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This article investigates the importance of mass transfer effects in the effective acoustic

properties of diluted bubbly liquids. The classical theory for wave propagation in bubbly

liquids for pure gas bubbles is extended to capture the influence of mass transfer on the

effective phase speed and attenuation of the system. The vaporization flux is shown to

be important for systems close to saturation conditions and low frequencies. We derive

a general expression for the transfer function that relates bubble radius and pressure

changes solving the linear version of the conservation equations inside, outside and at

the bubble interface. Simplified expressions for various limiting situations are derived in

order to get further insight about the validity of common assumptions typically applied in

bubble dynamic models. The relevance of the vapor content, the mass transfer flux across

the interface and the effect of the bubble interface temperature variations is discussed in

terms of characteristic nondimensional numbers. Finally we derive the various conditions

that must be satisfied in order to reach the low frequency limit solutions where the phase

speed does no longer depend on the forcing frequency.

1. Introduction

The effect of bubbles on the process of wave propagation in liquids is an open scien-
tific problem with many applications fields such as ultrasonic fluid flow monitoring and
geophysics (Kuster & Toksöz 1974; Lynnworth 2013). One family of models typically
used for wave propagation in bubbly flows applies for dilute systems. Most of these mod-
els (Van Wijngaarden 1968; Chapman & Plesset 1971; Prosperetti 1977; Sangani 1991;
Zhang & Prosperetti 1997; Ando et al. 2009) succeed reproducing experimental results
for frequencies below resonance in situations where the amount of vapor is negligible (Sil-
berman 1957; Cheyne et al. 1995; Wilson et al. 2005; Leroy et al. 2008). These theories
have been recently improved at frequencies above the bubble natural frequency. For in-
stance, high frequency corrections have been proposed by Ando et al. (2009), while Fuster
et al. (2014) propose correction terms in order to capture direct bubble-bubble interac-
tions based on the results obtained from a full non-linear model (Fuster & Colonius 2011).

Theoretical models for linear wave propagation in bubbly liquids require to model
the response of a single bubble to an external pressure excitation. This response is ob-
tained through the linearization of the Rayleigh-Plesset equation and the solution of the
mass, momentum and energy conservation equations inside the bubble. Expressing the
amplitude of the bubble radius oscillation as a function of the external pressure ampli-
tude allows us to define a bubble resonance frequency and damping factor, see Ainslie &
Leighton (2011) for a review. These parameters depend on the so-called transfer function,
which relates bubble pressure and volume changes in the linear regime. Prosperetti et al.



2

(1988) propose an expression capturing the heat transfer exchange between the bubble
and its environment assuming that the bubble interface temperature is constant and
neglecting mass transfer effects across the interface. This function can be used to define
an effective state equation for the bubble interior of the type pbV

γeff

b = C, where pb is
the bubble pressure, Vb is the bubble volume and γeff is a frequency dependent effective
coefficient that tends to recover the isothermal limit for low frequencies (γeff = 1) and
the adiabatic response for very large frequencies, γeff = γ, where γ is the gas polytropic
coefficient.

Wave propagation in systems where mass transfer effects become relevant have been
mainly investigated for large void fractions far from the diluted limit (Mecredy & Hamil-
ton 1972; Kieffer 1977; Ardron & Duffey 1978; Landau & Lifshitz 1987). For low enough
frequencies, Kieffer (1977) and Landau & Lifshitz (1987) derive limiting expressions as-
suming that the far field pressure and temperature are related through the saturation
conditions. Models accounting for transient heat, mass and momentum transport have
been proposed by Mecredy & Hamilton (1972), Ardron & Duffey (1978) and more re-
cently by Saurel et al. (2008).

In diluted systems, mass transfer is expected to influence the local bubble response
without significantly influencing the far field temperature as the liquid plays the role of
an infinite energy reservoir for the bubble oscillation. In this case, one needs to derive
corrected expressions to relate bubble radius and external pressure changes. Hao & Pros-
peretti (1999) consider the problem of mass transfer in pure vapor bubbles by assuming
saturation inside the bubble at every instant. Preston et al. (2007) solve the linearized
problem of the dynamics of air/vapor bubbles for situations where transient vaporization
effects and the heat transport in the liquid boundary layer is not a controlling mecha-
nism. Prosperetti & Hao (2002) also discuss interesting phenomena induced by mass
transfer on the dynamics of bubbles and Prosperetti (2015) presents a simplified model
for the influence of mass transfer on the sound-speed of a gas-vapor bubbly liquid that
reveals that mass transfer effects play an important role of the propagation of waves at
low frequencies.

The process of wave propagation near saturation conditions for diluted systems is less
investigated experimentally. Coste et al. (1990) report evidence of a strong decrease of
the sound velocity at low void fractions when approaching the saturation curve in diethyl-
ether. Unfortunatelly, the study mainly reports data for large void fractions, where the
diluted limit conditions are not met.

In this work we extend the classical linear theory for disperse bubbly liquids to include
mass transfer effects across the interface and the diffusion of heat in the liquid. The
goals of this study are twofold. First, we want to evaluate the influence of the mass
transfer process in the bubble dynamic response and to discuss typical assumptions
used in the literature. Second, we want to quantify the importance of mass transfer
effects on the effective acoustic properties of the medium. To that end, the full model
that accounts for transient mass transfer effects is presented in Section 2. In Section 3
we present the linearization procedure followed to derive the expressions for the bubble
resonance frequency, damping factor, mass transfer flux, interface temperature variations
and the effective sound phase speed and attenuation of the gas-vapor-liquid mixture (in
the following we will simply name them phase speed and attenuation). In Section 4 we
present a summary of the model. Section 5 presents some numerical results to gain further
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insight about mass transfer effects in the process of wave propagation, discussing the
relevance of various mechanisms on the bubble response as a function of the vapor content
and frequency. Section 6 derives low frequency limiting solutions and the conclusions are
presented in Section 7.

2. Full model

The linearized equations for wave propagation in bubbly media can be derived from
basic principles using the conservation equations applied to the averaged mixture. Typi-
cally the separation of scales assumption is used to write the averaged equations for the
large scale wave propagation problem. Thus, neglecting the influence of liquid viscosity
at large scales, we write the mass and momentum conservation equations as

1

ρc2
Dp

Dt
+ ∇ · v =

∂β

∂t
, (2.1)

ρ
Dv

Dt
= −∇p, (2.2)

where t is the time coordinate, v is the fluid velocity, p is the pressure and ρ is the average
density defined in terms of the void fraction β, the liquid’s density, ρl, and bubble’s
density ρb as ρ = (1 − β)ρl + βρb. The void fraction β is defined using a probabilistic
function for the bubble equilibrium radius, f(a), and the number of bubbles per unit
volume, n,

β =
4

3
πn

∫ ∞

0

a3f(a)da. (2.3)

The system of equations above requires to derive an equation to relate external pressure
changes with the local bubble radius variation. This equation is found by solving the
conservation equations inside and outside the bubble at the local scale. If we impose
spherical symmetry for the bubble oscillation, the basic equations for a system of N
species can be written as

Dρ

Dt
+

ρ

r2
∂(vrr

2)

∂r
= 0, (2.4)

ρ
DYi

Dt
= − 1

r2
∂

∂r

(

r2jdiffi

)

, (2.5)

ρ
Dvr
Dt

= −∂p

∂r
+

1

r2
∂r2τrr
∂r

− τθθ + τφφ
r

, (2.6)

ρ
De

Dt
= − p

r2
∂(vrr

2)

∂r
− 1

r2
∂(r2qr)

∂r
+ φv, (2.7)

where r is the radial coordinate, Yi is the mass fraction of the ith component and jdiffi is
the diffusive mass flux, p is the pressure, T is temperature, τ is the viscous stress tensor,
e is the specific internal energy, qr is the radial heat flux and φv is the viscous dissipation
function. These equations apply for both the gas/vapor mixture inside the bubble and
the liquid surrounding it.

The ideal gas equation is a good approximation of the real equation of state for both
gas and vapor components inside the bubble in standard conditions. In the liquid, the
definition of the sound speed in a pure liquid is typically used to relate pressure and
density variations. Using the Fourier’s and Fick’s law to express the diffusive heat and
mass flux and neglecting the enthalpy difference between the different components of the
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mixture at a given temperature we obtain the following set of equations that apply both,
inside and outside the bubble,

Dρm
Dt

+
ρm
r2

∂(vmr2)

∂r
= 0, (2.8)

ρm
DYi,m

Dt
=

1

r2
∂

∂r

(

r2DM
i/m

∂Yi,m

∂r

)

, (2.9)

ρm
Dvm
Dt

= −∂pm
∂r

, (2.10)

ρmcp,m
DTm

Dt
= αV Tm

Dpm
Dt

+
1

r2
∂

∂r

(

r2κm
∂Tm

∂r

)

+
4

3
µm

(

∂vm
∂r

− vm
r

)2

, (2.11)

where cp,m is the average specific heat, αV is the thermal dilatation coefficient which
is αV = 1/Tm for an ideal gas and approximately zero for liquids, κm is the average
conductivity and DM

i/m is the diffusion coefficient of the ith component in the mixture.
The subindex m is used to denote the average mixture properties. When the equations
are applied inside the bubble the subindex m will be replaced by b, when applied into
the liquid, we will use the subindex l.

The boundary conditions used to solve the system above can be found for example in
Hauke et al. (2007). At the bubble center, spherical symmetry imposes the radial gra-

dients to be zero, (i.e.
∂Yi,b

∂r = ∂ρb

∂r = ∂Tb

∂r = 0). The bubble velocity is also set to zero,
vb(r = 0, t) = 0.

Far from the bubble, pressure, temperature and all the species concentrations in the
liquid are assumed to be known (pl,∞, T0, Yi,l,0).

The local balances at the infinitely thin interface relate the liquid and gas properties
at both sides of the interface. The mass balance across the bubble is

J = ρg(Ṙ− vIb ) = ρl(Ṙ− vIl ) at r = R, (2.12)

where J is the total evaporation mass flux across the interface, R is the bubble radius,
Ṙ is the interface velocity, and vIb and vIl denote respectively the fluid interface velocity
in the bubble and in the liquid. The momentum balance accounting for mass transfer
effects reads

J
(

vIb − vIl
)

= pIl − pIb + τrr,l − τrr,b +
2σ

R
at r = R, (2.13)

where σ is the surface tension coefficient.

The total flux of the ith component across the interface is calculated as the sum of the
advective flux and the diffusive flux. As both fluxes must be equal at r = R, we obtain
an equation for the conservation of the ith component across the interface as

−JYi,l − ρlD
M
i/l

∂Yi,l

∂r
= −JYi,b − ρgD

M
i/b

∂Yi,b

∂r
at r = R. (2.14)

The energy balance at the interface establishes the relation among the energy fluxes in
the liquid/gas boundaries. This equation can be approximated by using the total latent
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heat of evaporation, ∆Hvap, as

κl
∂Tl

∂r
= κg

∂Tg

∂r
+

N
∑

i=1

Ji∆Hvap,i at r = R, (2.15)

where Ji is the flux across the interface of the ith component and ∆Hvap,i is the enthalpy
of vaporization related to the phase change. Finally, we assume a continuous tempera-
ture profile across the interface so that the interface temperature is equal for both phases
(Tg(r = R) = Tl(r = R) = Tint).

To evaluate the flux of every component across the interface Ji that finally determines
the total flux J =

∑N
i=1 Ji we can either impose equilibrium conditions at the interface

at every instant, or assume that the flux is proportional to the difference between the
equilibrium state and the current state. In fact, using the kinetic theory of gases, it is
possible to obtain the total flux of vapor across the interface using the Hertz-Knudsen-
Langmuir expression (Knudsen 1915; Hertz 1982),

Jvap = αevap

(pIeq − pIb,vap)
√

2πrvapTint

(2.16)

where αevap is the accommodation coefficient, which is a measure of the ratio of the
molecules hitting the interface that change the phase, pIb,vap is the partial pressure of

vapor at the interface, rvap is the vapor’s perfect gas constant and pIeq is the equilib-
rium pressure at the interface conditions. For the vapor, the equilibrium pressure can be
obtained from the Clausius-Clapeyron relation,

dpeq
dT

= ∆Hvap
peq

rvapT 2
. (2.17)

It is interesting to remark that the system of equations above simplifies in cases where
the interface is assumed to be at equilibrium at every instant. As we will prove along
the theoretical development, for low enough frequencies, transient mass transfer effects
(Eq. 2.16) are not relevant. In this situation the total flux is given by diffusion assuming
equilibrium conditions at the interface at every instant. Analogously, the model could
be easily extended for soluble gases by using the equilibrium pressure (or concentration)
given by the Henry’s law. It must be noted that in this work we will not consider the
presence of soluble gases in the liquid given that the mass and heat flux related to phase
change of soluble components is usually negligible compared with that of vapor.

3. Linearized solutions

The set of equations described above can be simplified assuming that all variables os-
cillate around an equilibrium state with a given frequency ω. Thus, for a given variable
y, we look for solutions of the form y = y0(1 +∆yeıωt), where ∆y is a complex quantity
to be determined. For the linear solution to be valid, ∆y ≪ 1.

At the local scale, the momentum and continuity equations in the liquid can be rewrit-
ten as the Rayleigh-Plesset equation, which relates pressure (or potential) variations
induced by the far field with the local response of the bubble. Neglecting compressibility
effects the modified Rayleigh-Plesset equation accounting for mass transfer effects reads
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(Prosperetti 1982)

RR̈− RJ̇

ρl
+

3

2

(

Ṙ− J

ρl

)2

− 2
J

ρl

(

Ṙ− J

ρl

)

=
pIl − pl,∞

ρl
, (3.1)

where pIl can be expressed in terms of the properties inside the bubble using Eq. 2.13.
In the following, we will consider the system of a bubble containing an inmiscible gas
and a vapor with an equilibrium concentration Y0 in a monocomponent liquid. This
is representative of most of the gas/liquid systems as the most important flux across
the interface is expected to be given by liquid vaporization. In the linear limit the flux
across the interface is J = J0∆Reıωt, where J0 is a complex quantity to be determined.
Neglecting non-linear terms we simplify the modified Rayleigh-Plesset equation as

−R2
0ω

2∆R− R0J0ıω

ρl
∆R =

∆R

ρl

(

−pb,0Φ+
2σ

R0
− 4µlıω

)

− pl,0∆p∞
ρl

, (3.2)

where Φ is a complex function to be obtained that is typically named transfer function
and it serves to relate bubble radius oscillations and internal bubble pressure variations,
such that ∆pb = −Φ∆R.

The equation above can be rearranged to express the bubble radius variations in terms
of the far field pressure variations as

∆R = − 1

ω2
0 − ω2 + 2iδω

∆p∞
pl,0
ρlR2

0

, (3.3)

where

δ =
2µl

ρlR2
0

+
pg,0

2ωρlR2
0

ℑ(Φ) + Re(J0)

2ρlR0
, (3.4)

ω2
0 =

pg0
ρlR2

0

(

Re(Φ)− 2σ

pg,0R0

)

+
ωℑ(J0)
ρlR0

. (3.5)

Eqs. 3.4 and 3.5 require the evaluation of the transfer function Φ and the flux across
the interface J0. Both variables can be obtained from the solution of the conservation
equations inside the bubble. Following a development similar to that of Commander &
Prosperetti (1989), we consider a perfect gas and uniform pressure inside the bubble.
The continuity equation inside the bubble can be rewritten using the energy equation as

ṗb
γpb

+∇ ·
(

vb −
γ − 1

γpb
κb∇Tb

)

= 0. (3.6)

Integrating the equation from the bubble center to a given distance r, the radial velocity
inside the bubble is given by

vb(r) =
1

γp

(

(γ − 1)κb
∂T

∂r
− 1

3
ṗbr

)

. (3.7)

This equation is evaluated at the interface to find an expression for the bubble’s internal
pressure,

ṗb =
3

R
(γ − 1)κb

∂Tb

∂r

∣

∣

∣

∣

∣

r=R

− 3

R
γpbv

I
b . (3.8)

Using Eq. 2.12 to express the gas/vapor velocity at the interface (vIb ) as a function of
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the total evaporation flux and the interface velocity and linearizing we obtain

∆pb = −3(γ − 1)ıPe−1
b

γ

γ − 1

∂∆Tb

∂ζ

∣

∣

∣

∣

∣

ζ=1

− 3γ∆R− 3γıJ∗
0∆R, (3.9)

where ζ = r/R is the nondimensional radial distance, Peb =
ωR2

0

DT
b

is the bubble’s Peclet

number defined using the bubble’s thermal diffusitivity DT
b , and the nondimensional

mass transfer flux is

J∗
0 =

J0
ρb,0R0ω

. (3.10)

Assuming that only one component (denoted with the subindex w) is vaporized and that
the vapor pressure solely depends on temperature, we can evaluate the mass transfer flux
from the linearization of Eq. 2.16 to obtain

J∗
0∆R = J∗

max

[

∂peq
∂T

T0

peq
∆Tb(ζ = 1)−∆pb +∆Y (ζ = 1)

]

, (3.11)

where J∗
max is a nondimensional flux defined as

J∗
max ≡ αevap

peq,0

ρb,0R0ω
√
2πrwT0

. (3.12)

Equation 3.11 requires to know the vapor mass fraction variations and the temperature
variations at the interface. To obtain ∆Y (ζ = 1) we solve the linear transport equation
for the vapor inside the bubble. The transport equation (Eq. 2.9) is written in a non-

dimensional form using the Sherwood number, ShD =
ωR2

0

Dw/b
, where Dw/b is the diffusion

coefficient of the vapor inside the bubble mixture,

ShD∆Y + i
1

ζ2
∂

∂ζ

(

ζ2
∂∆Y

∂ζ

)

= 0. (3.13)

Its general solution,

∆Y (ζ) = CD

sinh
(√

ShDıζ
)

ζ
, (3.14)

is particularized using the boundary condition for component w at the interface (Eq.
2.14)

−J∗
0∆R = −J∗

0Y0∆R − Sh−1
D Y0

∂∆Y

∂ζ

∣

∣

∣

∣

ζ=1

, (3.15)

where we have imposed Yw,l = 1. Thus, we can determine the constant CD to write the
evolution of the mass fraction at the interface as

∆Y (ζ = 1) = J∗
0

ShD√
ıShD coth(

√
ıShD)− 1

1− Y0

Y0
∆R. (3.16)

The temperature variations at the interface are obtained using the energy equation
inside the bubble (Eq. 2.11). The nondimensional linear version of this equation,

∆Tb −∆pb
γ − 1

γ
+ ıPe−1

b

1

ζ2
∂

∂ζ

(

ζ2
∂∆Tb

∂ζ

)

= 0, (3.17)

has the following general solution,

∆Tb(ζ) = ∆pb
γ − 1

γ
+ C1

exp
(

−
√
Pebıζ

)

ζ
+ C2

exp
(√

Pebıζ
)

ζ
. (3.18)
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Because the temperature is finite at ζ = 0, we find that C1 = −C2 = −C0/2. Thus, the
interface’s temperature variation is given by

∆Tb(ζ = 1) = ∆pb
γ − 1

γ
+ C0 sinh

(

√

Pebı
)

. (3.19)

Plugging Eqs. 3.16 and 3.19 into Eq. 3.11 we obtain the following explicit relation for
the mass flux across the interface

J∗
0∆R = J∗

c

(

(

∆H∗
vap − 1

)

∆pb +∆H∗
vap

γ

γ − 1
C0 sinh

(

√

Pebı
)

)

, (3.20)

where we have defined a nondimensional enthalpy of vaporization as ∆H∗
vap =

∆Hvap

cp,bT0
and

a characteristic nondimensional flux

J∗
c =

J∗
max

1 + J∗
max

ShD√
ıShD coth(

√
ıShD)−1

1−Y0

Y0

. (3.21)

Note that this quantity provides a quantification about the influence of transient mass
transfer effects. In fact, we can write Eq. 3.21 using the characteristic nondimensional
mass flux, J∗

c,eq that is obtained by assuming that equilibrium conditions prevail at the
interface at every instant (see appendix A for details about the derivation of J∗

c,eq),

J∗
c =

J∗
max

1 + J∗
max(J

∗
c,eq)

−1
. (3.22)

When the characteristic mass flux related to transient effects is much faster than the one
at equilibrium conditions (J∗

max ≫ J∗
c,eq), the mass transfer is controlled by the vapor

diffusion inside the bubble: J∗
c ≈ J∗

c,eq. In the opposite limit (J∗
max ≪ J∗

c,eq), transient
mass transfer effects control the mass flux across the interface: J∗

c ≈ J∗
max.

To obtain the value of the integration constant C0 in Eq. 3.20 one needs to solve the
energy equation in the liquid (Eq. 2.11). In its linearized form this equation reads

∆Tl = −ıPe−1
l

1

ζ2
∂

∂ζ

(

ζ2
∂∆Tl

∂ζ

)

, (3.23)

and its general solution is

∆Tl(ζ) = C3

exp
(

−
√
Pelıζ

)

ζ
+ C4

exp
(√

Pelıζ
)

ζ
, (3.24)

where Pel =
ωR2

0

DT
l

is the liquid’s Peclet number. Note that consistent with the derivation

of the far field equations, the effect of viscous dissipation as well as thermal dilatation on
the temperature variations have been neglected. The particular solution of this equation
requires to evaluate the liquid’s temperature at some distance ζ∞. In the dilute limit,
one can consider that the temperature far from the bubble is constant and equal to T0.
In this case we find C4 = 0.

The value of the free constants C3 and C0 in Eqs. 3.19 and 3.24 are obtained ap-
plying the boundary conditions at the interface. First, we assume that the interface’s
temperature has to be continuous. Thus we write,

C3exp
(

−
√

Pelı
)

= ∆pb
γ − 1

γ
+ C0 sinh

(

√

Pebi
)

. (3.25)
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In addition, the energy balance across the interface (Eq. 2.15) establishes that

∂∆Tl

∂ζ

∣

∣

∣

∣

ζ=1

=
κb

κl

∂∆Tb

∂ζ

∣

∣

∣

∣

ζ=1

+ J∗
0Peb∆H∗

vap∆R. (3.26)

Replacing the corresponding expressions for the temperature derivatives and using Eq.
3.25 to express C3 as a function of C0 we obtain

C0 = −
γ−1
γ (1−∆T I

c )

sinh
(√

Pebi
) ∆pb (3.27)

where the complex quantity ∆T I
c is defined as

∆T I
c =

κb

κl

√
Pebı coth(

√
Pebı)− 1 + J∗

cPeb∆H∗
vap

(

γ
γ−1

)

1 +
√
Pelı+

κb

κl

[√
Pebı coth(

√
Pebı)− 1 + J∗

cPeb
(

∆H∗
vap

)2 γ
γ−1

] . (3.28)

Upon substitution of the integration constant into Eq. 3.25 we can represent the tem-
perature variations at the interface as

∆Tb(ζ = 1) =
γ − 1

γ
∆T I

c ∆pb. (3.29)

The temperature gradient inside the bubble evaluated at the interface is obtained from
Eq. 3.19,

∂∆Tb

∂ζ

∣

∣

∣

∣

ζ=1

= −γ − 1

γ
(1 −∆T I

c )
[

√

Pebı coth(
√

Pebı)− 1
]

∆pb, (3.30)

and the mass flux across the interface (Eq. 3.20) is expressed as a function of the bubble
pressure variations as

J∗
0∆R = J∗

c

(

∆H∗
vap∆T I

c − 1
)

∆pb. (3.31)

Replacing the expressions for the temperature gradient and mass flux (Eqs. 3.30 and
3.31) into Eq. 3.9 we finally obtain the transfer function Φ as

Φ =
3γ

1− 3(γ − 1)ıPe−1
b

[√
Pebı coth(

√
Pebı)− 1

]

(1−∆T I
c ) + 3γıJ∗

c

(

∆H∗
vap∆T I

c − 1
)

(3.32)
This transfer function is a generalization of the classical expression for pure gas bub-
bles (Prosperetti et al. 1988) accounting for interface temperature variations and mass
transfer effects across the interface. For instance, it is easy to check that we recover the
classical solution for pure gas bubbles by imposing no net mass flux across the interface
(J∗

c = 0) and by assuming that the interface temperature variations are zero (∆T I
c = 0).

Figure 1 depicts the real and imaginary part of the transfer function obtained for an
air/vapor bubble for various water vapor contents at constant atmospheric pressure. At
large frequencies the bubbles tend to recover the adiabatic response irrespective of the
vapor content. At low frequencies, the transfer function recovers the isothermal limit for
pure gas bubbles. As the amount of vapor increases, the real part takes values below
1 at low frequencies. This value corresponds to the limiting case in which equilibrium
conditions prevail inside the bubble at every instant. It can be proven that this result can
also be found assuming that vapor and gas are both ideal gases at constant temperature
(see appendix B). The imaginary part is also influenced by the vapor content. In general
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c are obtained for a 100 µm air/water
vapor bubble at 1 atmosphere and varying temperature (from 25 to 100 degrees Celsius).
The vapor content for the various curves are Y0 = 0, 0.03, 0.27, 0.50, 0.74, 0.99.

the imaginary part increases with the vapor content irrespective of the Peclet number
although the influence of the vapor content on the imaginary part is especially notorious
at low frequencies. Consistent with experimental observations, the influence of vaporiza-
tion is completely negligible in gas/vapor bubbles at standard laboratory conditions (25
degree Celsius and 1 atmosphere) where the vapor void fraction is negligible compared
with that of a gas.

Once we have obtained expressions for the transfer function (Eq. 3.32) and the mass
flux across the interface (Eq. 3.31) we follow the classical procedure to linearize the aver-
aged continuity and momentum equations (Eqs. 2.1 and 2.2) written as a wave equation
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of the form
1

c2eff

∂2pl,∞
∂t2

−△pl,∞ = 4πρ

∫ ∞

0

a2R̈f(a)da, (3.33)

where R̈ = −ω2R0∆R is the interface acceleration. Rewriting Eq. 3.33 as a wave equation
for pl,∞, the complex sound speed, cm, is given by

1

c2m
=

1

c2
+ 4πn

∫ ∞

0

af(a)da

ω2
0 − ω2 + 2iδω

(3.34)

from which we obtain the phase velocity, cph, and attenuation, Q−1, as

cph =

(

Re

(

1

cm

))−1

, (3.35)

Q−1 = −20 log10(e)ℑ
(

ω

cm

)

. (3.36)

Using the expressions for the bubble resonant frequency and damping constant (Eqs.
3.4-3.5) we obtain the phase speed (Eq. 3.35) and attenuation (Eq. 3.36).

4. Summary of equations

As a summary of the full model equations for a bubbly liquid with vapor and an
inmiscible gas, we solve for the averaged complex sound speed

1

c2m
=

1

c2
+ 4πn

∫ ∞

0

af(a)da

ω2
0 − ω2 + 2iδω

, (4.1)

in order to obtain the phase speed and attenuation as

cph =

(

Re

(

1

cm

))−1

, (4.2)

Q−1 = −20 log10(e)ℑ
(

ω

cm

)

. (4.3)

The second term in Eq. 4.1 represents the influence of the bubble oscillation on the large
scale wave propagation problem and it can be obtained in the linear regime by solving
the conservation equations at the local scale (single bubble and its surrounding liquid).
From the linearization of the Rayleigh-Plesset equation (e.g. continuity and momentum
equation in the surrounding liquid) we find the following expressions for the bubble
resonant frequency and the damping coefficient

δ =
2µl

ρlR2
0

+
pg,0

2ωρlR2
0

ℑ(Φ) + 1

2
Re(J∗

0 )
ρb
ρl
ω, (4.4)

ω2
0 =

pg0
ρlR2

0

(

Re(Φ)− 2σ

pg,0R0

)

+ ℑ(J∗
0 )

ρb
ρl
ω2. (4.5)

These properties require to evaluate the nondimensional mass transfer flux J∗
0 and the

transfer function Φ that relates bubble’s pressure and volume changes. From the so-
lution of the conservation equations inside the bubble and the energy equation in the
surrounding liquid we find the following expressions for these two quantities

J∗
0 = J∗

c

(

1−∆H∗
vap∆T I

c

)

Φ, (4.6)
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Φ =
3γ

1− 3(γ − 1)ıPe−1
b

[√
Pebı coth(

√
Pebı)− 1

]

(1 −∆T I
c ) + 3γıJ∗

c

(

∆H∗
vap∆T I

c − 1
) ,

(4.7)

where Peb =
ωR2

0

DT
b

, ∆H∗
vap =

∆Hvap

cp,bT0
, and J∗

c and ∆T I
c are the characteristic nondimen-

sional flux and the nondimensional interface temperature variation. The general expres-
sion for the nondimensional flux J∗

c

J∗
c =

J∗
max

1 + J∗
max(J

∗
c,eq)

−1
, (4.8)

reveals that the total flux across the interface can be controlled either by vapor diffusion
inside the bubble, J∗

c,eq, or by transient vaporization effects across the interface, J∗
max.

The diffusion flux

J∗
c,eq =

√
ıShD coth(

√
ıShD)− 1

ShD

Y0

1− Y0
, (4.9)

depends on the Sherwood number ShD =
ωR2

0

Dw/b
and the amount of vapor Y0. The char-

acteristic transient mass flux is

J∗
max = αevap

peq,0

ρb,0R0ω
√
2πrwT0

. (4.10)

Finally, the nondimensional interface temperature variation is a complex function de-
pending on the heat and mass transfer processes taking place at the local scale and its
general solution is

∆T I
c =

κb

κl

√
Pebı coth(

√
Pebı)− 1 + J∗

cPeb∆H∗
vap

(

γ
γ−1

)

1 +
√
Pelı+

κb

κl

[√
Pebı coth(

√
Pebı)− 1 + J∗

cPeb
(

∆H∗
vap

)2 γ
γ−1

] , (4.11)

where Pel =
ωR2

0

DT
l

.

In the following sections we discuss the importance of mass transfer in the bubble
dynamic response and the wave propagation properties of the effective medium as well
as simplified solutions for limiting situations.

5. The influence of mass transfer effects on the acoustic properties of

the effective medium

In this section we evaluate the importance of mass transfer effects in a system by
comparing the results obtained with the full model with those provided by the classical
linear theory that neglects mass transfer effects. We consider a mixture of monodisperse
bubbles with average radius 100 µm and bubble concentration of β0 = 10−4 (vol/vol)
measured at standard temperature (25 degrees Celsius) and pressure (1 atmosphere).
We take the physical properties of an air/water system. Because the exact value of the
accommodation coefficient is not clear yet (Gumerov et al. 2001) in this work we have
taken αevap = 0.35 (Yasui 1997; Hauke et al. 2007; Fuster et al. 2010), where we have
neglected any influence of the temperature on this parameter.

Figure 2 contains the effective phase velocity and attenuation as a function of the va-
por content and frequency obtained with the full model. The vapor content is controlled
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by varying the ambient temperature from 25 degrees Celsius to the normal boiling point
of water (100 degrees Celsius) at constant ambient pressure. Under these conditions, the
classical theory that neglects mass transfer effects does not predict any significant influ-
ence of the vapor content (or ambient temperature) on the results obtained. However,
the results obtained with the full model reveal that mass transfer effects become relevant
at low frequencies for bubbles with a large vapor content. At low frequencies the phase
velocity is significantly reduced with respect to the value predicted when neglecting mass
transfer effects whereas attenuation values increase various order of magnitude. The anal-
ysis of low frequency asymptotic solutions reached for low frequencies is postponed to
the next section.

The differences in the formulation of the full model including mass transfer effects
with respect to the classical formulation for pure gas bubbles can be condensed in two
nondimensional quantities: J∗

0 as defined in Eq. 3.10, which is interpreted as the ratio
between the interface velocity induced by mass transfer J0

ρb
∆R and the actual interface

velocity R0ω∆R, and ∆T I
c as defined in Eq. 3.28, which is a measure of the nondimen-

sional temperature variations at the interface (Eq. 3.29). When J∗
0 is close to one mass

transfer controls of the evolution of the bubble radius, whereas when it is smaller than
one the gas/vapor expansion controls the bubble radius evolution.

Figure 3 shows the modulus and the phase lag with respect to the bubble radius oscil-
lations of the nondimensional mass transfer flux as a function of the Sherwood number
and the vapor content (varied changing the ambient temperature from 25 to 100 degrees
Celsius at 1 atmosphere). For a given vapor content, the evaporation flux reaches an
asymptotic limit for low Sherwood numbers (low frequencies) which corresponds to the
limit obtained assuming thermodynamic equilibrium inside the bubble at every instant
(appendix B). This low frequency limit is also the maximum mass transfer flux across the
interface for a given vapor content. Only for systems approaching saturation conditions
the nondimensional mass transfer flux becomes of order one, meaning that evaporation
and condensation processes take control of the dynamic response of the interface. On the
contrary, for ShD >> 1 the bubble has almost no time to respond to pressure waves and
the evaporation flux becomes negligible. In this high frequency regime neither phase speed
nor attenuation are significantly influenced by mass transfer effects and we can conclude
that the bubble dynamic response is governed by the gas/vapor expansion/compression.

The relevance of the interface temperature variations are captured by the nondimen-
sional quantity ∆T I

c . Figure 4 shows ∆T I
c as a function of the bubble’s Peclet number, the

nondimensional enthalpy of vaporization and the amount of vapor, which ultimately con-
trols the mass flux across the interface. As expected, the interface temperature variations
are negligible when the vapor content is low, irrespective of the forcing frequency and en-
thalpy of vaporization. In this case, the energy exchange due to evaporation/condensation
is not significant. As we approach saturation conditions, the mass flux across the interface
and the associated energy exchange make the interface temperature variations important.
The sensitivity is maximal for a given enthalpy of vaporization that slightly depends on
the forcing frequency. For reference, in the particular case of water the nondimensional
enthalpy of vaporization, ∆H∗

vap, takes values of order one, meaning that the interface
temperature variations become important near saturation conditions. Regarding the fre-
quency, the interface temperature variations are not important at low frequencies for
both gas and vapor bubbles as the bubble has enough time to equilibrate its temper-
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Figure 2: Color online. Influence of the vapor content on the phase velocity (top) and
attenuation (bottom) curves obtained from the set of equations summarized in Section
4 for gas/vapor bubbles at 1 atm and various ambient temperatures. The vapor content
for each condition is Y0 = 0.99, 0.96, 0.89, 0.55, 0.03. For reference, the red line represents
the solution of pure air bubbles (Y0 = 0) at 1 atm and 25 degrees Celsius. Mass transfer
effects significantly modify both phase speed and attenuation curves for frequencies below
resonance. In the low frequency limit, mass transfer decreases the phase velocity and
increases attenuation.

ature with the surrounding liquid at every instant. As we increase the frequency (and
therefore the Peclet number) the interface temperature variations are more important
for bubbles with a low vapor content although in all cases the nondimensional values are
close to zero. Thus, we can safely assume that the interface temperature is constant for
gas bubbles in water irrespective of the forcing frequency. For bubbles with a large vapor
content the situation is different because the interface temperature is influenced by the
mass transfer flux. As this flux decreases when increasing the forcing frequency, there
exists a range of intermediate frequencies for which the interface temperature variations
become important in order to correctly predict the bubble radial oscillations.
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Figure 3: Color online. Top: Nondimensional evaporation flux (Eq. 4.6) as a function of
the vapor content (varied by changing the ambient temperature at a constant pressure
equal to 1 atm) and the Sherwood number. Bottom: Phase lag between the bubble radius
and flux oscillation as a function of the vapor content and the Sherwood number.

In order to gain further insight into the applicability of the constant interface tempera-
ture assumption Figure 5 compares the solution obtained with the full model with the so-
lution obtained by impossing that the interface temperature remains constant (∆T I

c = 0)
still considering the mass transfer flux across the interface. The results are shown for a
gas/vapor bubble at 25 degree Celsius (approximately 0.03% of vapor content) and 99.9
degree celsius (Y0 = 0.99). While at low ambient temperatures (low vapor content) the
results obtained with ∆T I

c = 0 accurately represent the solution obtained with the full
model, we do observe significant differences when approaching saturation conditions. In
this case the vaporization flux is significant and it is important to include interface tem-
perature variations for an accurate estimation of the phase speed and attenuation at
frequencies below the resonance frequency. Only if we decrease frequencies further down,
the bubble response can be assumed to be isothermal and the phase velocities obtained
assuming constant temperature accurately represent the solution of the full model. Note
that this is not the case of the attenuation, where the interface temperature variations
seem to have a significant influence on the predictions and must then be always consid-
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vapor content Y0 = 0.05 (bottom).

ered in the predictions.

6. Low frequency limits

We have seen in the previous section that mass transfer effects are especially important
for low frequency excitations. In this case both the bubble response and the process of
wave propagation are significantly influenced by the mass and energy exchange across
the interface. In order to gain further insight into the influence of mass transfer at low
frequencies we derive limiting expressions for particular regimes. For frequencies well
below the natural frequency and assuming monodisperse mixtures, it is readily shown
that (Commander & Prosperetti 1989)

1

c2m
=

1

c2
+ 4π

nR0

ω2
0

(

1− 2ıδω

ω2
0

)

. (6.1)
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Figure 5: Color online. Phase speed (top) and attenuation curves (bottom) for an
air/water system with 100 µm bubbles with concentration β0 = 10−4 at 25 C (red
lines, Y0 = 0.03) and 99.9 C (blue lines, Y0 = 0.99). The continuous lines represent the
solution of the full model. The dashed lines represent the solution assuming a constant
interface temperature. Both solutions overlap for systems containing gas bubbles whereas
we observe significant differences between them for low frequency waves propagating in
systems with bubbles with a large vapor content.

The limiting expressions for ω0 and δ depend on the evaporation flux and the transfer
function. The nondimensional flux across the interface, given by Eq. 3.31, is J∗

0 = −J∗
cΦ.

In the general case J∗
c has to be obtained from Eq. 3.22, which in the low frequency limit

tends to

J∗
c ≈ J∗

max

1− 3J∗
maxı

1−Y0

Y0

when ShD < 1. (6.2)

This expression can be further simplified when J∗
max > 1

3
Y0

1−Y0
, which can be written as

a condition for the bubble’s Peclet number,

Peb < PeIc =
3αevap√

2π
(1− Y0)

R0

√
rwT

DT
b

. (6.3)
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The right hand side (PeIc) is identified with a critical Peclet number below which transient
mass transfer effects are negligible. In this case equation 6.2 reduces to

J∗
c ≈ 1

3
ı

Y0

1− Y0
when ShD < 1 ∧ Peb < PeIc, (6.4)

which is equivalent to the low frequency solution obtained when assuming equilibrium
conditions at the interface (see appendix A). Thus, we write the mass transfer flux across
the interface and the transfer function as

J∗
0 ≈ −1

3
ı

Y0

1− Y0
Φ, (6.5)

Φ ≈ 3 (1− Y0)

1− (1− Y0)∆T I
c

γ−1
γ − Y0∆H∗

vap∆T I
c

(6.6)

which are valid when ShD < 1 ∧ Peb < min(1,PeIc). Note that to derive the expression for
the transfer function we have approximated the function M(Pe) =

√
Peı coth(

√
Peı)− 1

by M(Pe) ≈ Pe
3 ı, which is a reasonable assumption for Peb < 1 (Figure 6).

Both the mass transfer flux and the transfer function are a function of the interface
temperature variations given by Eq. 3.28. For low frequencies, Peb < 1, Eq. 3.28 simplifies
to

∆T I
c ≈

κb

κl

1
3 ı

[

1 + Y0

1−Y0
∆H∗

vap
γ

γ−1

]

Peb

1 +
√
Pelı+

κb

κl

1
3 ı

[

1 + Y0

1−Y0

(

∆H∗
vap

)2 γ
γ−1

]

Peb
(6.7)

when ShD < 1 ∧ Peb < min(1,PeIc)

When the interface temperature is isothermal, ∆T I
c = 0, which is true for Peb → 0,

the nondimensional mass flux across the interface and the transfer function for bubbles
containing gas and vapor are

J∗
0 = Y0ı (6.8)

Φ ≈ 3(1− Y0). (6.9)
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Using these limiting expressions the final expressions for the phase speed and attenu-
ation in the low frequency limit are given by

c2ph =
c2

1 + c2β0ρl

(1−Y0)p0

, (6.10)

Q−1 = 20 log10(e)
cβ0δω

2ρ2lR
2
0

3p20(1− Y0)2
√

1 + c2β0ρl

(1−Y0)p0

. (6.11)

For low void fractions (β0 < p0(1−Y0)
ρlc2

), the phase speed tends to recover the liquid’s
sound speed. On the contrary, for large void fractions the phase speed is shown to be
proportional to the gas content inside the bubble.

These limiting expressions are only expected to represent reasonably well the solution
for dilute systems when ShD < 1 and Peb < min(1,PeIc) and also when the interface
temperature remains constant. This last condition introduces an additional constrain for
Peb in order to reach the low frequency limits obtained above. From Eq. 6.7, we conclude
that we can only assume constant interface temperature when

Peb ≪ PeIIb,c = 3
1− Y0

Y0

κl

κb

γ − 1

γ

1

(∆H∗
vap)

2
. (6.12)

Thus, the frequency required to reach the low frequency limit is expected to be lower in
systems with a low liquid thermal conductivity, a large content of vapor in the bubbles
and a large enthalpy of vaporization. This effect can be clearly seen in Figure 7 where we
compare the solution of systems with different non-dimensional values of the enthalpy
of vaporization with the solution of a model where the interface temperature is assumed
to be isothermal. As expected, all systems tend to the same low frequency limit for the
phase speed, although we need to low the forcing frequency as the enthalpy of vaporiza-
tion increases. In particular, in the case of the highest enthalpy of vaporization tested here
(twice the enthalpy of vaporization of water) the curves tend to follow the low frequency
limit for gas bubbles at frequencies between 103 and 104 Hz. At these frequencies, the
vaporization flux is limited by heat diffusion from the bulk towards the interface and the
bubble dynamic response is mainly controlled by the expansion/compression rather than
mass transfer effects. For lower frequencies, heat has enough time to diffuse and vaporiza-
tion controls the effective compressibility of the medium. This remark is important if one
wants to guarantee the validity of the low frequency limiting solutions in systems near
saturation conditions, where it is not sufficient to satisfy that the excitation frequency is
below the bubble’s resonance frequency.

It is also interesting to compare the low frequency limit solutions obtained here with
the classical solution for gas bubbles proposed by Wood (1930). Figure 8 compares the
results obtained with the full model at 1 Hz as a function of the void fraction and the
vapor content with the results obtained from Wood’s theory. As it can be seen the phase
speed is significantly lower for bubbles with a large vapor content than for pure gas
bubbles. The effect of the vapor content can be also seen in Figure 9 where we see how
both phase speed and attenuation converge to the solution for pure gas bubbles with
vapor content tending to zero. For the phase velocity Wood’s formula provides a good
approximation of the exact solution only when the void fraction is sufficiently low. In
the case of attenuation (Figure 9), δ strongly depends on the vapor content increasing
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limit (f = 1 Hz) as a function of the vapor content for a monodisperse bubble cloud
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solution of pure gas bubbles and the approximate solution provided by Eqs. 6.10-6.11.

several orders of magnitude compared to the case of pure gas bubbles.

It is also worth mentioning that the limiting solutions of Eqs. 6.10-6.11 differ from the
solutions obtained by Landau & Lifshitz (1987) for pure liquid/vapor bubbly liquids, who
derive an asymptotic solution considering that pressure and temperature at the large
scale are coupled through the Clausius-Clapeyron equation. In this study we restrict
ourselves to situations where the temperature far from the bubble remains constant,
which is a reasonable assumption for dilute systems containing small amount of gas but
it is not applicable for pure vapor bubbles and low frequencies where the heating/cooling
of the bulk liquid may be relevant. Although the current model for pure vapor bubbles
may be extended accounting for large scale thermal effects for the sake of simplicity we
postpone the study of this situation for future investigation. In any case, it is important
to note that the limiting solutions reported by Landau & Lifshitz (1987) may be very
difficult to obtain experimentally in linear regimes (Coste et al. 1990). On one side, very
small amounts of gas make the vapor diffusion inside the bubble to be the controlling
mechanism determining the vaporization flux. As we have seen above, the frequency
threshold below which equilibrium conditions prevail inside the bubble at every instant
tend to zero for vapor bubbles, which would make difficult to reach the low frequency
limit in these situations. On the other side, for the particular case of pure vapor bubbles,
the amplitude required to keep the linear regime valid tends to zero for low frequencies.
This effect can be clearly seen in Figure 10, where we represent the effect of the vapor
content on the sensitivity factor S defined from Eq. 6.13 as

S =
∆R

∆p∞
= − 1

ω2
0 − ω2 + 2iδω

pl,0
ρlR2

0

. (6.13)

This factor represents the nondimensional amplification factor of the bubble radius oscil-
lation with respect to the external pressure excitation. Given that a pure vapor bubble is
unable to reach equilibrium conditions when we perturb the pressure, the bubble tends
to infinitely grow (or shrink) as we decrease the frequency. Small amounts of gas serve
to kill this singular behavior, although the sensitivity of the bubble radius oscillation
against the pressure pulse is still significantly influenced by the amount of vapor.
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7. Conclusions

This manuscript presents a generalization of the classical linear theory for dilute bub-
bly liquids that solves for the transient mass transfer effects across the interface as well
as the heat transport in the liquid boundary layer. The proposed linear model converges
to the solution of the classical linear theory for pure gas bubbles when the vapor con-
tent inside the vapor is negligible. Mass transfer effects are shown to play an important
role in the phase speed and attenuation curves at frequencies below the bubble resonant
frequency. At low frequencies the phase speed is significantly reduced while attenuation
can increase various orders of magnitude with respect to the solution obtained when
neglecting mass transfer effects.

Simplified solutions are derived for low frequency excitations. The conditions to be
satisfied for these solutions to be valid are also obtained. We show that to reach the
low frequency limit for the phase speed it is not sufficient to guarantee that the forcing
frequency is lower than the bubble resonance frequency. For a general case, the Sherwood

number, ShD =
ωR2

0

Dw/b
, must be also smaller than one and the Peclet, Peb =

ωR2
0

DT
b

, must be

smaller than the minimum among two characteristic Peclet numbers, PeIc and PeIIc , in
order to guarantee that thermodynamic equilibrium prevails at every instant. In systems
with low liquid conductivity, large enthalpy of vaporization and large vapor content, the
frequencies required to reach the isothermal limit for situations with a large vapor con-
tent can be extremely low. In this low frequency regime the bubble response is isothermal
and it is possible to derive expressions that capture relatively well the influence of the
vapor content on the acoustic properties of the effective medium. Thus, in systems close
to saturation conditions and for frequencies below resonance, it is important to solve
for the mass transfer flux across the bubble interface, the heat transport equation in
the liquid and to account for the interface temperature variations in order to accurately
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obtain the phase speed and attenuation.

The authors would like to acknowledge Claudine Boehm and Philippe Berthet for their
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8. Appendix A: Mass transfer flux assuming equilibrium conditions

at the interface

It is commonly assumed that equilibrium conditions prevail at the interface at every
instant. Under these conditions, the partial water vapor pressure at the interface is given
at every instant by the saturation pressure at the interface’s temperature, peq(T

I) =
pbY0

Mb

Mw
whose linearized version is

∆pIeq = ∆pb +∆Y I . (8.1)

Replacing ∆pIeq by the expression given by the linear Clausious-Clapeyron relation (Eq.
2.17)

∆peq =
∆Hvap

rwT
∆T I (8.2)

and using Eq. 3.16 to express the vapor fraction variations as a function of the mass flux
across the interface, we can rewrite Eq. 8.1 as

J∗
0,eq∆R = J∗

c,eq

(

∆H∗
vap∆T I

c − 1
)

∆pb, (8.3)

where

J∗
c,eq =

[

ShD√
ıShD coth(

√
ıShD)− 1

1− Y0

Y0

]−1

. (8.4)

For low frequencies (ShD < 1), this equation simplifies to

J∗
c,eq ≈ 1

3
ı

Y0

1− Y0
when ShD < 1. (8.5)
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9. Appendix B: Low frequency limit of the mass transfer flux

assuming thermodynamic equilibrium inside the bubble

The limiting solution of the mass transfer flux for low frequencies can be also obtained
by assuming that: (i) the temperature of the bubble remains constant at every instant and
equal to the reference temperature, (ii) the vapor pressure inside the bubble is maintained
at every instant. Thus, the water vapor mass can be obtained as

mw =
pwV

rwT
(9.1)

Because only the bubble volume changes, the flux is obtained as

J =
ṁw

4πR2
b

=
pw
rwT

Ṙb. (9.2)

Linearizing the expression above we find

J0∆R =
mw

V
ωıR0∆R, (9.3)

which in nondimensional form reads

J∗
0 =

J0
Rbρb,0ω

= Y0ı. (9.4)


