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Balance between Estrogens 
and Proinflammatory Cytokines 
Regulates Chemokine Production 
Involved in Thymic Germinal Center 
Formation
Nadine Dragin1,2,3, Patrice Nancy4, José Villegas2,3,5, Régine Roussin6, Rozen Le Panse2,3,5 & 
Sonia Berrih-Aknin2,3,5

The early-onset form of Myasthenia Gravis (MG) is prevalent in women and associates with ectopic 
germinal centers (GCs) development and inflammation in the thymus. we aimed to investigate the 
contribution of estrogens in the molecular processes involved in thymic GCs formation. We examined 
expression of genes involved in anti-acetylcholine receptor (AChR) response in MG, MHC class II and 
α-AChR subunit as well as chemokines involved in GC development (CXCL13, CCL21and CXCL12). In 
resting conditions, estrogens have strong regulatory effects on thymic epithelial cells (TECs), inducing a 
decreased protein expression of the above molecules. In knockout mouse models for estrogen receptor 
or aromatase, we observed that perturbation in estrogen transduction pathway altered MHC Class II, 
α-AChR, and CXCL13 expression. However, in inflammatory conditions, estrogen effects were partially 
overwhelmed by pro-inflammatory cytokines. Interestingly, estrogens were able to control production 
of type I interferon and therefore play dual roles during inflammatory events. In conclusion, we showed 
that estrogens inhibited expression of α-AChR and HLA-DR in TECs, suggesting that estrogens may 
alter the tolerization process and favor environment for an autoimmune response. By contrast, under 
inflammatory conditions, estrogen effects depend upon strength of the partner molecules with which it 
is confronted to.

Myasthenia gravis (MG) is a heterogeneous neurological autoimmune disease caused by antibodies directed 
against proteins of the neuromuscular junction. In 85% of patients, antibodies are directed against the acetylcho-
line receptor (AChR)1, 2 and associated with thymic abnormalities including follicular hyperplasia and thymoma. 
Thymic follicular hyperplasia form affects mainly female patients (ratio 4:1) during the fecund period of their 
life3. Of note, thymus removal (thymectomy) completed in an early stage of the disease, is generally an efficient 
therapy inducing a gradual decrease in anti-AChR antibody titer in the serum and improving symptoms4, 5.

We and other groups have demonstrated that the biological hallmark of MG thymic hyperplasia is the pres-
ence of ectopic germinal centers (GCs)6, which provide specific activated and differentiated B cells producing 
anti-AChR antibodies7. These features go along with dysregulated expression of CXCL13, CCL21, and SDF-1/
CXCL128–10, chemokines that play a central role in lymphocyte trafficking to lymphoid and non-lymphoid tissues 
in both physiological11 and pathophysiological12 conditions.

In autoimmune diseases, the migration and the accumulation of lymphocytes in the target organs are impor-
tant steps of the pathogenesis. Indeed, high levels of chemokines or cytokines are observed in blood or tissues of 
patients and correlate with the severity of the disease8, 9, 13, 14. Moreover, the ectopic expression of CXCL13 and 
CCL21 in transgenic mice has been reported to be sufficient to induce lymphoid neogenesis, which leads to the 
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formation of lymph node-like structures15. Also, we have recently demonstrated that inflammation is required 
to reinforce CXCL13 function in recruitment and induction of B cells in tertiary lymphoid organ development16.

Interestingly enough, hyperplasic MG thymuses display signs of inflammation with an increased expression 
of interferon (IFN) type I and type II regulated genes including HLA-DR genes17.

Autoimmune MG as compared to most autoimmune diseases (AIDs) are more prevalent in women than 
men18. The reason for this gender incidence was not understood for a long period. Recently, various investigators 
brought data to light up this phenomenon. Hence, we have demonstrated that the female main sexual hormone, 
estrogens contribute to the gender bias female susceptibility to AIDs by partially silencing the autoimmune regu-
lator (AIRE)19. In addition, estrogens display various known roles in humoral and cellular responses to infection 
and vaccination in men and women20. As well, another group has demonstrated that dihydrotestosterone (DHT), 
the main testosterone metabolite may have an opposite effect by stimulating in the thymus tolerance mechanisms, 
again highlighting the role of sexual hormones in AID susceptibility phase. While sex hormones contribute to 
disease etiology, they also modulate the activity of the immune system and consequently the evolution of AIDs. 
Therefore, during pregnancy or menstruations, steroid hormones favor a polarization of the immune response 
towards a Th2 response21. For instance in autoimmune MG patients, a worsening of the clinical symptoms during 
pregnancy or menstruations have been reported, a phenomenon that disappears after thymectomy22. Further, 
we have demonstrated that estrogen receptor subunit α (ER-α) is upregulated in thymocytes of MG patients23, 
suggesting a possible role of sex hormones in thymic pathogenesis and pathology incidence.

Women affected with autoimmune MG are more prone to develop hyperplasic thymuses3. Also, and as indi-
cated above, less efficient thymic tolerance process could contribute to the higher female susceptibility to auto-
immune MG. Here, we attempt to understand why females display more frequently a hyperplastic thymic in MG, 
and the involvement of female sexual hormone, estrogens, in these physiopathological processes. To this end, we 
analyzed the influence of, estrogens on the expression of the chemokines CXCL13, CCL21 and CXCL12 that are 
highly attractive for B and T cells and are involved in GC formation24, 25, as well as molecules that participate in 
the mechanism of central tolerance including HLA class II antigens and AChR subunits.

Our data clearly indicate that estrogens induced a low steady state expression level of most molecules ana-
lyzed. However, in an inflammatory environment, comparable to events found in MG thymus, estrogens sustain 
the activation of interferon-signaling pathways enhancing the process of GC formation.

Results
Estrogen effects on HLA-DR and α-AChR expressions in thymus. To understand the molecular 
differences underlying the female prevalence in MG, we first investigated in normal thymuses from males and 
females the expression of α-AChR and HLA-DR molecules essential for central tolerance mechanisms, and for 
the autoantigen presentation in MG. We, then evaluated the effects of estrogens on the expression of these mole-
cules at the mRNA and protein levels.

Analysis of whole normal human thymuses by real-time qPCR showed a gender differential effect with women 
expressing significantly less α-AChR but also slightly less HLA-DR compared to men (Fig. 1a,b). The effect of 
estrogens on the expression of these two molecules was analyzed in thymic epithelial cells that express AChR26 
and MHC class II27, and are involved in thymic tolerance processes. Our data demonstrated that estrogens 
decreased the expression of α-AChR and HLA-DR proteins in cultured thymic epithelial cells (TECs) (Fig. 1c,d). 
This estradiol effect on the expression of α-AChR is significant at physiological doses (10−8 to 10−9) as observed 
in the dose effect curve (Supplemental Fig. S1). Altogether, these data suggest that estradiol may participate in the 
tolerization process for α-AChR subunit by regulating its expression and that of HLA-DR molecules.

To confirm the influence of estrogens on the expression of these molecules, we analyzed their mRNA lev-
els in thymuses of mice deficient in estrogen receptor-α (ER-α) (principal isoform found in TECs23), estrogen 
receptor-β (ER-β) or aromatase (ArKO) (the enzyme involved in estrogen synthesis). As shown in Fig. 1e, the 
level of α-AChR was low in ArKO mice and significantly higher in ER-α KO mice compared to WT and ER-β 
mice, suggesting that estrogen effects were mediated through its nuclear receptor ER-α for α-AChR subunit 
expression in TECs. By contrast, MHC class II expression was not altered in ER-α, ER-β KO mice, but increased 
in ArKO mice (Fig. 1f), suggesting that estrogens may induce an ER-independent transduction pathway to con-
trol MHC II expression.

Altogether these data corroborate what we have already published about women after puberty, that display a 
decreased capacity in TECs to express tissue-specific antigens regulated by autoimmune regulator among them 
α-AChR19.

Estrogen effects on chemokine expression in the thymus. We then wondered whether women 
exhibit differences in signaling molecules underlying the physiopathologic events occurring in the thymus of MG 
patients. We conducted a pan-genomic expression analysis using the “Human 1 cDNA arrays from Agilent” to 
compare thymic tissues from young men and women as detailed in Dragin et al.19. Analysis of the expression of 
all chemokines included in the arrays showed a significant difference between men and women (paired analysis, 
p < 0.01) (Fig. 2a) while no significant difference was observed for the interleukin family (Fig. 2b) (Supplemental 
Table S1a and b). Among the 17 chemokines included in the array, 14 were more expressed in males than females 
(Supplemental Table S1a). Moreover, a similar analysis on clusters of differentiation markers (Supplemental 
Fig. S2a) and keratins (Supplemental Fig. S2b) that illustrates the distribution of T-cell populations and epithelial 
cells, respectively, was performed. No differential expression between men and women for these gene families was 
observed, suggesting that the difference in chemokine thymic expression between men and women was not due 
to differences in thymic cell populations. Besides, to validate the gender differential expression observed in the 
microarray, we performed by real-time qPCR on, CXCL13, CCL21 and CXCL12, chemokines involved in MG 
pathological process. We observed that CXCL13 and CCL21 expressions were significantly decreased in women 
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Figure 1. Modulation of α-AChR and HLA-DR expression in human and mouse thymuses and by β-estradiol 
in human primary cultured TECs. mRNA expression levels of α-AChR (a) and HLA-DR (b) in normal human 
male and female thymuses. Effect of 17-β estradiol (10−8M) on α-AChR (c) and HLA-DR (d) protein expression 
in human primary TECs. mRNA expression levels of α-AChR (e) and MHC II (f) in thymuses of C57Bl6J, 
Aromatase knock-out (ArKO), estrogen receptor α KO (ERα−/−) and estrogen receptor β KO (ERβ−/−) 
female mice. (n > 4 for human and n > 3 for mouse thymuses). P values were obtained using Mann-Whitney 
test for (a,b); P values were obtained using the Wilcoxon test for (c,d); P values were obtained using the Student 
t test for (e,f).
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as observed with the microarray results, while CXCL12 did not display gender bias expression in whole human 
thymuses of adult women compared to men (Fig. 2c–e).

Since our data showed a decreased expression of chemokines in female thymus, we then asked whether estro-
gens could be responsible for these reduced chemokine expressions.

As shown in Fig. 3, in human primary TECs, a physiological dose of estradiol (E2) induced a significant 
decrease in protein expression of CXCL13 while no effect was found for CCL21 (Fig. 3a,b respectively), suggest-
ing that lower level of CXCL13 in females compared to males could be due to the effects of estrogens (Fig. 3a). 
Of note, estradiol effect on the expression of chemokines is significant at physiological dose (10−8 to 10−9 M) as 
observed in the dose effect curves (Supplemental Fig. S3). Indeed, we demonstrated that normal physiological 
doses inhibited the expression of α-AChR, CXCL13, CCL21 while they upregulated CXCL12 expression in pri-
mary human TECs. Surprisingly, although no gender differential expression was found for CXCL12, estrogens 
up-regulated in TECs, its protein expression (Fig. 3c). Of note, these data corroborate previous findings display-
ing, in other tissues, upregulation of CXCL12 by physiological concentrations of estrogen through ER-α28, 29.

In addition, the analyses of chemokine mRNA levels in the thymus of ER-α KO, ER-β KO or ArKO mice 
revealed that CXCL13 mRNA expression (Fig. 3d) was increased in ArKO mice but unchanged in ER-β KO mice. 
These data strongly suggest that CXCL13 transcript level was down-regulated by estrogens, independently to 
its ER-α nuclear receptor. By contrast, CCL21 expression was not altered in the mutated mice, suggesting that 
CCL21 expression is probably related neither to estrogens nor its nuclear receptors (Fig. 3e).

Effect of inflammatory signals with estrogens on HLA-DR, α-AChR and chemokine expres-
sion. We have previously demonstrated a chronic inflammation in MG hyperplastic thymuses characterized 

Figure 2. Analysis by microarray and RT-PCR of cytokine gene expression in male and female thymuses. 
Expression ratios of chemokine (a) and interleukin (b) genes spotted on the arrays for man and woman adults, 
compared to a thymic reference composed of thymuses from female babies. Each dot corresponds to the 
ratio of the median of five and four replicate arrays respectively for women, and men for a given gene. mRNA 
expressions of CXCL13 (c), CCL21 (d) and CXCL12 (e). n > 4 individual thymuses, aged from 17 to 44 years. P 
values were obtained using the Wilcoxon test for (a,b), and the Mann-Whitney test for (c to e).
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by an overexpression of cytokines, in particular IFN γ and TNF α30. Since young female MG patients are prone 
to develop hyperplastic thymuses, we investigated here the interplay between estrogens and a pro-inflammatory 
environment. In order to mimic the inflammatory MG thymic condition that occurred in female.

In primary cultured human TECs, the inflammatory mix that mimics MG thymic environment31 drove a 
significant expected and prominent upregulation of HLA-DR expression, an effect unchanged in the presence of 
estradiol (Fig. 4a). However, the cytokine mix combined with estradiol induced a reduced α-AChR expression 
(Fig. 4b).

The analysis of the chemokines at the mRNA level revealed that the cytokine mix caused an increased expres-
sion of CXCL13, CCL21, and CXCL12, and estrogens limited this increase (Fig. 4c–e). However, the changes at 
the protein level were less striking, except for CXCL13 that was significantly reduced in the presence of inflamma-
tory cytokines (Supplemental Fig. S5). The apparent contradiction between the increased mRNA and decreased 
protein level could be due to a higher degradation or a reduced secretion of the proteins. Of note, the effect 
of single cytokine exposure was analyzed (Supplemental Fig. S4. We observed that IFNγ effect was the high-
est for CXCL13 and TNF-α and IL-1β were the highest for CXCL12. As previously observed, combined differ-
ent cytokines lead to a stronger effect while cytokines are used in single. A synergistic or exacerbation is then 
observed on the cytokine expression.

We next wondered whether this modulation might impact or modify the chemoattractant capacity of human 
TECs. We found that supernatants from TECs treated with estrogens exhibited a significant decreased chemot-
actic activity on peripheral blood leukocytes (PBLs) (Fig. 5a), an effect likely due to diminished migration of T 
(Fig. 5b) and not of B lymphocytes (Fig. 5c). Altogether, these data demonstrated that estrogens could decrease 

Figure 3. Modulation of chemokine expression in mouse thymuses and by β-estradiol in human primary 
cultured TECs. Human primary TECs were stimulated for 24 hours in the presence of 17-β estradiol (10−8M). 
Effects of estradiol on CXCL13 (a), CCL21 (b) and CXCL12 (c) protein expression by cultured primary human 
TECs. mRNA expression levels of CXCL13 (d) and CCL21 (e) in thymuses of C57Bl6J, aromatase knock-out 
(ArKO), estrogen receptor α KO (ERα−/−) and estrogen receptor β KO (ERβ−/−) female mice. Results are the 
mean values ± SEM. n = 5 different TEC supernatants for protein analysis and n > 3 different mouse thymuses 
per strain. P values were obtained using the Wilcoxon test for (a to c); P values were obtained using the Student 
t test for (d,e).
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chemokine expression by TECs and then as a consequence reducing TEC ability to recruit T cells. In the presence 
of the inflammatory mix, the inhibitory effect of estradiol on chemotactism was less pronounced on total PBLs 
but still significant on T lymphocytes (Fig. 5a–c).

Together, by controlling the expression of some MG-related molecules, even in inflammatory conditions, 
estrogens can limit the inflammation burst. Interestingly, the effect of estrogens was detected only when the 
inflammatory mix induced small expression changes.

Estrogens upregulate the expression of Type I interferon and related molecules in human pri-
mary thymic epithelial cells. The results above did not provide an explanation for the higher frequency 
of follicular hyperplasia in females that is associated with higher expression of CXCL13 and CCL21. Among 
molecules able to upregulate the expression of these chemokines, we previously reported that Type I interferon 
is a potent regulator of CXCL13 and CCL21 in primary cultured epithelial cells and lymphatic endothelial cells, 
respectively32. Others authors have demonstrated that IFN-I production or expression is regulated by estradiol33 
in natural killer cells34, lymphocytes35, and B cells36. Moreover, estradiol regulation of IFN-I signaling participates 
to the gender bias disease development as already demonstrated by Choubey et coll37. We thus asked whether 
estrogens could affect the expression of type I interferon in human primary TECs.

We observed that estrogens stimulated expression of IFN-α and -β, (Fig. 6a,b respectively). Moreover, 
interferon-related genes such as OAS2 and MXA displayed also, but to a lesser extent, an estrogen modulation 
effect (Fig. 6c,d). These observations corroborate findings observed in other cell types showing that estrogens can 
stimulate the type I interferon pathway38. These data demonstrate the complexity of estrogen effect and its diverse 
roles depending on the environment.

Figure 4. Modulation of HLA-DR, α-AChR, CXCL13, CCL21 and CXCL12 expression in human primary 
TECs by pro-inflammatory cytokine mix with β-estradiol. Effects of a cytokine mix with 17-β estradiol (10−8M) 
on HLA-DR (a), α-AChR (b), CXCL13 (c), CCL21 (d) and CXCL12 (e) expressions in human primary TECs. 
HLA-DR and α-AChR protein levels were analyzed by flow cytometry. Primary cultured TECs were obtained 
from at least five different donors. P values were obtained using the Wilcoxon test.
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Discussion
Numerous studies have demonstrated that females are more susceptible to autoimmune diseases. Two groups 
have recently cleared up this evidence highlighting a guilty contribution to sex hormone by their involvement 
in the regulation of AIRE, a molecule with a pivotal role in the mechanisms of central tolerance19, 39. In addition, 
another transcription factor, vestigial-like family member 3 or VGLL3, has recently been identified as a regulator 
of inflammatory network that promotes female-biased autoimmunity40. Women have also a stronger response to 
infection, inflammation or vaccination due to an increased antibody production41. Truffault et al. have recently 
demonstrated that 80% of thymic hyperplastic MG patients are females, suggesting that female related features 
such as hormonal status may be taking into account for the development of such disease phenotype3. Although 
the fact that women may be more sensitive than men to autoimmunity is understandable, it remains inexplicable 
why they preferentially develop thymic hyperplasia in MG. Therefore, the aim of this study was to investigate the 
role of estrogens in the pathogenic mechanisms associated with AChR sensitization and thymic hyperplasia, by 
studying the expression of MG-associated molecules including the biological events involved in GC development 
such as chemokine expressions.

Estrogens and pathogenic mechanisms of MG. Estrogen display pro-inflammatory as well as 
anti-inflammatory effects through cytokine production regulation that depend on cell types, estrogen doses and 
the environment42–46.

Estrogens are potent driver of regulatory T cells (Treg) by promoting their proliferation47, by enhancing their 
suppressive activity47 through the activation of the programmed cell death protein 1 (PD1) pathway48 and by 
stimulating IL-10 secretion49. Our study confirmed the anti-inflammatory properties of estrogens and demon-
strated that most of the molecules involved in the MG autoimmune response and the generation of GCs were 
down-regulated by estrogens. Interestingly, comparable estrogen effects have been shown in various human cell 

Figure 5. Analysis of Chemotactic properties of supernatants of human primary TECs treated with β-estradiol 
with or without a pro-inflammatory cytokine mix. Chemoattraction of PBL (a), T lymphocytes (b) and B 
lymphocytes (c) by supernatants of primary human TEC cultures treated with 17-β estradiol (10−8 M) with or 
without a mix of pro-inflammatory cytokines (IFN-γ, IL-1β, and TNF-α) for 24 hours. Results are expressed 
as the percentage of migrating cells through the well (±SEM). Each experiment was normalized to 100 for 
untreated cells. n = 4 to 6 different blood donors. P values were obtained using the Wilcoxon test.
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types among them human endometrial epithelial cells50, vaginal cells51 and intrahepatic biliary epithelial cells52 
for which β-17 estradiol inhibited HLA-DR expression at transcript and protein levels. One of the main TEC 
functions is to express tissue-specific antigens53 such as α-AChR to set up the tolerance. This process of negative 
selection leads to the deletion of T-cells that strongly react with autoantigens presented by the medullary TECs 
through MHC class II27. We showed here that estrogens inhibited the expression of α-AChR and HLA-DR in 
TECs, suggesting that estrogens may alter the tolerization process, and favor the environment for an autoimmune 
response against α-AChR. Hence, these data suggest that estrogens in resting conditions create a “Yin/Yang” bal-
ance in the thymus by decreasing the expression of most chemokines that may reduce the autoimmune response 
but in same time alter the efficiency of the negative thymic selection.

Since estrogens display anti-inflammatory features54, one could have expected that estrogens down-regulate 
the expression of the genes involved in the anti-AChR autoimmune response in MG patients. The facts are in 
contradiction with this hypothesis since MG thymus displays inflammation and germinal centers especially 
in females3. One possible explanation for this discrepancy is related to the finding that estrogens can promote 
IFN-I expression in TECs. Since type I interferon can stimulate its own production in an autocrine manner, 
and upregulate the expression of chemokines, it could explain the GC development in the thymus of females. 
These data corroborate previous studies that have shown in another cell types, a positive regulation control of 
estrogens on interferon type 1 and type 2 genes37, 55 and then on interferon-related gene levels. More, estrogens 
and IFN activate signaling pathways that work together to modulate estrogen- or IFN-sensitive genes37. Our 
study shows that expression of HLA-DR and α-AChR in human primary TECs was upregulated by inflammatory 

Figure 6. Modulation of interferon α, β, OAS2 and MXA gene expression in human primary cultured TECs by 
β-estradiol. Effects of 17-β estradiol (10−8M) on IFNα (a), IFNβ (b), OAS2 (c) and MXA (d) mRNA expression 
in human primary TECs. Total mRNA were extracted from four different cultured human TECs treated for 24 h. 
P values were obtained using the Mann-Whitney test.
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cytokines, confirming previous studies31, and similarly to what has been found in inflamed intestinal epithelial 
cells56. As recently suggested elevated expression in “inflamed” TECs of α-AChR favors, through an antigen 
cross-presentation by dendritic cells, the AChR autosensitization found in MG thymus57. Altogether, these obser-
vations tend to demonstrate that, in resting conditions, a low expression of α-AChR and HLA-DR by TECs 
induced by estrogens may result in a less efficient tolerance process that facilitates an increased women suscepti-
bility to MG. However, once the pathology occurs, estrogens impact is restrained by the inflammatory molecules 
that control the immune response. Finally, the activation of IFN-I production by estrogens could interfere in the 
pathogenic processes.

ERE on gene promoter of molecules implicated in MG pathogenesis. To corroborate the in vivo 
results, we analyzed CXCL13, CCL21, CXCL12, α-AChR and HLA-DR human gene promoter by using a pre-
dictive tool for the transcription factor promoter region binding site, The Champion ChIP Transcription Factor 
Search Portal (Sabioscience) (Supplemental Fig. S6).

Analysis of promoter region of HLA-DR and α-AChR revealed the presence of regulatory transcription factor 
binding sites related to estrogens but also to NF-κB signaling pathways, which are highly activated in inflamma-
tory conditions. In this context, although estradiol had a high downregulatory effect on HLA-DR and α-AChR 
subunits, in the presence of pro-inflammatory cytokines, the effects of estrogens were limited, indicating that 
the pro-inflammatory cytokines dominate for the expression of these genes. Indeed, the down-regulatory effects 
of estrogens were more striking, when the upregulatory effects of inflammation were limited. In the case of 
HLA-DR, cytokines increased the expression by 25 fold, while estrogens reduced it by a factor of 2.5. As a result, 
estrogens had no significant effect in the presence of inflammatory cytokines. This estrogen effect appeared to 
be, for HLA-DR, independent from ER-α, which may corroborate a possible activation of a ligand-independent 
genomic activation pathway through c-Jun N-terminal Kinase pathway58 and or histone acetylation modifica-
tions52. By contrast, for α-AChR, estrogen regulation appeared to be clearly mediated through ER-α. The pro-
moter region of CCL21, CXCL13 displayed ERE or XRE (for the Aryl Hydrocarbon Receptor), sites that required 
a recruitment of ER-α validating the involvement of estrogens in the control of the expression of these genes. The 
presence of ERE, in chemokine promoters, emphasizes the ability of estrogen alone to modulate cytokine and 
chemokine expressions. However, estradiol-induced changes in CCL21 expression were very limited (decrease 
factor of 1.4) in TECs even though the effects remained significant in the presence of cytokines (decrease factor of 
1.6). Of note, in MG thymuses, it has been demonstrated that CCL21 increase is due to their production by lym-
phatic vessels corroborating the limited estrogens effect observed in TECs59. Altogether, our data demonstrated 
that the influence of estrogens was highly dependent upon the power of the inflammatory effect on a particular 
gene.

Estrogens transduction pathways and AIDs. One can speculate that if estrogens display duals operating 
rules, animal models with estrogen deficiency should display variable resistance to experimental MG. So far, data 
are not conclusive for the role of estrogen in the disease course. Delpy and colleagues have shown that estrogen 
administration aggravates EAMG symptoms in mice60 while in rat61 no estrogen effect was observed on the sever-
ity of muscle weakness. Moreover, female castration has no effect on the rat susceptibility to EAMG62. Recently, 
it has been demonstrated that ER-α KO mice display a similar susceptibility to EAMG compared to WT mice, 
and a preserved humoral and cellular immune responses to AChR except for the TNF-α response63. However, 
the classical EAMG mouse model mimics the muscle disease but does not reflects the human thymic features. A 
model that develops the thymic hyperplasic MG feature would be more helpful to validate or corroborate estro-
gens roles in this pathology.

Nevertheless, by using deficient mouse models for estrogens transduction pathways, several studies brought 
clues in the relationship between estrogens, autoimmunity and GC formation. Indeed, ER-α knockout mice 
exhibit immune complex-type glomerulonephritis, destruction of tubular cells and severe infiltration of B lym-
phocytes in the kidney64 while ER-β deficient mice develop a bone marrow hyperplasia resembling myeloprolif-
erative disease65. Even a defect in estrogen production, with aromatase KO mice, spontaneously leads to severe 
autoimmune exocrinopathy resembling Sjogren’s syndrome characterized by signs of autoimmunity with lymph-
oproliferative phenotypes in bone marrow and spleen66. In these models, disequilibrium in estrogen transduc-
tion pathway appears to contribute to the apparition of autoimmune symptoms such as cell infiltrations or GC 
formation.

We can then suggest a similar mechanism in MG. Combined with the increased pro-inflammatory activity 
in the thymus67, an abnormal decreased level of estrogens68 in young MG female patients could be associated 
with a high chemokine and cytokine production leading to migration of B and activated T cells towards the thy-
mus, and an efficient antigenic presentation could, in turn, leads to the formation of GCs. This hypothesis also 
fits with our previous work showing the increased expression of ER-α on thymic cells23. Indeed, high levels of 
estrogens downregulate the expression of ERs, so one can speculate that a defect of estrogens could be associated 
with higher ER expression and the development of B-cell hyperplasia, leading to the GC formation in the highly 
activated thymus of MG patients. Alternatively, estrogens at normal or high levels could indirectly affect thymic 
inflammation via a higher production of type I interferon, which influences the expression of molecules involved 
in GC development.

Conclusion. Our results highlight the subtle effect of estrogens. In resting conditions, estrogens have a 
dominant regulatory effect. However in an inflammatory milieu, the effects of estrogens were modulated: when 
cytokines produced a strong regulation, estrogens were not able to overcome it; however, in the absence or for 
low cytokine effect, estrogen did effectively affect the expression of molecules involved in autoimmune responses. 
Here, we demonstrated that equilibrium between estrogens and inflammatory cytokines could occur based on the 
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strength of their respective effect. Therefore, this suggests that the estrogen-induced low chemokine expression in 
woman thymuses is overpassed when stimuli activate inflammatory pathways such as IFN-I related one. However, 
estrogens can modulate IFN-I production. Consequently estrogens operated a twist to contribute to hyperplastic 
thymic in MG by sustaining the inflammatory pathway (Supplemental Fig. S7).

Materials and Methods
Human samples. Human thymic fragments (50–100 mg) were obtained from immunologically normal male 
and female patients (babies aged two days to 1-year-old, and adults aged 15 to 27 years old) undergoing corrective 
cardiovascular surgery at Marie Lannelongue Chirurgical Center (Le Plessis-Robinson, France). All tissue sam-
ples were fast frozen in liquid nitrogen within 30 minutes of their excision from patients for mRNA analysis or put 
in sterile RPMI medium for culture experiments.

C57BL/6 mice were purchased from Janvier Laboratory (Saint Berthevin, France). Aromatase knockout mice 
(ArKo) were generated by the disruption of the Cytochrome P450 19A1 gene (Cyp 19) and were kindly provided 
by Evan R. Simpson66. They were backcrossed under C57BL6 background. Mice were 6 to 10 weeks old (n ≥ 6 
per group). ERα−/− and ERβ−/− mice69 backcrossed under C57BL/6 background (more than ten generations) 
were from Dr. Habert’s mice colony (CEA, Fontenay-aux-Roses, France) under material transfer authorization 
#2010-036 of “Institut Clinique de la Souris”, (Strasbourg, France). Male and female mice were 6 to 10 weeks old.

Primary cell cultures. Primary human thymic epithelial cell (TEC) cultures were established following the 
protocol previously described70. To avoid phenol hormone-like effects, RPMI phenol free was used. The culture 
medium was supplemented with 20% horse serum (Life Technologies, Invitrogen Corporation, Cergy-Pontoise, 
France), 0.2% Ultroser G (Life Technologies, Carlsbad, USA), two mmol/liter l-glutamine, 100 IU/ml penicillin, 
100 μg/ml streptomycin, and 5 μg/ml fungizone. After 7–10 days, the cells were washed with phosphate-buffered 
saline (PBS) and collected by adding 0.075% trypsin (Life Technologies, Carlsbad, USA) and 0.16% EDTA for 
10 min at 37 °C. Cells were then seeded and allowed to attach to the flask for 24 h before treatment in culture 
medium was supplemented with 5% horse serum.

Cells were treated for 24 hours with 17-β estradiol at 10−8 M (Sigma) in the presence or absence of a mix of 
cytokines (1 ng/mL recombinant human interleukin1β (IL-1β) (Sigma, Saint Quentin Fallavier, France), 10 ng/
mL recombinant tumor necrosis factor-α (TNF-α), and 500 U/mL recombinant human interferon-γ (IFN-γ) 
(Genzyme, Cergy Saint Christophe, France) conditions previously described in Nancy et al.23.

RNA extraction and reverse transcription. Thymuses were homogenized with the FastPrep FP120 
instrument (Qbiogen, Illkirch, France). Total RNA was prepared from the thymus and TECs using the trizol RNA 
Isolation kit (Invitrogen, Cergy-Pontoise, France). The quality and concentration of RNA were analyzed with a 
NanoDrop ND-1000 spectrophotometer (LabTech, Palaiseau, France). RNA samples presenting a minimal ratio 
of 1.9 and 2 for respectively 260/280 and 260/230 were also controlled on a denaturing agarose gel. When the 
samples were degraded even partially, they were excluded. Total mRNA (1 μg) was reverse-transcribed using the 
SuperScript II RT kit (Invitrogen Cergy-Pontoise, France) according to the manufacturer’s instructions.

Microarray experiments. Microarray experimentation procedure has previously been described by Le 
Panse et al.9, 19. To minimize inter-individual variation, microarray experiments were performed with pools of 
RNA prepared with the equal amount of total RNA extracted from 4 thymuses of female donors aged 15 to 19 
years old or from 3 thymuses of male donors aged 15 to 27 years old. The female and male RNA pools were 
co-hybridized respectively five and four times with a thymic reference composed of 10 thymuses of female babies 
aged one week to 1-year-old. All total RNAs were purified on Qiagen columns (Courtaboeuf, France) and their 
quality was assessed on an Agilent Bioanalyzer (Massy, France).

The experiments were performed with the “Human 1” cDNA arrays from Agilent (G4100A) according to the 
manufacturer’s instructions by using 20 µg of total RNA.

Quantitative Real-Time PCR. Gene expression was evaluated by quantitative real-time PCR performed 
using the LightCycler apparatus (Roche Diagnostics, Meylan, France) as previously described by Dragin et al.19. 
The primers used are listed in Supplemental Table 2.

Each PCR was performed using the Fast-start DNA Master SYBR Green I kit (Roche Diagnostics, Meylan, 
France) according to the manufacturer’s instructions with the following conditions: initial denaturation at 95 °C 
for 10 min, then 40 cycles at 95 °C for 15 s, 60 °C for 14 s and 72 °C for 10 s, and a final fusion curve at 65 to 95 °C 
for 1 min.

Each cDNA sample was run at least in duplicate mRNAs were normalized to GAPDH. mRNA were expressed 
as arbitrary units and are the mean values (±SEM). For primary human TEC analysis, mRNA expression was 
normalized to 100 for untreated cells.

ELISA. The levels of CXCL13, CCL21, and CXCL12 were analyzed in TEC supernatants. Plates were coated 
overnight at 4 °C with 2.5 μg/ml of mouse anti-human CXCL13 antibody (MAB801) or chicken anti-human 
CCL21 antibody (AF336). Cell supernatants (1/100 dilution) or standards were incubated for 90 minutes at room 
temperature, and subsequently, 0.25 μg/ml of biotinylated anti-human IgGs and streptavidin-horseradish perox-
idase were added.

Recombinant human CCL21 (366-6 C/CF) and CXCL13 (801-CX-025) were used as standards. 
Tetramethylbenzidine was used for color development, and plates were read at 450 nm using MRX reader DYNEX 
(Thermo Lab systems, Cergy-Pontoise, France). All antibodies were purchased from R&D systems (Lille, France).
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Flow cytometry analyses. To analyze α-AChR subunit that is expressed intracellularly in TECs, cells 
were fixed and then permeabilized using IntraPrepTM Permeabilization reagents (Beckman-Coulter, Villepinte, 
France) according to the manufacturer’s instructions. The permeabilized cells were then labeled with an 
anti-AChR antibody (clone mAB 35; Sigma, Saint Louis, USA). The staining was detected by FITC coupled-anti 
rat immunoglobulins (Valbiotech, Paris, France).

HLA-DR was analyzed in non-permeabilized TECs with a mouse anti-human HLA-DR conjugated to FITC 
(clone B8.12.2, Immunotech Marseille, France). In all flow cytometry analyses, the results show the median 
(±SEM) fluorescence intensity (MFI). For each experiment, the MFI was standardized to 100 for untreated cells.

Chemotaxis assays. TECs were treated for 24 h, and then supernatants were collected. Chemotaxis assay 
was performed in transwell plates (Costar/Dutcher, Issy-Les Moulineaux, France). TEC supernatants were placed 
in the lower wells while PBMCs were seeded in the upper wells. After five hours of incubation, cells were collected 
from both lower and upper wells and labeled with PE-coupled anti CD19 and FITC coupled anti-CD3-antibodies 
(DAKO Cytomation, Les Ulis, France). PBMCs were counted by flow cytometry assay calibrated using control 
microbead CaliBRITETM (BD Bioscience, Le Pont de Claix, France).

Promoter sequence extraction and detection of ER-binding sites. The gene promoter sequences 
were obtained from the UCSC Genome Bioinformatics Site. We then used SABiosciences Text Mining 
Application, a tool for retrieving human/mouse putative orthologous promoter regions.

Statistical analyses. Parametric or non-parametric test (Wilcoxon test for paired data, and Mann-Whitney 
test for unpaired data) were used to compare groups. Non-parametric tests were used thoroughly. However, 
because of the lack of power of these tests when the samples were too small (n < 4), in the few experiments with 
n < 4, the Student t test was used. The test is specified in the figure legend. Values are reported as Mean ± SEM. 
Statistical significance is recognized at p < 0.05. We used GraphPad Prism 5 software to generate the graphs 
and to perform the statistical analyses. In all figures, the significance is displayed as stars, as follows: *P < 0.05; 
**P < 0.01; ***P < 0.001.

Ethics approval and consent to participate. The use of human tissue included in the present study was 
approved by the local ethics committee (CPP, Kremlin-Bicêtre, France: agreement No. 06–018; CCP Ile de France 
Paris 6, France agreement No. C09-36).

All animals were handled under the Sonia Berrih-Aknin authorization from the French Ministry of 
Agriculture (agreement no. 075–1792) and according to the Animal Care and Use of Laboratory Animal guide-
lines of the French Ministry of Agriculture.
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