T. J. Jentsch, K. Steinmeyer, and G. Schwarz, Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes, Nature, vol.348, issue.6301, pp.510-51410348510, 1038.
DOI : 10.1038/348510a0

T. J. Jentsch, CLC Chloride Channels and Transporters: From Genes to Protein Structure, Pathology and Physiology, Critical Reviews in Biochemistry and Molecular Biology, vol.555, issue.1, pp.3-36, 2008.
DOI : 10.1113/jphysiol.2003.060046

S. Uchida and S. Sasaki, FUNCTION OF CHLORIDE CHANNELS IN THE KIDNEY, Annual Review of Physiology, vol.67, issue.1, pp.759-778, 2005.
DOI : 10.1146/annurev.physiol.67.032003.153547

G. Stolting, M. Fischer, and C. Fahlke, CLC channel function and dysfunction in health and disease, Frontiers in physiology, vol.5, issue.378, p.378, 2014.

O. Andrini, ClC-K chloride channels: emerging pathophysiology of Bartter syndrome type 3, American Journal of Physiology - Renal Physiology, vol.308, issue.12, pp.1324-1334, 2015.
DOI : 10.1152/ajprenal.00004.2015

URL : http://ajprenal.physiology.org/content/ajprenal/308/12/F1324.full.pdf

Y. Matsumura, Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel, Nature Genetics, vol.21, issue.1, pp.95-9810, 1999.
DOI : 10.1038/5036

M. Konrad, Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome, J Am Soc Nephrol, vol.11, pp.1449-1459, 2000.

D. B. Simon, Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III, Nature Genetics, vol.78, issue.2, pp.171-17810, 1997.
DOI : 10.1016/0002-9343(78)90794-5

R. Birkenhager, Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure, Nature Genetics, vol.29, issue.3, pp.310-31410, 2001.
DOI : 10.1038/ng752

K. P. Schlingmann, Salt Wasting and Deafness Resulting from Mutations in Two Chloride Channels, New England Journal of Medicine, vol.350, issue.13, pp.1314-131910, 2004.
DOI : 10.1056/NEJMoa032843

J. C. Hennings, The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron, Journal of the American Society of Nephrology, vol.28, issue.1, p.2016010085, 2016.
DOI : 10.1681/ASN.2016010085

A. Grill, Salt-losing nephropathy in mice with a null mutation of the Clcnk2 gene, Acta Physiologica, vol.63, issue.3, pp.198-21110, 2016.
DOI : 10.1046/j.1523-1755.2003.00730.x

C. Barlassina, Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension, Human Molecular Genetics, vol.16, issue.13, pp.1630-1638, 2007.
DOI : 10.1093/hmg/ddm112

N. Jeck, Activating Mutation of the Renal Epithelial Chloride Channel ClC-Kb Predisposing to Hypertension, Hypertension, vol.43, issue.6, pp.1175-1181, 2004.
DOI : 10.1161/01.HYP.0000129824.12959.f0

C. M. Lawes, S. Vander-hoorn, and A. Rodgers, Global burden of blood-pressure-related disease, 2001, The Lancet, vol.371, issue.9623, pp.1513-151810, 2001.
DOI : 10.1016/S0140-6736(08)60655-8

R. P. Lifton, A. G. Gharavi, and D. S. Geller, Molecular Mechanisms of Human Hypertension, Cell, vol.104, issue.4, pp.545-556, 2001.
DOI : 10.1016/S0092-8674(01)00241-0

A. C. Guyton, Blood pressure control--special role of the kidneys and body fluids, Science, vol.252, issue.5014, pp.1813-1816, 1991.
DOI : 10.1126/science.2063193

J. S. Denton, A. C. Pao, and M. Maduke, Novel diuretic targets, AJP: Renal Physiology, vol.305, issue.7, pp.931-942, 2013.
DOI : 10.1152/ajprenal.00230.2013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798746

L. Mccallum, S. Lip, and S. Padmanabhan, The hidden hand of chloride in hypertension, Pfl??gers Archiv - European Journal of Physiology, vol.275, issue.48, pp.595-60310, 2015.
DOI : 10.1074/jbc.M006218200

A. Liantonio, Molecular Requisites for Drug Binding to Muscle CLC-1 and Renal CLC-K Channel Revealed by the Use of Phenoxy-Alkyl Derivatives of 2-(p-Chlorophenoxy)Propionic Acid, Molecular Pharmacology, vol.62, issue.2, pp.265-271, 2002.
DOI : 10.1124/mol.62.2.265

A. Liantonio, Investigations of Pharmacologic Properties of the Renal CLC-K1 Chloride Channel Co-expressed with Barttin by the Use of 2-(p-Chlorophenoxy)Propionic Acid Derivatives and Other Structurally Unrelated Chloride Channels Blockers, Journal of the American Society of Nephrology, vol.15, issue.1, pp.13-20, 2004.
DOI : 10.1097/01.ASN.0000103226.28798.EA

A. Liantonio, Activation and inhibition of kidney CLC-K chloride channels by fenamates, Molecular Pharmacology, vol.69, pp.165-173, 2006.
DOI : 10.1124/mol.105.017384

A. Liantonio, Molecular switch for CLC-K Cl- channel block/activation: Optimal pharmacophoric requirements towards high-affinity ligands, Proceedings of the National Academy of Sciences, vol.58, issue.3, pp.1369-13730708977105, 2008.
DOI : 10.1124/mol.58.3.498

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234145

A. Liantonio, Kidney CLC-K chloride channels inhibitors, Journal of Hypertension, vol.34, issue.5, pp.981-99210, 2016.
DOI : 10.1097/HJH.0000000000000876

G. Zifarelli, Identification of sites responsible for the potentiating effect of niflumic acid on ClC-Ka kidney chloride channels, British Journal of Pharmacology, vol.158, issue.2, pp.1652-1661, 2010.
DOI : 10.1007/112_2006_0605

C. Fahlke and M. Fischer, Physiology and Pathophysiology of ClC-K/barttin Channels. Frontiers in physiology 1, doi:10.3389/ fphys, p.155, 2010.
DOI : 10.3389/fphys.2010.00155

URL : http://doi.org/10.3389/fphys.2010.00155

L. Feng, E. B. Campbell, Y. Hsiung, and R. Mackinnon, Structure of a Eukaryotic CLC Transporter Defines an Intermediate State in the Transport Cycle, Science, vol.211, issue.5052, pp.635-64110, 2010.
DOI : 10.1038/211969a0

R. Dutzler, E. B. Campbell, and R. Mackinnon, Gating the Selectivity Filter in ClC Chloride Channels, Science, vol.300, issue.5616, pp.108-11210, 2003.
DOI : 10.1126/science.1082708

S. Markovic and R. Dutzler, The Structure of the Cytoplasmic Domain of the Chloride Channel ClC-Ka Reveals a Conserved Interaction Interface, Structure, vol.15, issue.6, pp.715-725, 2007.
DOI : 10.1016/j.str.2007.04.013

A. Gradogna, C. Fenollar-ferrer, L. R. Forrest, and M. Pusch, Dissecting a regulatory calcium-binding site of CLC-K kidney chloride channels, The Journal of General Physiology, vol.268, issue.6, pp.681-69610, 2012.
DOI : 10.1152/physiol.00018.2009

E. Park, E. B. Campbell, and R. Mackinnon, Structure of a CLC chloride ion channel by cryo-electron microscopy, Nature, vol.3, issue.7638, pp.500-505, 2017.
DOI : 10.1093/hmg/3.6.941

R. W. Carrell and P. Stein, The biostructural pathology of the serpins: critical function of sheet opening mechanism, Biol Chem Hoppe Seyler, vol.377, pp.1-17, 1996.

B. O. Villoutreix, O. Teleman, and B. Dahlback, A theoretical model for the Gla-TSR-EGF-1 region of the anticoagulant cofactor protein S: from biostructural pathology to species-specific cofactor activity, Journal of Computer-Aided Molecular Design, vol.11, issue.3, pp.293-304, 1997.
DOI : 10.1023/A:1007912929828

P. J. Loll, Membrane proteins, detergents and crystals: what is the state of the art?, Acta Crystallographica Section F Structural Biology Communications, vol.247, issue.12, pp.1576-1583, 2014.
DOI : 10.1107/S2053230X14025035/en5558sup1.xlsx

D. Kozma, I. Simon, G. E. Tusnady, and . Pdbtm, PDBTM: Protein Data Bank of transmembrane proteins after 8 years, Nucleic Acids Research, vol.41, issue.D1, pp.524-52910, 2013.
DOI : 10.1093/nar/gks1169

URL : http://doi.org/10.1093/nar/gks1169

H. M. Berman, The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

M. Olivella, A. Gonzalez, L. Pardo, and X. Deupi, Relation between sequence and structure in membrane proteins, Bioinformatics, vol.29, issue.13, pp.1589-1592, 2013.
DOI : 10.1093/bioinformatics/btt249

R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, and R. Mackinnon, X-ray structure of a ClC chloride channel at 3.0?????? reveals the molecular basis of anion selectivity, Nature, vol.415, issue.6869, pp.287-29410, 2002.
DOI : 10.1038/415287a

D. Wojciechowski, M. Fischer, and C. Fahlke, Tryptophan Scanning Mutagenesis Identifies the Molecular Determinants of Distinct Barttin Functions, Journal of Biological Chemistry, vol.5, issue.30, pp.18732-1874310, 2015.
DOI : 10.1085/jgp.201010455

M. Tajima, A. Hayama, T. Rai, S. Sasaki, and S. Uchida, Barttin binds to the outer lateral surface of the ClC-K2 chloride channel, Biochemical and Biophysical Research Communications, vol.362, issue.4, pp.858-864, 2007.
DOI : 10.1016/j.bbrc.2007.08.097

F. Lang, Modulation of ClC-K Channel Function by the Accessory Subunit Barttin, Journal of the American Society of Nephrology, vol.21, issue.8, pp.1238-12392010050555, 2010.
DOI : 10.1681/ASN.2010050555

V. B. Chen, : all-atom structure validation for macromolecular crystallography, Acta Crystallographica Section D Biological Crystallography, vol.285, issue.1, pp.12-21, 2010.
DOI : 10.1107/S0907444909042073

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803126/pdf

A. Picollo, Molecular determinants of differential pore blocking of kidney CLC-K chloride channels, EMBO reports, vol.268, issue.6, pp.584-5897400169, 2004.
DOI : 10.1185/030079903125001668

L. 'hoste and S. , Characterization of the mouse ClC-K1/Barttin chloride channel, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.11, pp.2399-2409, 2013.
DOI : 10.1016/j.bbamem.2013.06.012

A. Gradogna, I???J loop involvement in the pharmacological profile of CLC-K channels expressed in Xenopus oocytes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1838, issue.11, pp.2745-2756, 2014.
DOI : 10.1016/j.bbamem.2014.07.021

M. Fischer, A. G. Janssen, and C. Fahlke, Barttin Activates ClC-K Channel Function by Modulating Gating, Journal of the American Society of Nephrology, vol.21, issue.8, pp.1281-12892009121274, 1681.
DOI : 10.1681/ASN.2009121274

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938600

U. Scholl, Barttin modulates trafficking and function of ClC-K channels, Proceedings of the National Academy of Sciences, vol.279, issue.13, pp.11411-11416060163110310, 2006.
DOI : 10.1074/jbc.M312649200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1544099

E. Chovancova, CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures, PLoS Computational Biology, vol.8, issue.10, 2012.
DOI : 10.1371/journal.pcbi.1002708.s013

I. A. Adzhubei, A method and server for predicting damaging missense mutations, Nature Methods, vol.7, issue.4, pp.248-24910, 2010.
DOI : 10.1038/nmeth0410-248

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855889

Y. Dehouck, J. M. Kwasigroch, D. Gilis, and M. Rooman, PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality, BMC Bioinformatics, vol.12, issue.1, pp.10-1186, 2011.
DOI : 10.1186/1471-2105-8-65

J. Schymkowitz, The FoldX web server: an online force field. Nucleic acids research 33, pp.382-388, 2005.
DOI : 10.1093/nar/gki387

URL : http://doi.org/10.1093/nar/gki387

V. Frappier, M. Chartier, and R. J. Najmanovich, ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucleic acids research 43, pp.395-40010, 2015.

N. Tokuriki, F. Stricher, J. Schymkowitz, L. Serrano, and D. S. Tawfik, The Stability Effects of Protein Mutations Appear to be Universally Distributed, Journal of Molecular Biology, vol.369, issue.5, pp.1318-1332, 2007.
DOI : 10.1016/j.jmb.2007.03.069

H. Ashkenazy, ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules, Nucleic Acids Research, vol.44, issue.W1, p.408, 2016.
DOI : 10.1093/nar/gkw408

URL : http://doi.org/10.1093/nar/gkw408

O. Andrini, CLCNKB mutations causing mild Bartter syndrome profoundly alter the pH and Ca2+ dependence of ClC-Kb channels, Pfl??gers Archiv - European Journal of Physiology, vol.63, issue.1, pp.1713-172310, 2014.
DOI : 10.1046/j.1523-1755.2003.00730.x

J. D. Faraldo-gomez and B. Roux, Electrostatics of Ion Stabilization in a ClC Chloride Channel Homologue from Escherichia coli, Journal of Molecular Biology, vol.339, issue.4, pp.981-1000, 2004.
DOI : 10.1016/j.jmb.2004.04.023

F. Gnad, A. Baucom, K. Mukhyala, G. Manning, and Z. Zhang, Assessment of computational methods for predicting the effects of missense mutations in human cancers, BMC genomics, vol.14, p.7, 2013.

L. G. Martelotto, Benchmarking mutation effect prediction algorithms using functionally validated cancer-related missense mutations, Genome Biology, vol.74, issue.10, pp.10-1186, 2014.
DOI : 10.1158/0008-5472.CAN-13-3375

URL : http://doi.org/10.1186/preaccept-6413622551325626

A. Gradogna and M. Pusch, Molecular Pharmacology of Kidney and Inner Ear CLC-K Chloride Channels, Frontiers in Pharmacology, vol.1, issue.130, p.130, 2010.
DOI : 10.3389/fphar.2010.00130

B. O. Villoutreix, D. Lagorce, C. M. Labbe, O. Sperandio, and M. A. Miteva, One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade, Drug Discovery Today, vol.18, issue.21-22, pp.1081-1089, 2013.
DOI : 10.1016/j.drudis.2013.06.013

P. Willett, Similarity-based virtual screening using 2D fingerprints, Drug Discovery Today, vol.11, issue.23-24, pp.1046-1053005, 2006.
DOI : 10.1016/j.drudis.2006.10.005

URL : http://eprints.whiterose.ac.uk/3605/1/willettp_DDT_review.pdf

G. Klopmand, Concepts and applications of molecular similarity, by Mark A. Johnson and Gerald M. Maggiora, eds., John Wiley & Sons, New York, 1990, 393 pp. Price: $65.00, Journal of Computational Chemistry, vol.13, issue.4, pp.539-54010, 1990.
DOI : 10.1002/jcc.540130415

E. Pihan, L. Colliandre, J. F. Guichou, and D. Douguet, e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design, Bioinformatics, vol.28, issue.11, pp.1540-154110, 2012.
DOI : 10.1093/bioinformatics/bts186

A. N. Jain, Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search, Journal of Computer-Aided Molecular Design, vol.50, issue.5, pp.281-30610, 2007.
DOI : 10.1007/s10822-007-9114-2

O. Trott and A. J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, vol.17, pp.455-461, 2010.
DOI : 10.1002/jcc.21334

A. Sali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-8151626, 1993.
DOI : 10.1006/jmbi.1993.1626

B. Webb and A. Sali, Protein Structure Modeling with MODELLER, Methods in molecular biology, vol.1137, pp.1-15, 2014.
DOI : 10.1007/978-1-4939-0366-5_1

P. Rice, I. Longden, and A. Bleasby, EMBOSS: The European Molecular Biology Open Software Suite, Trends in Genetics, vol.16, issue.6, pp.276-277, 2000.
DOI : 10.1016/S0168-9525(00)02024-2

A. Fiser, R. K. Do, and A. Sali, Modeling of loops in protein structures, Protein Science, vol.14, issue.9, pp.1753-1773, 2000.
DOI : 10.1002/ijch.199400028

M. Shen and A. Sali, Statistical potential for assessment and prediction of protein structures, Protein Science, vol.12, issue.11, pp.2507-2524062416606, 2006.
DOI : 10.1074/jbc.272.2.701

J. C. Phillips, Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, vol.84, issue.16, pp.1781-180220289, 2005.
DOI : 10.1515/9783110879476

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486339

R. B. Best, Dihedral Angles, Journal of Chemical Theory and Computation, vol.8, issue.9, pp.3257-327310, 2012.
DOI : 10.1021/ct300400x

M. Buck, S. Bouguet-bonnet, R. W. Pastor, and A. D. Mackerell, Importance of the CMAP Correction to the CHARMM22 Protein Force Field: Dynamics of Hen Lysozyme, Biophysical Journal, vol.90, issue.4, pp.36-38, 2006.
DOI : 10.1529/biophysj.105.078154

L. Wang, L. Li, and E. Alexov, a, Proteins: Structure, Function, and Bioinformatics, vol.366, issue.12, pp.2186-219710, 2015.
DOI : 10.1016/j.jmb.2006.12.001

URL : https://hal.archives-ouvertes.fr/hal-00903617

B. R. Brooks, CHARMM: The biomolecular simulation program, Journal of Computational Chemistry, vol.103, issue.13, pp.1545-161410, 2009.
DOI : 10.1021/ci034261e

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810661

M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, and A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes, Nucleic Acids Research, vol.40, issue.D1, pp.370-37610, 2012.
DOI : 10.1093/nar/gkr703

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, vol.79, issue.2, pp.926-93510, 1983.
DOI : 10.1016/0009-2614(80)85344-9

T. Darden, D. York, and L. Pedersen, ) method for Ewald sums in large systems, The Journal of Chemical Physics, vol.9, issue.12, pp.10089-10092, 1993.
DOI : 10.1126/science.2548279

S. E. Feller, Y. Zhang, R. W. Pastor, and B. Brooks, Constant pressure molecular dynamics simulation: The Langevin piston method, The Journal of Chemical Physics, vol.51, issue.11, pp.4613-462110, 1995.
DOI : 10.1002/jcc.540150702

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.33-38, 1996.
DOI : 10.1016/0263-7855(96)00018-5

N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.377, issue.6547, pp.10037-1004110, 2001.
DOI : 10.1038/377309a0

M. F. Sanner, A. J. Olson, and J. C. Spehner, Reduced surface: an efficient way to compute molecular surfaces, Biopolymers, vol.38383053, issue.3&lt, pp.305-32010, 1996.
DOI : 10.1002/(sici)1097-0282(199603)38:3<305::aid-bip4>3.3.co;2-8

D. Lagorce, O. Sperandio, J. B. Baell, M. A. Miteva, and B. Villoutreix, FAF-Drugs3: a web server for compound property calculation and chemical library design, Nucleic Acids Research, vol.43, issue.W1, pp.200-20710, 2015.
DOI : 10.1093/nar/gkv353

URL : http://doi.org/10.1093/nar/gkv353

J. G. Sadowski, J. Klebe, and G. Comparison, Comparison of Automatic Three-Dimensional Model Builders Using 639 X-ray Structures, Journal of Chemical Information and Modeling, vol.34, issue.4, pp.1000-1000810, 1994.
DOI : 10.1021/ci00020a039

S. Kim, PubChem Substance and Compound databases, Nucleic Acids Research, vol.44, issue.D1, pp.1202-1213, 2016.
DOI : 10.1093/nar/gkv951

URL : http://doi.org/10.1093/nar/gkv951

E. E. Bolton, PubChem3D: a new resource for scientists, Journal of Cheminformatics, vol.3, issue.1, pp.10-1186, 2011.
DOI : 10.1093/nar/gkl320

URL : http://doi.org/10.1186/1758-2946-3-32

A. Gradogna, E. Babini, A. Picollo, and M. Pusch, A regulatory calcium-binding site at the subunit interface of CLC-K kidney chloride channels, The Journal of General Physiology, vol.268, issue.3, pp.311-32310, 2011.
DOI : 10.1111/j.1476-5381.2010.00822.x

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server. Nucleic acids research 42, pp.320-32410, 2014.

M. Keck, Mutations Causing Bartter Syndrome Affect Channel Surface Expression, Human Mutation, vol.22, issue.3, pp.1269-127822361, 2013.
DOI : 10.1016/S0896-6273(00)80708-4

Y. Yu, Identification and functional analysis of novel mutations of the CLCNKB gene in Chinese patients with classic Bartter syndrome, Clinical Genetics, vol.534, issue.2, pp.155-162, 2010.
DOI : 10.1152/physrev.00029.2001

S. Waldegger and T. J. Jentsch, Functional and Structural Analysis of ClC-K Chloride Channels Involved in Renal Disease, Journal of Biological Chemistry, vol.200, issue.32, pp.24527-24533, 2000.
DOI : 10.1172/JCI119299