A. Arlt, S. Sebens, S. Krebs, C. Geismann, M. Grossmann et al., Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity, Oncogene, vol.38, issue.40, pp.4825-4835, 2013.
DOI : 10.1158/0008-5472.CAN-04-1626

K. T. Bieging, S. S. Mello, and L. D. Attardi, Unravelling mechanisms of p53-mediated tumour suppression, Nature Reviews Cancer, vol.60, issue.5, pp.359-370, 2014.
DOI : 10.1038/onc.2009.423

X. W. Chen, Z. X. He, Z. W. Zhou, T. Yang, X. Zhang et al., Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus, Clinical and Experimental Pharmacology and Physiology, vol.56, issue.Suppl. 3, pp.999-1024, 2015.
DOI : 10.1007/s00125-012-2827-3

C. F. Deacon and H. E. Lebovitz, Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas, Diabetes, Obesity and Metabolism, vol.36, issue.4, pp.333-347, 2016.
DOI : 10.2337/dc13-0356

S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, R. Skouta, E. M. Zaitsev et al., Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death, Cell, vol.149, issue.5, pp.1060-1072, 2012.
DOI : 10.1016/j.cell.2012.03.042

S. Doll, B. Proneth, Y. Y. Tyurina, E. Panzilius, S. Kobayashi et al., ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nature Chemical Biology, vol.339, issue.1, pp.91-98, 2017.
DOI : 10.1093/nar/gni137

S. Dolma, S. L. Lessnick, W. C. Hahn, and B. R. Stockwell, Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells, Cancer Cell, vol.3, issue.3, pp.285-296, 2003.
DOI : 10.1016/S1535-6108(03)00050-3

G. P. Fadini and A. Avogaro, Cardiovascular effects of DPP-4 inhibition: Beyond GLP-1, Vascular Pharmacology, vol.55, issue.1-3, pp.10-16, 2011.
DOI : 10.1016/j.vph.2011.05.001

E. R. Fearon, Molecular Genetics of Colorectal Cancer, Annual Review of Pathology: Mechanisms of Disease, vol.6, issue.1, pp.479-507, 2011.
DOI : 10.1146/annurev-pathol-011110-130235

A. A. Friedman, A. Letai, D. E. Fisher, and K. T. Flaherty, Precision medicine for cancer with next-generation functional diagnostics, Nature Reviews Cancer, vol.33, issue.12, pp.747-756, 2015.
DOI : 10.1177/2168479015570330

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970460

F. Angeli, J. P. Schneider, M. Proneth, B. Tyurina, Y. Y. Tyurin et al., Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice, Nature Cell Biology, vol.16, issue.12, pp.1180-1191, 2014.
DOI : 10.4049/jimmunol.1202975

D. R. Green and G. Kroemer, Cytoplasmic functions of the tumour suppressor p53, Nature, vol.4, issue.7242, pp.1127-1130, 2009.
DOI : 10.4161/auto.6730

P. A. Havre, M. Abe, Y. Urasaki, K. Ohnuma, C. Morimoto et al., The role of CD26/dipeptidyl peptidase IV in cancer, Frontiers in Bioscience, vol.13, issue.13, pp.1634-1645, 2008.
DOI : 10.2741/2787

W. Hou, Y. Xie, X. Song, X. Sun, M. T. Lotze et al., Autophagy promotes ferroptosis by degradation of ferritin, Autophagy, vol.12, issue.8, pp.1425-1428, 2016.
DOI : 10.1038/onc.2015.32

S. Huerta, E. J. Goulet, and E. H. Livingston, Colon cancer and apoptosis, The American Journal of Surgery, vol.191, issue.4, pp.517-526, 2006.
DOI : 10.1016/j.amjsurg.2005.11.009

T. J. Humpton and K. H. Vousden, Regulation of Cellular Metabolism and Hypoxia by p53, Cold Spring Harbor Perspectives in Medicine, vol.6, issue.7, 2016.
DOI : 10.1101/cshperspect.a026146

E. K. Jackson, Context-dependent effects of dipeptidyl peptidase 4 inhibitors, Current Opinion in Nephrology and Hypertension, vol.26, pp.83-90, 2017.
DOI : 10.1097/MNH.0000000000000303

M. Jennis, C. P. Kung, S. Basu, A. Budina-kolomets, J. I. Leu et al., gene impairs p53 tumor suppressor function in a mouse model, Genes & Development, vol.30, issue.8, pp.918-930, 2016.
DOI : 10.1101/gad.275891.115

L. Jiang, N. Kon, T. Li, S. J. Wang, T. Su et al., Ferroptosis as a p53-mediated activity during tumour suppression, Nature, vol.29, issue.7545, pp.57-62, 2015.
DOI : 10.1038/onc.2009.427

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455927

V. E. Kagan, G. Mao, F. Qu, J. P. Angeli, S. Doll et al., Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis, Nature Chemical Biology, vol.26, issue.1, pp.81-90, 2017.
DOI : 10.1093/bioinformatics/btl485

K. H. Khoo, C. S. Verma, L. , and D. P. , Drugging the p53 pathway: understanding the route to clinical efficacy, Nature Reviews Drug Discovery, vol.13, issue.4, pp.217-236, 2014.
DOI : 10.1038/nrd4236

C. S. Lam, A. H. Cheung, S. K. Wong, T. M. Wan, L. Ng et al., Prognostic Significance of CD26 in Patients with Colorectal Cancer, PLoS ONE, vol.183, issue.5, p.98582, 2014.
DOI : 10.1371/journal.pone.0098582.t004

T. Li, N. Kon, L. Jiang, M. Tan, T. Ludwig et al., Tumor Suppression in the Absence of p53-Mediated Cell-Cycle Arrest, Apoptosis, and Senescence, Cell, vol.149, issue.6, pp.1269-1283, 2012.
DOI : 10.1016/j.cell.2012.04.026

A. Linkermann, R. Skouta, N. Himmerkus, S. R. Mulay, C. Dewitz et al., Synchronized renal tubular cell death involves ferroptosis, Proc. Natl. Acad. Sci. USA 111, pp.16836-16841, 2014.
DOI : 10.1126/science.1172308

URL : http://www.pnas.org/content/111/47/16836.full.pdf

L. Liu, B. Omar, P. Marchetti, and B. Ahré-n, Dipeptidyl peptidase-4 (DPP-4): Localization and activity in human and rodent islets, Biochemical and Biophysical Research Communications, vol.453, issue.3, pp.398-404, 2014.
DOI : 10.1016/j.bbrc.2014.09.096

C. Louandre, Z. Ezzoukhry, C. Godin, J. C. Barbare, J. C. Maziere et al., Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib, International Journal of Cancer, vol.1527, issue.112, pp.1732-1742, 2013.
DOI : 10.1016/S0304-4165(01)00163-5

C. Louandre, I. Marcq, H. Bouhlal, E. Lachaier, C. Godin et al., The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells, Cancer Letters, vol.356, issue.2, pp.971-977, 2015.
DOI : 10.1016/j.canlet.2014.11.014

H. Masaki, Y. Okano, Y. Ochiai, K. Obayashi, H. Akamatsu et al., ??-Tocopherol Increases the Intracellular Glutathione Level in HaCaT Keratinocytes, Free Radical Research, vol.36, issue.6, pp.705-709, 2002.
DOI : 10.1080/10715760210873

M. Matsushita, S. Freigang, C. Schneider, M. Conrad, G. W. Bornkamm et al., T cell lipid peroxidation induces ferroptosis and prevents immunity to infection, The Journal of Experimental Medicine, vol.265, issue.4, pp.555-568, 2015.
DOI : 10.4049/jimmunol.177.2.852

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387287

P. A. Muller and K. H. Vousden, p53 mutations in cancer, Nature Cell Biology, vol.19, issue.1, pp.2-8, 2013.
DOI : 10.1038/sj.onc.1201857

Y. Ou, S. J. Wang, D. Li, B. Chu, and W. Gu, Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses, Proc. Natl. Acad. Sci. USA, pp.6806-6812, 2016.

R. Pang, W. L. Law, A. C. Chu, J. T. Poon, C. S. Lam et al., A Subpopulation of CD26+ Cancer Stem Cells with Metastatic Capacity in Human Colorectal Cancer, Cell Stem Cell, vol.6, issue.6, pp.603-615, 2010.
DOI : 10.1016/j.stem.2010.04.001

A. Parrales and T. Iwakuma, p53 as a Regulator of Lipid Metabolism in Cancer, International Journal of Molecular Sciences, vol.7, issue.12, p.2074, 2016.
DOI : 10.1158/0008-5472.CAN-10-4652

A. M. Puzio-kuter, The Role of p53 in Metabolic Regulation, Genes & Cancer, vol.2, issue.4, pp.385-391, 2011.
DOI : 10.1177/1947601911409738

D. Ren, N. F. Villeneuve, T. Jiang, T. Wu, A. Lau et al., Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism, Proc. Natl. Acad. Sci. USA, pp.1433-1438, 2011.
DOI : 10.1016/j.molcel.2009.04.029

C. Schott, U. Graab, N. Cuvelier, H. Hahn, and S. Fulda, Oncogenic RAS Mutants Confer Resistance of RMS13 Rhabdomyosarcoma Cells to Oxidative Stress-Induced Ferroptotic Cell Death, Frontiers in Oncology, vol.19, p.131, 2015.
DOI : 10.1158/1078-0432.CCR-13-0850

R. Skouta, S. J. Dixon, J. Wang, D. E. Dunn, M. Orman et al., Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models, Journal of the American Chemical Society, vol.136, issue.12, pp.4551-4556, 2014.
DOI : 10.1021/ja411006a

URL : http://doi.org/10.1021/ja411006a

X. Sun, Z. Ou, R. Chen, X. Niu, D. Chen et al., Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells, Hepatology, vol.22, issue.1, pp.173-184, 2016.
DOI : 10.1016/j.jnutbio.2010.03.011

T. Tanaka, D. Camerini, B. Seed, Y. Torimoto, N. H. Dang et al., Cloning and functional expression of the T cell activation antigen CD26, J. Immunol, vol.149, pp.481-486, 1992.

D. Thomasova, H. A. Bruns, V. Kretschmer, M. Ebrahim, S. Romoli et al., Murine Double Minute-2 Prevents p53-Overactivation-Related Cell Death (Podoptosis) of Podocytes, Journal of the American Society of Nephrology, vol.26, issue.7, pp.1513-1523, 2015.
DOI : 10.1681/ASN.2014040345

B. Turk and V. Stoka, Protease signalling in cell death: caspases versus cysteine cathepsins, FEBS Letters, vol.57, issue.15, pp.2761-2767, 2007.
DOI : 10.1124/pr.57.2.6

K. H. Vousden, R. , and K. M. , p53 and metabolism, Nature Reviews Cancer, vol.40, issue.10, pp.691-700, 2009.
DOI : 10.4161/cc.7.7.5657

H. Wang, X. Liu, M. Long, Y. Huang, L. Zhang et al., NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis, Science Translational Medicine, vol.385, issue.12, pp.334-351, 2016.
DOI : 10.1016/S0140-6736(14)62225-X

URL : http://arizona.openrepository.com/arizona/bitstream/10150/615617/1/aad6095_technical_edit_revised.pdf

Y. Xie, W. Hou, X. Song, Y. Yu, J. Huang et al., Ferroptosis: process and function, Cell Death and Differentiation, vol.5, issue.3, pp.369-379, 2016.
DOI : 10.1038/sj.cdd.4401724

URL : http://www.nature.com/cdd/journal/v23/n3/pdf/cdd2015158a.pdf

K. Yamada, M. Hayashi, H. Madokoro, H. Nishida, W. Du et al., Nuclear Localization of CD26 Induced by a Humanized Monoclonal Antibody Inhibits Tumor Cell Growth by Modulating of POLR2A Transcription, PLoS ONE, vol.141, issue.4, 2013.
DOI : 10.1371/journal.pone.0062304.s010

W. S. Yang and B. R. Stockwell, Ferroptosis: Death by Lipid Peroxidation, Trends in Cell Biology, vol.26, issue.3, pp.165-176, 2016.
DOI : 10.1016/j.tcb.2015.10.014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764384

W. S. Yang, R. Sriramaratnam, M. E. Welsch, K. Shimada, R. Skouta et al., Regulation of Ferroptotic Cancer Cell Death by GPX4, Cell, vol.156, issue.1-2, pp.317-331, 2014.
DOI : 10.1016/j.cell.2013.12.010

Y. Yu, Y. Xie, L. Cao, L. Yang, M. Yang et al., The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents, Molecular & Cellular Oncology, vol.77, issue.4, 2015.
DOI : 10.1038/nri3743

H. Yuan, X. Li, X. Zhang, R. Kang, and D. Tang, Identification of ACSL4 as a biomarker and contributor of ferroptosis, Biochemical and Biophysical Research Communications, vol.478, issue.3, pp.1338-1343, 2016.
DOI : 10.1016/j.bbrc.2016.08.124

J. Zhong, X. Rao, and S. And-rajagopalan, An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: Potential implications in cardiovascular disease, Atherosclerosis, vol.226, issue.2, pp.305-314, 2013.
DOI : 10.1016/j.atherosclerosis.2012.09.012

S. Zhu, Q. Zhang, X. Sun, H. J. Zeh, M. T. Lotze et al., HSPA5 Regulates Ferroptotic Cell Death in Cancer Cells, Cancer Research, vol.77, issue.8, pp.2064-2077, 2017.
DOI : 10.1158/0008-5472.CAN-16-1979