI : 10.6026/97320630002428

W. Da-huang, B. Sherman, and R. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Research, vol.37, issue.1, pp.1-13, 2009.
DOI : 10.1093/nar/gkn923