C. Lumeng and A. Saltiel, Inflammatory links between obesity and metabolic disease, Journal of Clinical Investigation, vol.121, issue.6, pp.2111-2117, 2011.
DOI : 10.1172/JCI57132

URL : http://www.jci.org/articles/view/57132/files/pdf

G. Hotamisligil, Inflammation and metabolic disorders, Nature, vol.314, issue.7121, pp.860-867, 2006.
DOI : 10.1074/jbc.M411860200

J. Mcnelis and J. Olefsky, Macrophages, Immunity, and Metabolic Disease, Immunity, vol.41, issue.1, pp.36-48, 2014.
DOI : 10.1016/j.immuni.2014.05.010

H. Xu, G. Barnes, Q. Yang, G. Tan, D. Yang et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, Journal of Clinical Investigation, vol.112, issue.12, pp.1821-1830, 2003.
DOI : 10.1172/JCI19451DS1

S. Shoelson, L. Herrero, and A. Naaz, Obesity, Inflammation, and Insulin Resistance, Gastroenterology, vol.132, issue.6, pp.2169-2180, 2007.
DOI : 10.1053/j.gastro.2007.03.059

C. Lumeng, J. Bodzin, and A. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization, Journal of Clinical Investigation, vol.117, issue.1, pp.175-184, 2007.
DOI : 10.1172/JCI29881

URL : http://www.jci.org/articles/view/29881/files/pdf

C. Shi and E. Pamer, Monocyte recruitment during infection and inflammation, Nature Reviews Immunology, vol.182, issue.11, pp.762-774, 2011.
DOI : 10.1084/jem.182.5.1337

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947780

F. Geissmann, S. Jung, and D. Littman, Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties, Immunity, vol.19, issue.1, pp.71-82, 2003.
DOI : 10.1016/S1074-7613(03)00174-2

F. Geissmann, M. Manz, S. Jung, M. Sieweke, M. Merad et al., Development of Monocytes, Macrophages, and Dendritic Cells, Science, vol.20, issue.1, pp.656-661, 2010.
DOI : 10.1146/annurev.immunol.20.081501.125851

URL : https://hal.archives-ouvertes.fr/hal-00502972

C. Auffray, D. Fogg, M. Garfa, G. Elain, O. Join-lambert et al., Monitoring of Blood Vessels and Tissues by a Population of Monocytes with Patrolling Behavior, Science, vol.111, issue.3, pp.666-670, 2007.
DOI : 10.1172/JCI200315555

URL : https://hal.archives-ouvertes.fr/pasteur-00337698

F. Tacke, D. Alvarez, T. Kaplan, C. Jakubzick, R. Spanbroek et al., Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques, Journal of Clinical Investigation, vol.117, issue.1, pp.185-194, 2007.
DOI : 10.1172/JCI28549

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716202

M. Nahrendorf, F. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger et al., The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, The Journal of Experimental Medicine, vol.52, issue.12, pp.3037-3047, 2007.
DOI : 10.1007/BF00788278

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118517/pdf

D. Dal-secco, J. Wang, Z. Zeng, E. Kolaczkowska, C. Wong et al., monocytes at a site of sterile injury, The Journal of Experimental Medicine, vol.212, issue.4, pp.447-456, 2015.
DOI : 10.1172/JCI119468

I. Hilgendorf, L. Gerhardt, T. Tan, C. Winter, T. Holderried et al., Ly-6Chigh Monocytes Depend on Nr4a1 to Balance Both Inflammatory and Reparative Phases in the Infarcted Myocardium, Circulation Research, vol.114, issue.10, pp.1611-1622, 2014.
DOI : 10.1161/CIRCRESAHA.114.303204

T. Varga, R. Mounier, P. Gogolak, S. Poliska, B. Chazaud et al., Tissue LyC6- Macrophages Are Generated in the Absence of Circulating LyC6- Monocytes and Nur77 in a Model of Muscle Regeneration, The Journal of Immunology, vol.191, issue.11, pp.5695-5701, 2013.
DOI : 10.4049/jimmunol.1301445

L. Carlin, E. Stamatiades, C. Auffray, R. Hanna, L. Glover et al., Nr4a1-Dependent Ly6Clow Monocytes Monitor Endothelial Cells and Orchestrate Their Disposal, Cell, vol.153, issue.2, pp.362-7518, 2013.
DOI : 10.1016/j.cell.2013.03.010

URL : http://doi.org/10.1016/j.cell.2013.03.010

C. Poitou, E. Dalmas, M. Renovato, V. Benhamo, F. Hajduch et al., CD14dimCD16+ and CD14+CD16+ Monocytes in Obesity and During Weight Loss: Relationships With Fat Mass and Subclinical Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.10, pp.2322-2330, 2011.
DOI : 10.1161/ATVBAHA.111.230979

K. Rogacev, C. Ulrich, L. Blomer, F. Hornof, K. Oster et al., Monocyte heterogeneity in obesity and subclinical atherosclerosis, European Heart Journal, vol.31, issue.3, pp.369-376, 2010.
DOI : 10.1093/eurheartj/ehp308

URL : https://academic.oup.com/eurheartj/article-pdf/31/3/369/1295381/ehp308.pdf

J. Cros, N. Cagnard, K. Woollard, N. Patey, S. Zhang et al., Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors, Immunity, vol.33, issue.3, pp.375-386, 2010.
DOI : 10.1016/j.immuni.2010.08.012

URL : http://doi.org/10.1016/j.immuni.2010.08.012

L. Landsman, L. Bar-on, A. Zernecke, K. Kim, R. Krauthgamer et al., CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival, Blood, vol.113, issue.4, pp.963-972, 2009.
DOI : 10.1182/blood-2008-07-170787

C. Combadiere, S. Potteaux, M. Rodero, T. Simon, A. Pezard et al., Combined Inhibition of CCL2, CX3CR1, and CCR5 Abrogates Ly6Chi and Ly6Clo Monocytosis and Almost Abolishes Atherosclerosis in Hypercholesterolemic Mice, Circulation, vol.117, issue.13, pp.1649-1657, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.745091

E. Gautier, T. Huby, F. Saint-charles, B. Ouzilleau, M. Chapman et al., Enhanced Dendritic Cell Survival Attenuates Lipopolysaccharide-Induced Immunosuppression and Increases Resistance to Lethal Endotoxic Shock, The Journal of Immunology, vol.180, issue.10, pp.6941-6947, 2008.
DOI : 10.4049/jimmunol.180.10.6941

URL : http://www.jimmunol.org/content/jimmunol/180/10/6941.full.pdf

S. Jung, J. Aliberti, P. Graemmel, M. Sunshine, G. Kreutzberg et al., Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion, Molecular and Cellular Biology, vol.20, issue.11, pp.4106-4114, 2000.
DOI : 10.1128/MCB.20.11.4106-4114.2000

E. Gautier, T. Huby, F. Saint-charles, B. Ouzilleau, J. Pirault et al., Conventional Dendritic Cells at the Crossroads Between Immunity and Cholesterol Homeostasis in Atherosclerosis, Circulation, vol.119, issue.17, pp.2367-2375, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.807537

A. Shearn, V. Deswaerte, E. Gautier, F. Saint-charles, J. Pirault et al., Bcl-x Inactivation in Macrophages Accelerates Progression of Advanced Atherosclerotic Lesions in Apoe-/- Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.5, pp.1142-1149, 2012.
DOI : 10.1161/ATVBAHA.111.239111

D. Westcott, J. Delproposto, L. Geletka, T. Wang, K. Singer et al., monocytes in obesity, The Journal of Experimental Medicine, vol.118, issue.13, pp.3143-3156, 2009.
DOI : 10.1038/sj.ijo.0803632

H. Wu, X. Perrard, Q. Wang, J. Perrard, V. Polsani et al., CD11c Expression in Adipose Tissue and Blood and Its Role in Diet-Induced Obesity, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.2, pp.186-192, 2010.
DOI : 10.1161/ATVBAHA.109.198044

C. Lumeng, S. Deyoung, J. Bodzin, and A. Saltiel, Increased Inflammatory Properties of Adipose Tissue Macrophages Recruited During Diet-Induced Obesity, Diabetes, vol.56, issue.1, pp.16-23, 2007.
DOI : 10.2337/db06-1076

M. Shaul, G. Bennett, K. Strissel, A. Greenberg, and M. Obin, Dynamic, M2-Like Remodeling Phenotypes of CD11c+ Adipose Tissue Macrophages During High-Fat Diet-Induced Obesity in Mice, Diabetes, vol.59, issue.5, pp.1171-1181, 2010.
DOI : 10.2337/db09-1402

D. Morris, K. Oatmen, T. Wang, J. Delproposto, and C. Lumeng, CX3CR1 Deficiency Does Not Influence Trafficking of Adipose Tissue Macrophages in Mice With Diet-Induced Obesity, Obesity, vol.118, issue.6, pp.1189-119934, 2012.
DOI : 10.1161/ATVBAHA.109.195826

P. Nagareddy, M. Kraakman, S. Masters, R. Stirzaker, D. Gorman et al., Adipose Tissue Macrophages Promote Myelopoiesis and Monocytosis in Obesity, Cell Metabolism, vol.19, issue.5, pp.821-835, 2014.
DOI : 10.1016/j.cmet.2014.03.029

URL : http://doi.org/10.1016/j.cmet.2014.03.029

I. Khan, Y. Pokharel, R. Dadu, D. Lewis, R. Hoogeveen et al., Postprandial Monocyte Activation in Individuals With Metabolic Syndrome, The Journal of Clinical Endocrinology & Metabolism, vol.101, issue.11, pp.4195-4204, 2016.
DOI : 10.1210/jc.2016-2732

R. Hanna, L. Carlin, H. Hubbeling, D. Nackiewicz, A. Green et al., The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C??? monocytes, Nature Immunology, vol.166, issue.8, pp.778-785, 2011.
DOI : 10.4049/jimmunol.166.7.4697

S. Perez-sieira, G. Martinez, B. Porteiro, M. Lopez, A. Vidal et al., Female Nur77-Deficient Mice Show Increased Susceptibility to Diet-Induced Obesity, PLoS ONE, vol.10, issue.1, p.53836, 2013.
DOI : 10.1371/journal.pone.0053836.t002

URL : http://doi.org/10.1371/journal.pone.0053836

L. Chao, K. Wroblewski, Z. Zhang, L. Pei, L. Vergnes et al., Insulin Resistance and Altered Systemic Glucose Metabolism in Mice Lacking Nur77, Diabetes, vol.58, issue.12, pp.2788-2796, 2009.
DOI : 10.2337/db09-0763

URL : http://diabetes.diabetesjournals.org/content/diabetes/58/12/2788.full.pdf

T. Satoh, H. Kidoya, H. Naito, M. Yamamoto, N. Takemura et al., Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages, Nature, vol.107, issue.7442, pp.524-528, 2013.
DOI : 10.1073/pnas.1009152108

H. Wu, R. Gower, H. Wang, X. Perrard, R. Ma et al., Functional Role of CD11c+ Monocytes in Atherogenesis Associated With Hypercholesterolemia, Circulation, vol.119, issue.20, pp.2708-2717, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.823740

R. Gower, H. Wu, G. Foster, S. Devaraj, I. Jialal et al., CD11c/CD18 Expression Is Upregulated on Blood Monocytes During Hypertriglyceridemia and Enhances Adhesion to Vascular Cell Adhesion Molecule-1, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.1, pp.160-166, 2011.
DOI : 10.1161/ATVBAHA.110.215434

URL : http://atvb.ahajournals.org/content/atvbaha/31/1/160.full.pdf

C. Combadiere, K. Salzwedel, E. Smith, H. Tiffany, E. Berger et al., CR1, Journal of Biological Chemistry, vol.71, issue.37, pp.23799-23804, 1998.
DOI : 10.1016/S0092-8674(00)80438-9

URL : https://hal.archives-ouvertes.fr/inserm-00175880

Y. Lee, H. Morinaga, J. Kim, W. Lagakos, S. Taylor et al., The Fractalkine/CX3CR1 System Regulates ?? Cell Function and Insulin Secretion, Cell, vol.153, issue.2, pp.413-425, 2013.
DOI : 10.1016/j.cell.2013.03.001

URL : http://doi.org/10.1016/j.cell.2013.03.001

K. Coenen, M. Gruen, R. Lee-young, M. Puglisi, D. Wasserman et al., Impact of macrophage toll-like receptor 4 deficiency on macrophage infiltration into adipose tissue and the artery wall in mice, Diabetologia, vol.27, issue.2, pp.318-328, 2009.
DOI : 10.4049/jimmunol.173.10.5901

H. Shi, M. Kokoeva, K. Inouye, I. Tzameli, H. Yin et al., TLR4 links innate immunity and fatty acid???induced insulin resistance, Journal of Clinical Investigation, vol.116, issue.11, pp.3015-3025, 2006.
DOI : 10.1172/JCI28898

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1616196

K. Strissel, Z. Stancheva, H. Miyoshi, J. Perfield, J. Defuria et al., Adipocyte Death, Adipose Tissue Remodeling, and Obesity Complications, Diabetes, vol.56, issue.12, pp.2910-2918, 2007.
DOI : 10.2337/db07-0767

R. Hanna, I. Shaked, H. Hubbeling, J. Punt, R. Wu et al., NR4A1 (Nur77) Deletion Polarizes Macrophages Toward an Inflammatory Phenotype and Increases Atherosclerosis, Circulation Research, vol.110, issue.3, pp.416-427, 2012.
DOI : 10.1161/CIRCRESAHA.111.253377

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309661

I. License, The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, p.2017