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RESEARCH ARTICLE
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Abstract

Mucociliary clearance is one of the major lines of defense of the respiratory system. The

mucus layer coating the pulmonary airways is moved along and out of the lung by the activity

of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measure-

ments of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a

mathematical model of this fluid flow, presented in greater detail in a second companion arti-

cle. Samples of nasal epithelial cells placed in water are recorded by high-speed video-

microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as

markers of the flow generated by cilia motion, enables us also to assess the velocity profile

as a function of the distance above the cilia. This profile is shown to be essentially parabolic.

The obtained experimental data are used to feed a 2D mathematical and numerical model

of the coupling between cilia, fluid, and micro-bead motion. From the model and the experi-

mental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear

stress, which can easily be measured in the clinical setting, is proposed as a new index for

characterizing the efficiency of ciliary beating.

Author summary

Mucociliary clearance is the first line of defense of the human pulmonary airways. Mucus

transporting debris, particles, microorganisms and pollutants is carried away by the coor-

dinated motion of cilia beating at the surface of the airway epithelium. We present here an

experimental, mathematical and numerical study aiming at defining a global index for

assessing the efficiency of this beating. We measure experimentally the ciliary beat
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frequency, ciliary beat amplitude, and metachronal wavelength on ciliated edges obtained

from nasal brushing. Properties of fluid motion are simultaneously extracted from micro-

bead tracking next to the ciliated edge. A mathematical and numerical model is developed

to describe the fluid motion induced by the cilia tips considered as a moving wall. Experi-

mental and numerical results show that the bead velocity is a parabolic function of the dis-

tance to the wall. It allows us to infer the shear stress exerted by the cilia on fluid from

micro-bead tracking. This quantity is proposed as a universal index characterizing the

beating efficiency, which can be extracted in the current clinical setting.

Introduction

Mucociliary clearance is one of the major defense mechanisms of the respiratory airway sys-

tem. The mucus layer coating the epithelial surface of the airways filters the inhaled air by trap-

ping potentially harmful material (fungi, bacteria and other particles) [1–4]. This mucus layer

is continuously carried away and out of the airways by the activity of motile cilia. Neighboring

cilia beat in an organized manner with a small phase lag, their tips creating an undulating sur-

face on top of the cilia layer which deforms in a wave-like fashion called the metachronal wave

[5–7].

The beat pattern of an individual cilium displays a two-stroke effective-recovery motion

[8]. During the effective stroke, cilia beat forwards and engage with the mucous layer, propel-

ling it forward. In contrast, during the recovery stroke, they return to their initial position in

the underlying periciliary fluid, minimizing thereby the drag on the mucus in the opposite

direction. This asymmetry in the beat pattern is responsible for a net fluid flow in the direction

of the effective stroke. In the airways, each mature ciliated cell may be covered with up to 200

cilia, with a surface density around 5–8 cilia/μm2 [6, 9]. Each cilium, approximately 6 μm long

and of diameter around 0.2 μm, beats 12 to 15 times per second, resulting in a velocity of the

mucus layer of approximately 1 mm per minute [10].

Defects in mucociliary clearance may result in chronic airway inflammation and infections

causing injury and structural changes to the airway epithelium, leading to a variety of diseases

like bronchiectasis and chronic sinusitis. Two main reasons may lead to impaired mucociliary

clearance. The first one is related to alterations of the mucus properties, as in cystic fibrosis

where the mucus become too thick and sticky to be moved properly by the cilia. The second

one is linked to a dysfunction in ciliary motion or ciliary coordination. Such dysfunctions may

be either inherited as in Primary Ciliary Dyskinesia (PCD) or acquired. Diagnosis of dyskine-

sia is difficult. For instance, in the diagnosis of PCD, a combination of transmission electronic

microscopy, nasal nitric NO, genetic testing and use of high-speed video-microscopy is recom-

mended [11].

In situ observation of ciliary beating and mucociliary clearance is almost impossible in

patients at present stage, and one currently lacks a reliable and general method for evaluating

mucociliary clearance in the clinical field. In the past, integrated assessment of mucociliary

clearance was achieved through techniques using saccharine [12], a drop of blue marker [13],

or clearance of radioactive tracers [14–17]. More recently, micro-optical coherence tomogra-

phy was also proposed [18]. However, due to their various requirements (patient cooperation

for the saccharine test, endoscopic examination, inhalation of radiopharmaceutical, . . .) these

different methods are rarely used in the current clinical practice. Light microscopy observation

of ciliated edge obtained by nasal or bronchial brushing is the most common method used to

evaluate ciliary beating. This observation is often associated with High-Speed Video-
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Microscopy (HSVM) analysis [19–23] that quantifies only cilia motion and ciliary beat pattern.

However, none of these tests provides information about the global efficiency of ciliary beating

regarding mucociliary clearance.

This present study aims at a deeper understanding of the relationship between ciliary beat

pattern, measured by ciliary beating analysis, and the induced motion of the surrounding fluid

in order to assess the global efficiency of ciliary beating. An original method of micro-bead

tracking (MBT) is presented where micro-beads act as markers of the flow generated by the

cilia [24]. A numerical model is then developed (presented in detail in a companion paper

[25]) based on envelope modeling approach, allowing us to simulate the flow generated by the

cilia as in the MBT experiment. We finally propose a new and global index for characterizing

the efficiency of the ciliary beating. One very appealing aspect of this index is that it does not

require any modification of the present clinical practice of data collection (nasal or bronchial

brushing).

Materials and methods

Experimental analysis

Patients. Studies of ciliary beating and MBT were performed in 11 consecutive patients

referred to our diagnostic center. All patients were investigated because of chronic upper and/

or lower respiratory tract infections, i.e., bronchitis and/or bronchiectasis and sinusitis.

Patients were selected only after ruling out genetic disorder as cystic fibrosis or PCD. Informed

consent was obtained from all patients, and this study was approved by the local Ethics Com-

mittee (Comité de Protection des Personnes Ile-de-France XI).

Digital high-speed video-microscopy. Ciliated samples were obtained by brushing the

middle part of the inferior turbinate with a 2 mm cytology brush. Cells were suspended in a

survival medium and examined within three hours. 20 μL of 4.5 μm polystyrene micro-beads

at the concentration of 0.125%w/v were added to 80 μL of the medium. All observations were

performed within 20 min, at controlled room temperature (20–25˚C). We used an inverted

microscope (with a LD condenser 0.35 in H position, i.e., without any phase contrast or differ-

ential interference contrast) in brightfield conditions associated with a ×40 objective. 100 μL of

medium containing beating ciliated edges and microbeads in suspension are comprised

between a microscope slide and a cover slide. The medium is delimited in the horizontal plane

by a circle of grease of diameter approximately equal to 1 cm (Fig 1). Recorded ciliated edges

are located in the horizontal focal plane of the microscope (so that observed cilia are horizon-

tal). The “local plane” of the cell cluster, which corresponds to the cell-medium interface, is

therefore essentially perpendicular to the substrate in the focal plane. The observed region lies

at the intersection of the horizontal focal plane and the locally vertical cluster plane.

Cilia were recorded with a digital camera at a rate of 358 frames per second (brightness 0%,

gamma 220, shutter 720 s, gain 1.160 dB). Each movie was composed of 1,800 frames with a

definition of 256 × 192 pixels, each individual pixel being (0.32 × 0.32) μm2. All areas contain-

ing intact undisrupted ciliated epithelial edges larger than 50 μm, devoid of mucus, beating in

the plane of the camera and close to micro-beads were recorded. As recommended in [26], iso-

lated ciliated cells were excluded. Basically and except for the presence of microbeads, the

high-speed video-microscopy procedure used here is equivalent (setup requirement and pro-

tocol) to the ones used by different groups for PCD diagnosis [19–21, 23].

Micro-bead tracking method. Locations of ciliated edges were determined using in-

house software which reports positions of computer mouse clicks on paused video frames.

Practically, the operator chooses 5 points delimiting 4 line segments. These segments define

the location of the cilia wall (Fig 2). Micro-bead motions are tracked using an automatic image

Characterizing micro-bead motion in a ciliary deating induced flow: Experimental analysis
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processing method programmed in Python language. First, the PINK Image Processing

Library is used to threshold the frames, thus separating the micro-beads from the background.

Secondly, micro-beads are labeled and their trajectories are plotted. Instantaneous micro-bead

velocities, as well as their distance to the ciliated edge, are measured and saved in a database.

Analysis of ciliary beating. Ciliary beat frequency (CBF) is determined from movies in

two different ways. In both methods, the operator defines a line by placing five points on the

ciliated edge. In the first method, the variation of the mean grey level of this line during the

movie is calculated. A Fast Fourier Transform (FFT) is performed on this signal, and the fre-

quency of highest amplitude in the FFT power spectrum is taken as CBF. In the second

method, video-kymography is used by stacking all lines obtained from each frame of a movie

on the same graph. The beating period is measured on this graph, from which the ciliary beat

frequency is deduced.

To characterize the ciliary beating amplitude (CBA), we used a simplified quantitative anal-

ysis of ciliary beat pattern previously described by Papon et al. [20]. In short, one individual cil-

ium that can be followed during a complete beating cycle (excluding cilia whose tip ran out of

the focal plane) is selected. Video sequences are played back frame by frame in order to deter-

mine three points characterizing the complete cycle of the cilium. These three points corre-

spond to the position of the base of the cilium (P0) and the positions of the tip before the active

and recovery strokes (P1 and P2, respectively). These measurements are used to determine the

cilium length and the distance traveled by the cilium tip (i.e., the ciliary beating amplitude).

The metachronal wavelength λ is obtained by inferring the phase variation of the main beat

frequency along the ciliated edge. To this end, 104 line segments perpendicular to the cilia wall

are defined (see Fig 3, left), each segment being made of 24 pixels. In each segment, the mea-

sured mean grey level oscillates cyclically in time. The phase of this variation, θ, is computed

by a Fast Fourier Transform. In the case where this phase θ(x) depends linearly on the position

x along the ciliated edge, a linear regression is used to determine the average slope p, hence the

wavelength of the metachronal wave given by λ = 2π/p (Fig 3, right).

In addition, cilia density is estimated for each ciliated edge by comparing the mean grey

level of the movie background with the grey level of the cilia area. In the image, cilia appear

Fig 1. Scheme of experimental setup.

https://doi.org/10.1371/journal.pcbi.1005605.g001

Characterizing micro-bead motion in a ciliary deating induced flow: Experimental analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005605 July 14, 2017 4 / 19

https://doi.org/10.1371/journal.pcbi.1005605.g001
https://doi.org/10.1371/journal.pcbi.1005605


darker than the background (Fig 4, left). Cilia density is therefore calculated by an in-house

software as the percentage of pixels belonging to the ciliated edge darker than the mean grey

level of the background. This procedure allows us to define a characteristic length of the dis-

tance between two cilia (dc) and the fraction of area covered by the space without cilia (fc).
Let us consider an homogeneous distribution of cilia. In this case, the cilia density is given

by:

rc ¼
number of pixel � Mean Background

number of pixel

� ���
�
�
�

cilia zone

¼
ðec=pixel sizeÞ � number of pixel

½ðec þ dcÞ=pixel size� � number of pixel
¼

ec
ec þ dc

;

ð1Þ

where ec is the cilium diameter (0.2 μm). As such, what is called “cilia density” here is a relative

measure of the cilia density obtained by averaging over a sufficient large number of individual

Fig 2. Determining the location of the ciliated edges. The operator places 5 points (blue crosses) which are the ends of 4 line segments

(red dashed lines) defining the location of the cilia wall.

https://doi.org/10.1371/journal.pcbi.1005605.g002
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pixels in the region of the ciliated edge. Let us note that (1 − ρc) is in this case the fraction of

area without cilia.

Data selection. Only the movies where the inputs required for ciliary beating simulation

could be measured were retained (ciliary beat frequency, ciliary beating amplitude, metachro-

nal wavelength and cilia density). These movies are the ones in which the cluster surface is

essentially vertical so that the cilia edge located at the intersection of the cluster plane and the

focal plane can clearly be observed. To remain within the assumptions of the model, we only

selected micro-bead following straight trajectories close to a ciliated edge (i.e., not influenced

by the external environment or other distant clusters). Finally, all analyses were performed by

one single operator.

Fig 3. Example of wavelength determination. (Left) 104 line segments are placed along the cilia wall, perpendicular to it. (Right) The

mean grey level of each segment oscillates in time. The corresponding phase each segment is plotted as a function of the curvilinear

abscissa of the center of each line. A linear regression is performed on the phase-abscissa relationship, the slope of this regression directly

giving the metachronal wavelength (blue dashed line).

https://doi.org/10.1371/journal.pcbi.1005605.g003

Fig 4. Measuring the cilia density. (Left) Two different regions are delimited on the real system, the green rectangle corresponds to the

cilia region while the red ellipse corresponds to the background. (Right) Schematic representation of the same system: black rectangles

represent the cilia, ec is the cilium diameter and dc is the typical distance between two cilia.

https://doi.org/10.1371/journal.pcbi.1005605.g004
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Numerical model

We present here a brief overview of the two-dimensional model describing the system com-

posed of the cilia, the surrounding fluid, and the micro-beads. The entire model is extensively

detailed in [25]. Inspired by [27], we propose an approach in which the momentum transfer

from discrete cilia to the fluid (induced by the ciliary beating) is modeled through an appropri-

ate continuous boundary condition. The ciliated edge is chosen parallel to the x axis, the ciliary

tip being located around y = 0 on average. Each cilium is assumed to undergo a periodic ellip-

tic motion (see Fig 5, left). Taking the limit of a continuous cilia distribution, the cilia array is

simplified as an undulating surface that covers the cilia layer, ignoring the details of the sub-

layer dynamics, see Fig 5, right (inspired by Velez-Cordero et al. [28]).

The tip of a cilium located at the horizontal coordinate ξ� is assumed to follow a periodic

elliptic trajectory centered in (ξ�, 0) during each elementary beat (Fig 6). The ‘�’ notation is

used here to represent dimensional quantities, for consistency reason with [25]. At time t�, the

tip coordinates ðX�w;Y
�
wÞ satisfy

X�w ¼ x
�
� a cosðot�Þ

Y�w ¼ ba sinðot�Þ

(

ð2Þ

where β is a function of the ellipse eccentricity, 2βa is its minor axis in the y� direction, and 2a
its major axis in the x� direction. For β> 0, the tip orbits clockwise, while for β< 0, the tip

orbits counterclockwise.

In this picture, the metachronal wave is materialized by prescribing the motion of the enve-

lope. This envelope is then used as a boundary condition to compute the fluid velocity field

dominated by viscous forces, inside a channel of height h (see Fig 6). The fluid is assumed to

be stagnant above this height. Indeed, the parameter h essentially summarizes in our 2D

model (see companion paper) the effect of the external environment of the clump, this envi-

ronment imposing a limit to the spatial extension of the cilia-induced flow field. This fact

Fig 5. Schematic representation of the stroke of an individual cilium and the envelope model. (Left) The trajectory of the stroke cycle

is assumed to follow an elliptic motion. (Right) Representation of the envelope model covering the cilia layer and the propagation of the

metachronal wave. (Inspired by Velez-Cordero et al. [28]).

https://doi.org/10.1371/journal.pcbi.1005605.g005
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explains why this parameter h cannot be estimated a priori and has to be measured as an exter-

nal free parameter.

The trajectories of micro-beads in this velocity field are calculated by solving the equation

of motion with Stokes drag. This theoretical model provides us with a prediction of the effec-

tive speed of micro-beads as a function of their average altitude above the ciliated edge. This

velocity profile is found to follow essentially a parabolic profile as a function of the height

above the cilia wall. Finally, the velocity of the micro-beads extrapolated at the cilia wall gives a

direct estimate of the shear stress exerted on the fluid, this index being proposed as an index of

the ciliary beating efficiency [25].

Simulation of micro-beads effective velocity. The bead inertia in the fluid flow is charac-

terized by their Stokes number, Stk. For particles of mass m and radius R traveling through a

fluid of viscosity μ, of typical velocity U and of typical length L, this number is defined as:

Stk ¼
mU

6pRmL
ð3Þ

For spherical particles of radius R and density ρb in an oscillatory flow of pulsation ω, this

number also reads:

Stk ¼
4

3
pR3rb o

6pRm
¼

2

9

R2rbo

m
ð4Þ

The micro-beads are about 4.5 μm diameter, and made out of polystyrene of density ρb of

order 1 g.cm−3. At 10 Hz in water, the corresponding Stokes number is therefore about 10−4,

Fig 6. Schematic elliptic motion of an individual ciliary tip.

https://doi.org/10.1371/journal.pcbi.1005605.g006
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which means that the beads can be considered as massless tracers. Their velocity can be

assumed to be permanently equal to the fluid velocity at the same location.

For each micro-bead entering the simulation window at x = 0 and a given altitude y0, the

effective speed is computed as:

Veffðy0Þ ¼
Lw

tðy0Þ
¼

LwH

T y0
dt
¼

Lw
H

Ty0

ds
k ~uðsÞ k

;
ð5Þ

where Lw is the length of the observation window, τ(y0) is the crossing time of the micro-bead

entering at (0, y0), and T y0
is the trajectory followed by this micro-bead. During each elemen-

tary step of this trajectory, the infinitesimal duration is dt ¼ ds= k ~uðsÞ k,~u being the fluid

velocity at curvilinear abscissa s of the trajectory. The effective speed Veff corresponds to the

quantity measured in our experiments.

Results

Micro-bead tracking method

78 movies were recorded, corresponding to a total of 24 ciliated edges. From these movies, the

trajectories of 195 micro-beads were retained. Three examples of MBT movie are displayed

online (see supporting information).

Micro-beads velocities are essentially oriented along the x� direction (parallel to the ciliated

edge), as can be seen in Fig 7. Only 4% of the micro-beads exhibit a vertical velocity compo-

nent larger than 25% of the horizontal component. Moreover, this vertical component is about

equally distributed among positive and negative values (98 vs 97). This result suggests that the

bead velocities can be modeled in a good approximation as parallel to the ciliated edge.

Micro-bead velocities range from 0.0 to 253.8 μm.s-1 (mean = 42.2 μm.s-1, std = 35.0 μm.s-1).

This wide variation is explained by the spread of the distances of the micro-beads to the ciliated

edge which range from 0.3 to 70.9 μm (mean = 12.7 μm; std = 11.1 μm). Indeed, as observed in

Fig 8, left which presents micro-bead velocity measurements on three different ciliated edges,

velocities appear to be strongly correlated to these distances, the fastest micro-beads being the

ones closest to the ciliated edge. To confirm this observation, velocities of all micro-beads were

separated into two groups, respectively above and below to the median value of the distance

(Fig 8, right). The comparison between the two groups was performed with a statistical software

package using non-parametric tests (Mann-Whitney U-test). A p value<0.05 was considered

significant. Here again, one can distinctly observe a clear link between the value of the micro-

bead velocity and its distance to the ciliated edge.

Correlation between micro-bead velocity and other ciliary beating

measurements

In order to assess the parameters that influence significantly the micro-bead velocity, a multi-

ple linear regression analysis was performed between the values of the micro-bead velocities

(the dependent variable in the regression) and five exploratory variables, 4 of which are deter-

mined from measurements of ciliary beating (CBF, CBA, λ, ρc), and the fifth being the distance

y0 to the cilia. The resulting multiple regression equation of micro-bead velocities is given by:

Veffðy0Þ ¼ ð6:96� CBFÞ þ ð230:6� rcÞ þ ð11:95� CBAÞ � ð1:22� y0Þ

� ð0:83� lÞ � 243:35 ;
ð6Þ

with a coefficient of determination equal to 0.68 and a probability smaller than 10−6 (F-test).
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Moreover, all probabilities associated to regression coefficients (t-test) are smaller than 10−6,

except for the wavelength (p = 0.048). One can remark that this regression implicitly assumes a

linear dependency on the exploratory variables, while a further and finer analysis using our

mathematical model reveals a more complex behavior, as for instance the micro-bead velocity

profile above the edge which is shown in fact to be essentially parabolic.

Comparison between experimental measurement and numerical model

Input of the numerical model. To run simulations and compare their results with our

MBT experiments, the numerical model presented in [25] requires 5 inputs: CBF, CBA, meta-

chronal wavelength λ, distance h, and the slip length ϕ. CBF, CBA, and λ are directly measured

by a microscopic analysis of the ciliary beating (see above). The distance h has to be deter-

mined by fitting the parabolic velocity profile. Finally, the slip length ϕ is shown to be directly

correlated to the cilia density.

Fig 7. Vertical velocity component versus horizontal velocity component. Each square corresponds to one of the 195 micro-beads

measured. Red, green and purple dashed lines correspond respectively to |uy| = |ux|/10, |uy| = |ux|/4 and |uy| = |ux|/2.

https://doi.org/10.1371/journal.pcbi.1005605.g007
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Distance h. The mathematical model predicts that the micro-bead velocity exhibits a para-

bolic profile along y [25]. The distance h between the cilia wall and the region of stagnant fluid

is read as the x-intercept of the parabolic fit of the measured velocity profile.

Slip length ϕ. The fifth and last parameter required as input to the numerical model is the

slip length ϕ which cannot be directly retrieved from a microscopic measurement at the cilia

wall. This parameter accounts for the partial momentum transfer between the wall and the

fluid, due to the non continuous coverage of the cilia, through the following boundary condi-

tion:

~u � �
@~u
@y

�
�
�
�
ðx;yw;tÞ

¼ ~uwðx; tÞ ; ð7Þ

where~u is the velocity and~uwðx; tÞ is the wall velocity. This condition is analogous to that of a

fluid flow next to a porous wall, where the presence of pores reduces the transfer of momen-

tum between the wall and the fluid [29, 30]. In this situation, ϕ can be understood an effective
slip length [31]. The parameter ϕ can be retrieved from MBT experiments by fitting the mea-

sured micro-bead velocity profile above the cilia wall with a parabola. If ϕ = 0, one recovers a

non slip boundary condition, while ϕ! +1 corresponds to a perfect sliding condition. Sbra-

galia, et al. [32] showed that the effective slip length produced by a solid no-slip boundary with

a distribution of free slip area was proportional to the product of the length scale of free slip by

the fraction of surface covered by them. In our problem, if we assume that the tips of cilia are

“no-slip” while the spaces between cilia are “free slip”, we expect the value of ϕ (extracted from

the aforementioned fitting procedure) to be directly proportional to (1 − ρc)2/ρc where ρc is the

cilia density directly estimated from a grey level measurement. As shown in Fig 9, left, ϕ and ρc
appear closely related. This correlation shows that a sparse density of cilia is a main determi-

nant for a poor momentum transfer to the fluid. A simple regression method leads to the

Fig 8. Micro-bead velocities versus distance to the ciliated edge. (Left) Examples of mean velocity obtained in 25 micro-beads in 3

ciliated edges (blue, green and red). Each square corresponds to one micro-bead. Horizontal and vertical error bars display for each bead

the standard deviation of the distance to cilia and velocity, respectively. Dashed lines are the parabolic regression on each ciliated edges.

(Right) The 195 measured micro-beads are presented into 2 groups of equal sizes, according to their distance to the ciliated edge. Bars

exhibit a significant velocity difference (p < 0.05). Error bars represented the standard error of the mean (SEM).

https://doi.org/10.1371/journal.pcbi.1005605.g008
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following analytic relationship between these two parameters ϕ and ρc:

� � �calcðrcÞ ¼ L
ð1 � rcÞ

2

rc
with L ¼ 750 mm ð8Þ

Fig 9, right, displays a plot of the effective slip length ϕ extracted from the fitting procedure

and the calculated slip length ϕcalc obtained from the formula in Eq 8. Except for a couple outli-

ers, most values appear to be very close.

Micro-bead velocities. We now compare micro-bead velocities measured by MBT with

numerical simulations using the 4 input parameters deduced from the analysis of ciliary beat-

ing: CBF, CBA, metachronal wavelength λ, and ϕcalc (this last value being deduced from the

measured cilia density). We add to these measured parameters the distance h fitted from MBT

experiment. In Fig 10, left, the velocities Vb measured by MBT are plotted against the velocities

Veff predicted by the numerical model. Each point corresponds to one micro-bead. The corre-

lation coefficient R2 between cilia density and slip length is found to be equal to 0.71. In Fig 10,

right, the Bland-Altman plot displays the difference between the two velocities against their

average, i.e., each point corresponds to
Vb þ Veff

2
;Vb � Veff

� �

. Again, experimental and

numerical velocities are found to be in close agreement, proving that our model faithfully cap-

tures the relationship between fluid velocity and the microscopic measurements of cilia

motion.

Ciliary beating efficiency index

The shear stress τw exerted by the cilia wall on the fluid is given by (see [25]):

tw ¼
2m

h
U�w ð9Þ

Fig 9. Effective porosity parameter ϕ. (Left) The effective slip length ϕ, obtained in each one of the 24 ciliated edges by fitting the

measured micro-bead velocity with a parabola, plotted against cilia density. (Right) Effective slip length ϕ fitted from micro-bead

measurements plotted against the effective slip length computed from the cilia density using Eq 8. The red line corresponds to the linear

regression.

https://doi.org/10.1371/journal.pcbi.1005605.g009
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where U�w is the extrapolated velocity at the ciliated wall, h is the horizontal intercept (vanish-

ing velocity) of the fitted parabolic profile, and μ is the dynamic viscosity of the fluid. We pro-

pose to use this force τw as an index for assessing the efficiency of the ciliary beating. MBT

measurements enable us to retrieve U�w and h, and therefore to compute the shear stress.

In Table 1 we report the results of the analysis performed on 11 patients. For each patient,

one or several ciliated edges have been analyzed. For each edge, the number of tracked micro-

beads is reported, followed by measured values of the input parameters of the model. The last

3 columns show the values of h and U�w, retrieved from the parabolic profiles, and the value of

the deduced shear stress.

Discussion

The experimental MBT results (see Fig 10, left and right), allowed us to validate the numerical

model. The model predicts that the micro-bead velocity is an increasing function of CBA and

CBF while it decreases with λ and ϕ (the last dependency means that micro-bead velocity

increases with ρc). These behaviors are consistent with the various signs of the regression coef-

ficients of Eq 6 deduced from MBT experiments.

The good agreement observed between the numerical model and experimental MBT results

led us to propose the steady component of the shear stress exerted by the cilia wall on the fluid

as a new index of the ciliary beating efficiency. To our knowledge, there exist very few evalua-

tions of the shear stress exerted by the respiratory cilia in the literature. If we assume a cilia

density per unit area of 5 cilia/μm2 [9], we find a force per cilium equal to 0.013±0.009 pN.

Such a value is much lower (at least 3 orders of magnitude) than the ones reported in a study

on human bronchial epithelial cell culture [9], or in a study on culture grown from frog esoph-

agus [33]. However, in these two last cases, the measured quantity was an oscillating force and

not the steady component resulting from the entire beating as in our study. This suggests that

these two types of measurement should not be directly compared. Moreover, the shear stress

we find is of the same order of magnitude than the shear stress induced by the so-called

Fig 10. Comparison between measured and simulated micro-bead velocities. (Left) Experimental velocities against simulated

velocities in the 195 measured microbeads. The red line corresponds to y = x. (Right) Bland-Altman plot. The blue dashed line corresponds

to the mean value while the red dashed lines correspond to the mean value ± 1.96 standard deviation.

https://doi.org/10.1371/journal.pcbi.1005605.g010
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Couette flow between two parallel flat plates:

tCouette ¼
m

e
V ; ð10Þ

where e and V are the distance and the relative velocity between the two plates, respectively. If

we put on a par e with h, and V with U�w, respectively, one finds the formula for the two stresses

to be very similar. The factor 2 observed in our mode originates from the difference of velocity

profiles (linear for a Couette flow, parabolic in our case).

The parameter β, i.e., the ratio between minor and major axis is very difficult to measure on

a large part of our movies. We decided to set β at 0.14 for all simulations as it was the mean

value observed on our movies. The measured values of all other parameters obtained by ciliary

analysis in this study were consistent with the literature. As an example, our values of metachro-

nal wavelength fall in the same range than the few numbers that can be found in the literature

for other cellular models (paramecium [34, 35], frog oesophagius [36] or rabbit trachea [5]).

In contrast with other analyses of the ciliary beating [20], or evaluations of the beat pattern

[19], τw provides a direct estimation of the force that is potentially applied by the ciliated

Table 1. Value of efficiency index for all ciliated edges.

Patient

№
n CBF

(Hz)

CBA

(μm)

λ
(μm)

ρc

(%)

h

(μm)

U�w
(μm.s-1)

τw

(mPa)

mean ± std dev.

1 8 14.0 7.5 13.0 84 87.5 138.3 3.2 5.8±4.1

4 15.0 6.8 14.6 86 52.6 240.9 9.2

5 13.5 7.5 19.8 89 47.4 224.8 9.5

5 13.6 4.0 28.0 82 70.9 49.4 1.4

2 3 5.3 7.0 10.8 73 7.0 27.6 0.7 2.5±1.6

3 5.6 6.6 11.3 80 32.9 46.9 2.9

9 6.3 7.3 11.0 68 28.9 55.2 3.8

3 6 14.0 5.4 10.5 69 53.0 51.3 1.9 1.9

4 4 11.5 7.5 12.0 74 66.3 76.8 2.3 2.3

5 3 7.3 7.8 16.0 58 82.1 24.0 0.6 2.0±1.3

3 9.4 7.0 15.5 80 91.5 80.1 1.8

3 4.9 8.4 17.3 88 53.5 64.7 2.4

4 5.6 6.9 13.3 95 52.8 106.5 4.0

3 8.1 6.7 15.4 82 139.7 85.4 1.2

6 4 3.7 6.2 16.7 89 34.2 33.6 2.0 2.0

7 4 7.7 7.2 12.0 70 42.6 49.3 2.3 2.3

8 3 3.6 6.3 17.7 98 40.1 32.3 1.6 1.6

9 12 7.7 8.8 12.1 62 60.0 51.7 1.7 1.9±0.3

5 6.6 7.0 10.3 73 52.3 54.4 2.1

10 3 6.7 6.5 10.4 87 28.6 60.2 4.2 4.2

11 56 3.6 4.7 10.2 96 51.2 58.9 2.3 2.1±0.3

11 3.5 5.3 12.6 89 48.6 45.6 1.9

6 4.9 4.8 18.5 89 50.5 44.3 1.8

28 6.0 5.2 16.7 86 45.4 56.4 2.5

№ corresponds to the patient number; n is the number of micro-beads per ciliated edges; CBF is the ciliary beat frequency; CBA is the ciliary beat amplitude;

λ is the metachronal wavelength; h is the distance fitted from the micro-bead velocity profile; ρc is the cilia density; U�w is the extrapolated velocity at the

ciliated wall through MBT; τw is the shear stress exerted by the cilia wall on the fluid (see Eq 9). When several ciliated edges are measured for the same

patient, the standard deviation of τw is computed.

https://doi.org/10.1371/journal.pcbi.1005605.t001
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epithelium on the surrounding fluid, hence on the mucus. As such, it appears as a very good

candidate for a global index of the potential ciliary beat efficiency. It encompasses the beating

of the ciliated edge as a whole rather than focusing on an individual cilium. In comparable

experimental conditions (here the cell survival medium at room temperature), τw allows us to

compare the ciliary beat efficiency of different patients with each other. Moreover, this index

that can be easily obtained from a MBT experiment via a simple parabolic fitting requires nei-

ther a subjective interpretation by an operator, nor a specific procedure in terms of human

data sampling, but only a classical nasal (or bronchial) brushing.

Low values of τw, corresponding to a low ciliary beat efficiency can be explained by several

distinct causes: ciliary beating parameters alterations (CBF, CBA, metachronal wavelength),

reduced cilia density, or a loss of coordination between cilia. Indeed our model assumes, via

the metachronal wave, a perfect cilia coordination as well as a pure rectilinear geometry of the

edge. As a consequence, high values of τw are expected to correspond to well coordinated cilia

without degradation of ciliary beating parameters (CBF, CBA, metachronal wavelength). How-

ever, for low values of τw, a ciliary beat pattern analysis may be required to find the reason of a

degraded efficiency (ciliary beating parameters, loss of coordination, . . .).

Table 1 displays values of τw measured in several patients. These values exhibit a relatively

high intra-patient heterogeneity which is not surprising as it was already observed in other

characteristics of the ciliary beating, such as the “the distance traveled by the cilium tip in one

second weighted by the percentage of beating ciliated edges” [20]. Despite its intra-patient var-

iability, this distance is able to discriminate non-PCD from PCD patients with a specificity and

sensitivity above 0.95 [20]. Similarly, using τw as a screening index in clinical studies would

probably require analyzing several edges per patient.

Interestingly, the patient exhibiting the highest values of τw (patient №1, see Table 1) seems

to be also the patient with the most normal clinical state. To this date, it is difficult to pinpoint

a precise threshold of τw that would allow one to discriminate between clinically healthy and

pathological edges. Determining this threshold would require a clinical study including a

larger cohort of control patients compared to patients with well defined pathological ciliary

beating phenotype, a study far beyond the scope of the present study.

Ciliary beating parameters (CBF, CBA, pattern, . . .) depend on the characteristics of the

fluid at least in part. In our MBT experiments, cilia are beating in a fluid whose physical prop-

erties are very similar to water. Such conditions are far from the real conditions of airways

coated with mucus. One may wonder how the modification of the surrounding fluid influ-

ences cilia beating. Several numerical studies have investigated the way viscosity influences cil-

iary beating and the difference between a Newtonian vs. non Newtonian surrounding fluid.

Jayathilake et al. have explored numerically the effect of an increased PCL viscosity on the

motion of cilia embedded, and have found that, for a given beating frequency (set around 10

Hz, consistent with our measurements), the velocities of the induced PCL flow were almost

unaffected by a 5-fold increase of the viscosity [37]. Other models taking into account the ther-

modynamic characteristic of the mucus (generalized Newtonian fluid, . . .) can be found in the

literature [28]. More recently, Sedaghat et al. have studied in detail the two layer structure

(PCL and mucus), PCL being modeled as a Newtonian fluid and mucus as a viscoelastic fluid

[38]. Their study showed firstly that mucus viscosity has a very limited effect on the mucus

flow, due to the dominating part of the elastic part in the viscosity, and secondly that ciliary

beating frequency plays a major role in the mucus velocity. These results were confirmed by

very recent 3D numerical simulations [39]. In these works, the beating frequency was identi-

fied as a major determinant of the mucus flow, before the mucus viscosity itself. However, in

all simulations, this frequency is always a prescribed parameter whereas in reality it results

from a delicate force and momentum balance in the fluid-structure interaction. As a
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consequence, it is very complicated to really assess the net influence of mucus rheological

properties on cilia beating, considering the extreme difficulty to reproduce in vitro the in vivo
situation. The essential point here lies in the value of the beating frequency, which appears to

be very similar between in vivo data from the literature and our ex vivo experiments.

Replacing the surrounding fluid with water may also induce difference in biochemical

interactions. The mucociliary clearance process is generally described with three main compo-

nents: mucins secreted by goblet that will give mucus, cilia that move the mucus and an ion

transport process allowing maintaining an adequate aqueous environment on the airway epi-

thelium [40]. These components can be, at least partially, controlled by local agonist, extracel-

lular nucleotides, and nucleosides released from the epithelium. For example, it is known that

ATP, UTP, and adenosine increase the ciliary beat frequency while ATP and UTP stimulate

the secretion of mucins.

However, to our knowledge, the relation between these local agonists and the cilia beat pat-

tern remains to be established. In 2000 Chilvers et al. proposed to use digital high speed video

microscopy to visualize the beat pattern of human nasal cilia in the absence of mucus [19].

Since 2009, the European Respiratory Society strongly recommended to combine this tech-

nique (i.e., in the absence of mucus) with classical tests in order to ensure primary ciliary dys-

kinesia diagnosis [23, 41]. At this time, studying cilia beat pattern in the presence of mucus for

patient specific evaluation would be very difficult to carry out because it would require tracheal

or bronchial explants which are ethically problematic in clinical practice.

Clearly, the experimental procedure described in this study is not intended at evaluating

the effect of possible alterations of the cilia environment (change in rheological properties of

the mucus, modification of the nucleotides in the periciliary layer. . .). Our MBT experiments,

the developed numerical model and the proposed index aim essentially at evaluating patholo-

gies impairing mucociliary clearance resulting from a defect in ciliary motion (ciliopathies). In

future studies, one could even envision adding exogenous drug to the survival medium to test

the potential effect of a drug treatment. For now, the goal is to simulate the conditions of our

experiment corresponding to a measurement that can be realized in a clinical setting.

Conclusion

We have presented here a first experimental validation of the numerical model introduced in

[25], describing the Newtonian fluid flow induced by cilia motion above a ciliated edge. This

study shows that the computational model satisfactorily predicts the profile of velocities of

micro-beads in the Newtonian flow, this profile being essentially parabolic. Recovering this

profile allows us to assess the shear stress locally applied by the ciliated edge onto the fluid.

Our model suggests that this shear stress at the cilia wall characterizes the momentum transfer

between the cilia and the fluid, and thus the efficiency of the ciliary beating. Interestingly, the

estimation of this index does not require any modification of the present clinical practice of

data collection (nasal or bronchial brushing). This study opens the broad perspective of using

this index in the future to characterize ciliary function of transport during normal and patho-

logical conditions of either congenital origin such as PCD or acquired dyskinesia secondary to

pathogenic invasion and/or occupational exposures.

Supporting information

S1 Video. Example n˚1 of MBT movie. Patient №1, third edge presenting a good coordinated

edge and good cila density.

(MP4)
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S2 Video. Example n˚2 of MBT movie. Patient №4 presenting a good coordinated edge but

relatively low cilia density.

(MP4)

S3 Video. Example n˚3 of MBT movie. Patient №10 presenting miscoordinated edge with

non measurable metachronal wavelength.

(MP4)
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