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Abstract Dalitz-plot analyses of B → Kππ decays pro-
vide direct access to decay amplitudes, and thereby weak
and strong phases can be disentangled by resolving the
interference patterns in phase space between intermediate
resonant states. A phenomenological isospin analysis of
B → K ∗(→ Kπ)π decay amplitudes is presented exploit-
ing available amplitude analyses performed at the BaBar,
Belle and LHCb experiments. A first application consists
in constraining the CKM parameters thanks to an external
hadronic input. A method, proposed some time ago by two
different groups and relying on a bound on the electroweak
penguin contribution, is shown to lack the desired robustness
and accuracy, and we propose a more alluring alternative
using a bound on the annihilation contribution. A second
application consists in extracting information on hadronic
amplitudes assuming the values of the CKM parameters from
a global fit to quark flavour data. The current data yields sev-
eral solutions, which do not fully support the hierarchy of
hadronic amplitudes usually expected from theoretical argu-
ments (colour suppression, suppression of electroweak pen-
guins), as illustrated from computations within QCD factori-
sation. Some prospects concerning the impact of future mea-
surements at LHCb and Belle II are also presented. Results
are obtained with the CKMfitter analysis package, featuring
the frequentist statistical approach and using the Rfit scheme
to handle theoretical uncertainties.

1 Introduction

Non-leptonic B decays have been extensively studied at
the B-factories BaBar and Belle [1], as well at the LHCb
experiment [2]. Within the Standard Model (SM) some of

a e-mail: descotes@th.u-psud.fr

these modes provide valuable information on the Cabibbo–
Kobayashi–Maskawa (CKM) matrix and the structure of CP
violation [3,4], entangled with hadronic amplitudes describ-
ing processes either at the tree level or the loop level (the so-
called penguin contributions). Depending on the transition
considered, one may or may not get rid of hadronic contribu-
tions which are notoriously difficult to assess. For instance,
in b → cc̄s processes, the CKM phase in the dominant tree
amplitude is the same as that of the Cabibbo-suppressed pen-
guin one, so the only relevant weak phase is the Bd -mixing
phase 2β (up to a very high accuracy) and it can be extracted
from a CP asymmetry out of which QCD contributions drop
to a very high accuracy. For charmless B decays, the two
leading amplitudes often carry different CKM and strong
phases, and thus the extraction of CKM couplings can be
more challenging. In some cases, for instance the determina-
tion of α from B → ππ [5], one can use flavour symmetries
such as isospin in order to extract all hadronic contributions
from experimental measurements, while constraining CKM
parameters. This has provided many useful constraints for
the global analysis of the CKM matrix within the Standard
Model and the accurate determination of its parameters [6–9],
as well as inputs for some models of New Physics [10–13].

The constraints obtained from some of the non-leptonic
two-body B decays can be contrasted with the unclear situa-
tion of the theoretical computations for these processes. Sev-
eral methods (QCD factorisation [14–17], perturbative QCD
approach [18–23], Soft-collinear effective theory [24–28])
were devised more than a decade ago to compute hadronic
contributions for non-leptonic decays. However, some of
their aspects remain debated at the conceptual level [29–37],
and they struggle to reproduce some data on B decays into
two mesons, especially π0π0, ρ0ρ0, Kπ , φK ∗, ρK ∗ [37].
Considering the progress performed meanwhile in the deter-
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mination of the CKM matrix, it is clear that, by now, most of
these non-leptonic modes provide more a test of our under-
standing of hadronic process rather than competitive con-
straints on the values of the CKM parameters, even though
it can be interesting to consider them from one point of view
or the other.

Our analysis is focused on the study of B → K ∗(→
Kπ)π decay amplitudes, with the help of isospin symme-
try. Among the various b → uūs processes, the choice of
B → K ∗π system is motivated by the fact that an ampli-
tude (Dalitz-plot) analysis of the three-body final state Kππ

provides access to several interference phases among dif-
ferent intermediate K ∗π states. The information provided
by these physical observables highlights the potential of the
B → K ∗π system (VP) compared with B → Kπ (PP)
where only branching ratios and CP asymmetries are acces-
sible. Similarly, the B → K ∗π system leads to the final Kππ

state with a richer pattern of interferences and thus a larger set
of observables than other pseudo-scalar–vector states, like,
say, B → Kρ (indeed, Kππ exhibits K ∗ resonances from
either of the two combinations of Kπ pairs, whereas the ρ

meson comes from the only ππ pair available). In addition,
the study of these modes provides experimental information
on the dynamics of pseudo-scalar–vector modes, which is
less known and more challenging from the theoretical point
of view. Finally, this system has been studied extensively at
the BaBar [38–41] and Belle [43,44] experiments, and a
large set of observables is readily available.

Let us mention that other approaches, going beyond
isospin symmetry, have been proposed to study this system.
For instance, one can use SU(3) symmetry and SU(3)-related
channels in addition to the ones that we consider in this
paper [45,46]. Another proposal is the construction of the
fully SU(3)-symmetric amplitude [47] to which the spin-one
intermediate resonances that we consider here do not con-
tribute.

The rest of this article is organised in the following way.
In Sect. 2, we discuss the observables provided by the anal-
ysis of the Kππ Dalitz-plot analysis. In Sect. 3, we recall
how isospin symmetry is used to reduce the set of hadronic
amplitudes and their connection with diagram topologies.
In Sect. 4, we discuss two methods to exploit these decays
in order to extract information on the CKM matrix, making
some assumptions about the size of specific contributions
(either electroweak penguins or annihilation). In Sect. 5, we
take the opposite point of view. Taking into account our cur-
rent knowledge of the CKM matrix from global analysis, we
set constraints on the hadronic amplitudes used to describe
these decays, and we make a brief comparison with theoreti-
cal estimates based on QCD factorisation. In Sect. 6, we per-
form a brief prospective study, determining how the improved
measurements expected from LHCb and Belle II may modify
the determination of the hadronic amplitudes before conclud-

ing. In the appendices, we discuss various technical aspects
concerning the inputs and the fits presented in the paper.

2 Dalitz-plot amplitudes

Charmless hadronic B decays are a particularly rich source
of experimental information [1,2]. For B decays into three
light mesons (pions and kaons), the kinematics of the three-
body final state can be completely determined experimen-
tally, thus allowing for a complete characterisation of the
Dalitz-plot (DP) phase space. In addition to quasi-two-body
event-counting observables, the interference phases between
pairs of resonances can also be accessed, and CP-odd (weak)
phases can be disentangled from CP-even (strong) ones. Let
us, however, stress that the extraction of the experimental
information relies heavily on the so-called isobar approxi-
mation, widely used in experimental analyses because of its
simplicity, and in spite of its known shortcomings [48].

The B → Kππ system is particularly interesting, as
the decay amplitudes from intermediate B → PV res-
onances (K �(892) and ρ(770)) receive sizeable contribu-
tions from both tree-level and loop diagrams, and they inter-
fere directly in the common phase-space regions (namely
the “corners” of the DP). The presence of additional res-
onant intermediate states further constrain the interference
patterns and help resolving potential phase ambiguities. In
the case of B0 → K+π−π0 and B+ → K 0

Sπ
+π0, two

different K �(892) states contribute to the decay amplitude,
and their interference phases can be directly measured. For
B0 → K 0

Sπ
+π−, the time-dependent evolution of the decay

amplitudes for B0 and B0 provides (indirect) access to the rel-
ative phase between the B0 → K �+π− and B0 → K �−π+
amplitudes.

In the isobar approximation [48], the total decay amplitude
for a given mode is a sum of intermediate resonant contri-
butions, and each of these is a complex function of phase
space: A(DP) = ∑

i Ai Fi (DP), where the sum rolls over
all the intermediate resonances providing sizeable contribu-
tions, the Fi functions are the “lineshapes” of each reso-
nance, and the isobar parameters Ai are complex coefficients
indicating the strength of each intermediate amplitude. The
corresponding relation is A(DP) = ∑

i Ai Fi (DP) for CP-
conjugate amplitudes.

Any convention-independent function of isobar parame-
ters is a physical observable. For instance, for a given reso-
nance i , its direct CP asymmetry ACP is expressed as

Ai
CP = |Ai |2 − |Ai |2

|Ai |2 + |Ai |2
, (1)

and its partial fit fraction FFi is
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FFi = (|Ai |2 + |Ai |2)
∫

DP |Fi (DP)|2d(DP)
∑

jk(A j A∗
k + A j A∗

k)
∫

DP Fj (DP)F∗
k (DP)d(DP)

.

(2)

To obtain the partial branching fraction Bi , the fit fraction
has to be multiplied by the total branching fraction of the
final state (e.g., B0 → K 0

Sπ
+π−),

Bi = FFi × Bincl. (3)

A phase difference ϕi j between two resonances i and j con-
tributing to the same total decay amplitude (i.e., between
resonances in the same DP) is

ϕi j = arg(Ai/A j ), ϕi j = arg
(
Ai/A j

)
, (4)

and a phase difference between the two CP-conjugate ampli-
tudes for resonance i is

	ϕi = arg

(
q

p

Ai

Ai

)

, (5)

where q/p is the B0 − B0 oscillation parameter.
For B → K �π modes, there are in total 13 physical

observables. These can be classified as four branching frac-
tions, four direct CP asymmetries and five phase differences:

– The CP-averaged B+− = BR(B0 → K �+π−) branch-
ing fraction and its corresponding CP asymmetry A+−

CP .
These observables can be measured independently in the
B0 → K 0

Sπ
+π− and B0 → K+π−π0 Dalitz planes.

– The CP-averaged B00 = BR(B0 → K �0π0) branching
fraction and its corresponding CP asymmetry A00

CP. These
observables can be accessed both in the B0 → K+π−π0

and B0 → K 0
Sπ

0π0 Dalitz planes.
– The CP-averaged B+0 = BR(B+ → K �+π0) branch-

ing fraction and its corresponding CP asymmetry A+0
CP.

These observables can be measured both in the B+ →
K 0

Sπ
+π0 and B+ → K+π0π0 Dalitz planes.

– The CP-averaged B0+ = BR(B+ → K �0π+) branch-
ing fraction and its corresponding CP asymmetry A0+

CP.
They can be measured both in the B+ → K+π+π− and
B+ → K 0

Sπ
0π+ Dalitz planes.

– The phase difference ϕ00,+− between B0 → K �+π−
and B0 → K �0π0, and its corresponding CP con-
jugate ϕ00,−+. They can be measured in the B0 →
K+π−π0 Dalitz plane and in its CP-conjugate DP B0 →
K−π+π0, respectively.

– The phase difference ϕ+0,0+ between B+ → K �+π0

and B+ → K �0π+, and its corresponding CP con-
jugate ϕ−0,0−. They can be measured in the B+ →

K 0
Sπ

+π0 Dalitz plane and in its CP-conjugate DP B− →
K 0

Sπ
−π0, respectively.

– The phase difference 	ϕ+− between B0 → K �+π−
and its CP conjugate B0 → K �−π+. This phase differ-
ence can only be measured in a time-dependent analy-
sis of the K 0

Sπ
+π− DP. As K �+π− is only accessible

for B0 and K �−π+ to B0 only, the B0 → K �+π− and
B0 → K �−π+ amplitudes do not interfere directly (they
contribute to different DPs). But they do interfere with
intermediate resonant amplitudes that are accessible to
both B0 and B0, like ρ0(770)K 0

S or f0(980)K 0
S , and thus

the time-dependent oscillation is sensitive to the com-
bined phases from mixing and decay amplitudes.

2.1 Real-valued physical observables

The set of physical observables described in the previous
paragraph (branching fractions, CP asymmetries and phase
differences) has the advantage of providing straightforward
physical interpretations. From a technical point of view
though, the phase differences suffer from the drawback of
their definition with a 2π periodicity. This feature becomes
an issue when the experimental uncertainties on the phases
are large and the correlations between observables are sig-
nificant, since there is no straightforward way to properly
implement their covariance into a fit algorithm. Moreover,
the uncertainties on the phases are related to the moduli of
the corresponding amplitudes, leading to problems when the
latter are not known precisely and can reach values compati-
ble with zero. As a solution to this issue, a set of real-valued
Cartesian physical observables is defined, in which the CP
asymmetries and phase differences are expressed in terms of
the real and imaginary parts of ratios of isobar amplitudes
scaled by the ratios of the corresponding branching frac-
tions and CP asymmetries. The new observables are func-
tions of branching fractions, CP asymmetries and phase dif-
ferences, and they are thus physical observables. The new set
of observables, similar to the U and I observables defined in
B → ρπ [5], are expressed as the real and imaginary parts
of ratios of amplitudes as follows:

Re
(
Ai/A j

) =
√
√
√
√Bi

B j

Ai
CP − 1

A j
CP − 1

cos(ϕi j ) , (6)

Im
(
Ai/A j

) =
√
√
√
√Bi

B j

Ai
CP − 1

A j
CP − 1

sin(ϕi j ) , (7)

Re
(
Ai/A j

) =
√
√
√
√Bi

B j

Ai
CP + 1

A j
CP + 1

cos(ϕi j ) , (8)
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Im
(
Ai/A j

) =
√
√
√
√Bi

B j

Ai
CP + 1

A j
CP + 1

sin(ϕi j ). (9)

We see that some observables are not defined in the case
A j

CP = ±1, as could be expected from the following argu-

ment. Let us suppose that A j
CP = +1 for the j th resonance,

i.e., we have the amplitude A j = 0: the quantities Re(Ai/A j )

and Im(Ai/A j ) are not defined, but neither is the phase dif-
ference between Ai and A j . Therefore, in both parametrisa-
tions (real and imaginary part of ratios, or branching ratios,
CP asymmetries and phase differences), the singular case
A j

CP = ±1 leads to some undefined observables. Let us add
that this case does not occur in practice for our analysis.

For each B → Kππ mode considered in this paper, the
real and imaginary parts of amplitude ratios used as inputs
are the following:

B0 → K 0
Sπ

+π− : (10)

B(K ∗+π−) ;

Re

[
q

p

A(K ∗−π+)

A(K ∗+π−)

]

; Im

[
q

p

A(K ∗−π+)

A(K ∗+π−)

]

,

B0 → K+π−π0 : (11)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(K ∗0π0) ;
∣
∣
∣
∣
∣

A(K ∗−π+)

A(K ∗+π−)

∣
∣
∣
∣
∣

;

Re

[
A(K ∗0π0)

A(K ∗+π−)

]

; Im

[
A(K ∗0π0)

A(K ∗+π−)

]

;

Re

[
A(K

∗0
π0)

A(K ∗−π+)

]

; Im

[
A(K

∗0
π0)

A(K ∗−π+)

]

,

B+ → K+π−π+ : (12)

B(K ∗0π+) ;
∣
∣
∣
∣
∣

A(K
∗0

π−)

A(K ∗0π+)

∣
∣
∣
∣
∣

,

B+ → K 0
Sπ

+π0 : (13)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(K ∗+π0) ;
∣
∣
∣
∣
∣

A(K ∗−π0)

A(K ∗+π0)

∣
∣
∣
∣
∣

;

Re

[
A(K ∗+π0)

A(K ∗0π+)

]

; Im

[
A(K ∗+π0)

A(K ∗0π+)

]

;

Re

[
A(K ∗−π0)

A(K
∗0

π−)

]

; Im

[
A(K ∗−π0)

A(K
∗0

π−)

]

.

This choice of inputs is motivated by the fact that ampli-
tude analyses are sensitive to ratios of isobar amplitudes. The
sensitivity to phase differences leads to a sensitivity to the real
and imaginary part of these ratios. It has to be said that the
set of inputs listed previously is just one of the possible sets
of independent observables that can be extracted from this
set of amplitude analyses. In order to combine BaBar and
Belle results, it is straightforward to express the experimen-
tal results in the above format, and then combine them as

is done for independent measurements. Furthermore, experi-
mental information from other analyses which are not ampli-
tude and/or time-dependent, i.e., which are only sensitive to
B and ACP, can also be added in a straightforward fashion.

In order to properly use the experimental information in
the above format it will be necessary to use the full covariance
matrix, both statistical and systematic, of the isobar ampli-
tudes. This will allow us to properly propagate the uncertain-
ties as well as the correlations of the experimental inputs to
the ones exploited in the phenomenological fit.

3 Isospin analysis of B → K∗π decays

The isospin formalism used in this work is described in
detail in Ref. [51]. Only the main ingredients are summarised
below.

Without any loss of generality, exploiting the unitarity of
the CKM matrix, the B0 → K ∗+π− decay amplitude A+−
can be parametrised as

A+− = V ∗
ubVusT

+− + V ∗
tbVts P

+−, (14)

with similar expressions for the CP-conjugate amplitude
Ā−+ (the CKM factors appearing as complex conjugates),
and for the remaining three amplitudes Ai j = A(Bi+ j →
K ∗iπ j ), corresponding to the (i, j) = (0,+), (+, 0), (00)

modes. The tree and penguin contributions are now defined
through their CKM factors rather than their diagrammatic
structure: they can include contributions from additional c-
quark penguin diagrams due to the re-expression of V ∗

cbVcs in
Eq. (14). In the following, T i j and Pi j will be called hadronic
amplitudes.

Note that the relative CKM matrix elements in Eq. (14)
significantly enhance the penguin contributions with respect
to the tree ones, providing an improved sensitivity to the for-
mer. The isospin invariance imposes a quadrilateral relation
among these four decay amplitudes, derived in Ref. [52] for
B → Kπ , but equivalently applicable in the K ∗π case:

A0+ + √
2A+0 = A+− + √

2A00, (15)

and a similar expression for the CP-conjugate amplitudes.
These can be used to rewrite the decay amplitudes in the
“canonical” parametrisation,

A+− = VusV
∗
ubT

+− + VtsV
∗
tb P

+−,

A0+ = VusV
∗
ubN

0+ + VtsV
∗
tb

(
−P+− + PC

EW

)
,

√
2A+0 = VusV

∗
ubT

+0 + VtsV
∗
tb P

+0,√
2A00 = VusV

∗
ubT

00
C + VtsV

∗
tb

(−P+− + PEW
)
, (16)
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with

T+0 = T+− + T 00
C − N 0+ , (17)

P+0 = P+− + PEW − PC
EW . (18)

This parametrisation is frequently used in the literature with
various slightly different conventions, and is expected to hold
up to a very high accuracy (see Refs. [53,58] for isospin-
breaking contributions to B → ππ decays). The notation is
chosen to illustrate the main diagram topologies contribut-
ing to the decay amplitude under consideration. N 0+ makes
reference to the fact that the contribution to B+ → K ∗0π+
with a VusV ∗

ub term corresponds to an annihilation/exchange
topology; T 00

C denotes the colour-suppressed B0 → K ∗0π0

tree amplitude; the EW subscript in the PEW and PC
EW terms

refers to the 	I = 1 electroweak penguin contributions to
the decay amplitudes. We can also introduce the 	I = 3/2
combination T3/2 = T+− + T 00

C .
One naively expects that colour-suppressed contributions

will indeed be suppressed compared to their colour-allowed
partner, and that electroweak penguins and annihilation con-
tributions will be much smaller than tree and QCD penguins.
These expectations can be expressed quantitatively using the-
oretical approaches like QCD factorisation [14–17]. Some of
these assumptions have been challenged by the experimental
data gathered, in particular the mechanism of colour suppres-
sion in B → ππ and the smallness of the annihilation part
for B → Kπ [5,22,37,55–57].

The complete set of B → K ∗π decay amplitudes, con-
strained by the isospin relations described in Eq. (15) are
fully described by 13 parameters, which can be classified as
11 hadronic and 2 CKM parameters following Eq. (16). A
unique feature of the B → K ∗π system is that this number
of unknowns matches the total number of physical observ-
ables discussed in Sect. 2. One could thus expect that all
parameters (hadronic and CKM) could be fixed from the data.
However, it turns out that the weak and strong phases can be
redefined in such a way as to absorb in the CKM param-
eters any constraints on the hadronic ones. This property,
known as reparametrisation invariance, is derived in detail
in Refs. [51,54] and we recall its essential aspects here. The
decay amplitude of a B meson into a final state can be written
as

A f = m1e
iφ1eiδ1 + m2e

iφ2eiδ2 , (19)

Ā f̄ = m1e
−iφ1eiδ1 + m2e

−iφ2eiδ2 , (20)

where φi are CP-odd (weak) phases, δi are CP-even (strong)
phases, and m are real magnitudes. Any additional term
M3eiφ3eiδ3 can be expressed as a linear combination of eiφ1

and eiφ2 (with the appropriate properties under CP violation),
leading to the fact that the decay amplitudes can be written
in terms of any other pair of weak phases {ϕ1, ϕ2} as long as

ϕ1 �= ϕ2 (mod π ):

A f = M1e
iϕ1ei	1 + M2e

iϕ2ei	2 , (21)

Ā f̄ = M1e
−iϕ1ei	1 + M2e

−iϕ2ei	2 , (22)

with

M1e
i	1 = [m1e

iδ1 sin(φ1 − ϕ2)]
+m2e

iδ2 sin(φ2 − ϕ2)/ sin(ϕ2 − ϕ1) , (23)

M2e
i	2 = [m1e

iδ1 sin(φ1 − ϕ1)

+m2e
iδ2 sin(φ2 − ϕ1)]/ sin(ϕ2 − ϕ1) . (24)

This change in the set of weak basis does not have any
physical implications, hence the name of re-parameterisation
invariance. We can now take two different sets of weak phases
{φ1, φ2} and {ϕ1, ϕ2} with φ1 = ϕ1 but φ2 �= ϕ2. If an
algorithm existed to extract φ2 as a function of physical
observables related to these decay amplitudes, the similar-
ity of Eqs. (19), (20) and (21), (22) indicate that ϕ2 would
be extracted exactly using the same function with the same
measurements as input, leading to ϕ2 = φ2, in contradiction
with the original statement that we are free to express the
physical observables using an arbitrary choice for the weak
basis.

We have thus to abandon the idea of an algorithm allowing
one to extract both CKM and hadronic parameters from a set
of physical observables. The weak phases in the parameter-
isation of the decay amplitudes cannot be extracted without
additional hadronic hypothesis. This discussion holds if the
two weak phases used to describe the decay amplitudes are
different (moduloφ). The argument does not apply when only
one weak phase can be used to describe the decay ampli-
tude: setting one of the amplitudes to zero, say m2 = 0,
breaks reparametrisation invariance, as can be seen easily
in Eqs. (23) and (24). In such cases, weak phases can be
extracted from experiment, e.g., the extraction of α from
B → ππ , the extraction of β from J/ψKS or γ from
B → DK . In each case, an amplitude is assumed to van-
ish, either approximately (extraction of α and β) or exactly
(extraction of γ ) [1,2,5].

In view of this limitation, two main strategies can be con-
sidered for the system considered here: either implementing
additional constraints on some hadronic parameters in order
to extract the CKM phases using the B → K ∗π observ-
ables, or fix the CKM parameters to their known values from
a global fit and use the B → K ∗π observables to extract
information on the hadronic contributions to the decay ampli-
tudes. Both approaches are described below.

4 Constraints on CKM phases

We illustrate the first strategy using two specific examples.
The first example is similar in spirit to the Gronau–London
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method for extracting the CKM angle α [59], which relies on
neglecting the contributions of electroweak penguins to the
B → ππ decay amplitudes. The second example assumes
that upper bounds on annihilation/exchange contributions
can be estimated from external information.

4.1 The CPS/GPSZ method: setting a bound on
electroweak penguins

In B → ππ decays, the electroweak penguin contri-
bution can be related to the tree amplitude in a model-
independent way using Fierz transformations of the relevant
current–current operators in the effective Hamiltonian for
B → ππ decays [6,60–62]. One can predict the ratio R =
PEW/T3/2 � −3/2(C9 +C10)/(C1 +C2) = (1.35±0.12)%
only in terms of short-distance Wilson Coefficients, since
long-distance hadronic matrix elements drop from the ratio
(neglecting the operators O7 and O8 due to their small Wil-
son coefficients compared to O9 and O10). This leads to the
prediction that there is no strong phase difference between
PEW and T3/2 so that electroweak penguins do not generate
a charge asymmetry in B+ → π+π0 if this picture holds:
this prediction is in agreement with the present experimen-
tal average of the corresponding asymmetry. Moreover, this
assumption is crucial to ensure the usefulness of the Gronau–
London method to extract the CKM angle α from an isospin
analysis of B → ππ decay amplitudes [5,6]: setting the elec-
troweak penguin to zero in the Gronau–London breaks the
reparametrisation invariance described in Sect. 3 and opens
the possibility of extracting weak phases.

One may want to follow a similar approach and use some
knowledge or assumptions on the electroweak penguin in
the case of B → Kπ or B → K ∗π in order to constrain the
CKM factors. This approach is sometimes referred to as the
CPS/GPSZ method [64,65]. Indeed, as shown in Eq. (16),
the penguins in A00 and A+− differ only by the PEW term.
By neglecting its contribution to A00, these two decay ampli-
tudes can be combined so that their (now identical) penguin
terms can be eliminated,

A0 = A+− + √
2A00 = VusV

∗
ub(T

+− + T 00
C ), (25)

and then, together with its CP-conjugate amplitude Ā0, a
convention-independent amplitude ratio R0 can be defined
as

R0 = q

p

Ā0

A0 = e−2iβe−2iγ = e2iα. (26)

The A0 amplitude can be extracted using the decay chains
B0 → K ∗+(→ K+π0)π− and B0 → K ∗0(→ K+π−)π0

contributing to the same B0 → K+π−π0 Dalitz plot, so
that both the partial decay rates and their interference phase
can be measured in an amplitude analysis. Similarly, Ā0 can
be extracted from the CP-conjugate B̄0 → K−π+π0 DP

using the same procedure. Then the phase difference between
A+− and Ā−+ can be extracted from the B0 → K 0

Sπ+π−
DP, considering the B0 → K ∗+(→ K 0π+)π− decay chain,
and its CP-conjugate B̄0 → K ∗−(→ K̄ 0π−)π+, which do
interfere through mixing. Let us stress that this method is a
measurement of α rather than a measurement of γ , in contrast
with the claims in Refs. [64,65].

However, the method used to bound PEW for the ππ sys-
tem cannot be used directly in the K ∗π case. In the ππ case,
SU (2) symmetry guarantees that the matrix element with the
combination of operators O1 − O2 vanishes, so that it does
not enter tree amplitudes. A similar argument would hold for
SU (3) symmetry in the case of the Kπ system, but it does
not for the vector–pseudo-scalar K ∗π system. It is thus not
possible to cancel hadronic matrix elements when consider-
ing PEW/T3/2, which becomes a complex quantity suffering
from (potentially large) hadronic uncertainties [63,64]. The
size of the electroweak penguin (relative to the tree contri-
butions), is parametrised as

PEW

T3/2
= R

1 − rVP

1 + rVP
, (27)

where R � (1.35±0.12)% is the value obtained in the SU (3)

limit for B → πK (and identical to the one obtained from
B → ππ using the arguments in Refs. [60–62]), and rVP is a
complex parameter measuring the deviation of P/T3/2 from
this value corresponding to

rVP = 〈K ∗π(I = 3/2)|Q1 − Q2|B〉
〈K ∗π(I = 3/2)|Q1 + Q2|B〉 . (28)

Estimates on factorisation and/or SU (3) flavour relations
suggest |rVP| ≤ 0.05 [64,65]. However, it is clear that both
approximations can easily be broken, suggesting a more con-
servative upper bound |rVP| ≤ 0.30.

The presence of these hadronic uncertainties have impor-
tant consequences for the method. Indeed, it turns out that
including a non-vanishing PEW completely disturbs the
extraction of α. The electroweak penguin can provide a O(1)

contribution to CP-violating effects in charmless b → s pro-
cesses, as its CKM coupling amplifies its contribution to the
decay amplitude: PEW is multiplied by a large CKM factor
VtsV ∗

tb = O(λ2) compared to the tree-level amplitudes mul-
tiplied by a CKM factor VusV ∗

ub = O(λ4). Therefore, unless
PEW is particularly suppressed due to some specific hadronic
dynamics, its presence modifies the CKM constraint obtained
following this method in a very significant way.

It would be difficult to illustrate this point using the cur-
rent data, due to the experimental uncertainties described in
the next sections. We choose thus to discuss this problem
using a reference scenario described in Table 11, where the
hadronic amplitudes have been assigned arbitrary (but realis-
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tic) values and they are used to derive a complete set of exper-
imental inputs with arbitrary (and much more precise than
currently available) uncertainties. As shown in Appendix A
(cf. Table 11), the current world averages for branching ratios
and CP asymmetries in B0 → K ∗+π− and B0 → K ∗0π0

agree broadly with these values, which also reproduce the
expected hierarchies among hadronic amplitudes, if we set
the CKM parameters to their current values from our global
fit [6–8]. We choose a penguin parameter P+− with a mag-
nitude 28 times smaller than the tree parameter T+−, and a
phase fixed at −7◦. The electroweak PEW parameter has a
value 66 times smaller in magnitude than the tree parameter
T+−, and its phase is arbitrarily fixed to +15◦ in order to get
good agreement with the current central values. Our results
do not depend significantly on this phase, and a similar out-
come occurs if we choose sets with a vanishing phase for
PEW (though the agreement with the current data will be less
good).

We use the values of the observables derived with this set
of hadronic parameters, and we perform a CPS/ GPSZ anal-
ysis to extract a constraint on the CKM parameters. Figure 1
shows the constraints derived in the ρ̄–η̄ plane. If we assume
PEW = 0 (upper panel), the extracted constraint is equiva-
lent to a constraint on the CKM angle α, as expected from
Eq. (26). However, the confidence regions in the ρ̄–η̄ plane
are very strongly biased, and the true value of the parameters
are far from belonging to the 95% confidence regions. On
the other hand, if we fix PEW to its true value (with a magni-
tude of 0.038), the bias is removed but the constraint deviates
from a pure α-like shape (for instance, it does not include the
origin point ρ̄ = η̄ = 0). We notice that the uncertainties on
R and, more significantly, rV P , have an important impact on
the precision of the constraint on (ρ̄, η̄).

This simple illustration with our reference scenario shows
that the CPS/GPSZ method is limited both in robustness and
accuracy due to the assumption on a negligible PEW: a small
non-vanishing value breaks the relation between the phase of
R0 and the CKM angle α, and therefore, even a small uncer-
tainty on the PEW value would translate into large biases
on the CKM constraints. It shows that this method would
require a very accurate understanding of hadronic amplitudes
in order to extract a meaningful constraint on the unitarity tri-
angle, and the presence of non-vanishing electroweak pen-
guins dilutes the potential of this method significantly.

4.2 Setting bounds on annihilation/exchange contributions

As discussed in the previous paragraphs, the penguin contri-
butions for B → K ∗π decays are strongly CKM-enhanced,
impacting the CPS/GPSZ method based on neglecting a pen-
guin amplitude PEW. This method exhibits a strong sensitiv-
ity to small changes or uncertainties in values assigned to the
electroweak penguin contribution. An alternative and safer
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Fig. 1 Constraints in the ρ̄–η̄ plane from the amplitude ratio R0

method, using the arbitrary but realistic numerical values for the input
parameters, detailed in the text. In the top panel, the PEW hadronic
parameter is set to zero. In the bottom panel, the PEW hadronic param-
eter is set to its true generation value with different theoretical errors on
R and rV P parameters [defined in Eq. (27)], either zero (green solid-line
contour), 10 and 5% (blue dashed-line contour), and 10 and 30% (red
solid-dashed-line contour). The parameters ρ̄ and η̄ are fixed to their
current values from the global CKM fit [6–8], indicated by the magenta
point

approach consists in constraining a tree amplitude, with a
CKM-suppressed contribution. Among the various hadronic
amplitudes introduced, it seems appropriate to choose the
annihilation amplitude N 0+, which is expected to be smaller
than T+−, and which could even be smaller than the colour-
suppressed T 00

C . Unfortunately, no direct, clean constraints
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on N 0+ can be extracted from data and from the theoreti-
cal point of view, N 0+ is dominated by incalculable non-
factorisable contributions in QCD factorisation [14–17]. On
the other hand, indirect upper bounds on N 0+ may be inferred
from either the B+ → K ∗0π+ decay rate or from theU -spin
related mode B+ → K ∗0K+.

This method, like the previous one, hinges on a spe-
cific assumption on hadronic amplitudes. Fixing N 0+ breaks
the reparametrisation invariance in Sect. 3, and thus pro-
vides a way of measuring weak phases. We can compare
the two approaches by using the same reference scenario as
in Sect. 4.1, i.e., the values gathered in Table 11. We have
an annihilation parameter N 0+ with a magnitude 18 times
smaller than the tree parameter T+−, and a phase fixed at
108◦. All B → K ∗π physical observables are used as inputs.
This time, all hadronic parameters are free to vary in the fits,
except for the annihilation/exchange parameter N 0+, which
is subject to two different hypotheses: either its value is fixed
to its generation value, or the ratio

∣
∣N 0+/T+−∣

∣ is constrained
in a range (up to twice its generation value).

The resulting constraints on ρ̄–η̄ are shown on the upper
plot of Fig. 2. We stress that in this fit, the value of N 0+ is
bound, but the other amplitudes (including PEW) are left free
to vary. Using a loose bound on

∣
∣N 0+/T+−∣

∣yields a less tight
constraint, but in contrast with the CPS/GPSZ method, the
CKM generation value is here included. One may notice that
the resulting constraint is similar to the one corresponding to
the CKM angle β. This can be understood in the following
way. Let us assume that we neglect the contribution from
N 0+. We obtain the following amplitude to be considered:

A′ = A0+ = VtsV
∗
tb

(
−P+− + PC

EW

)
, (29)

and then, together with its CP-conjugate amplitude Ā′, a
convention-independent amplitude ratio R′ can be defined
as

R′ = q

p

Ā′

A
= e−2iβ , (30)

in agreement with the convention used to fix the phase of
the B-meson state. This justifies the β-like shape of the con-
straint obtained when fixing the value of the annihilation
parameter. The presence of the oscillation phase q/p here,
starting from a decay of a charged B, may seem surprising.
However, one should keep in mind that the measurement
of B+ → K ∗0π+ and its CP-conjugate amplitude are not
sufficient to determine the relative phase between A′ and
Ā′: this requires one to reconstruct the whole quadrilateral
equation Eq. (15), where the phases are provided by interfer-
ences between mixing and decay amplitudes in B0 and B̄0

decays. In other words, the phase observables obtained from
the Dalitz plot are always of the form Eqs. (4), (5): their com-
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Fig. 2 Top constraints in the ρ̄–η̄ plane from the annihilation/exchange
method, using the arbitrary but realistic numerical values for the input
parameters detailed in the text. The green solid-line contour is the con-
straint obtained by fixing the N 0+ hadronic parameter to its generation
value; the blue dotted-line contour is the constraint obtained by set-
ting an upper bound on the

∣
∣N 0+/T+−∣

∣ ratio at twice its generation
value. The parameters ρ̄ and η̄ are fixed to their current values from the
global CKM fit [6–8], indicated by themagenta point.Bottom size of the
β − βgen 68% confidence interval vs. the upper bound on |N 0+/T+−|
in units of its generation value.

bination can only lead to a ratio of CP-conjugate amplitudes
multiplied by the oscillation parameter q/p.

The lower plot of Fig. 2 describes how the constraint
on β loosens around its true value when the range allowed
for

∣
∣N 0+/T+−∣

∣ is increased compared to its initial value
(0.143). We see that the method is stable and keeps on includ-
ing the true value for β even in the case of a mild constraint
on

∣
∣N 0+/T+−∣

∣.
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5 Constraints on hadronic parameters using current
data

As already anticipated in Sect. 3, a second strategy to exploit
the data consists in assuming that the CKM matrix is already
well determined from the CKM global fit [6–8]. The mea-
surements of B → K �π observables (isobar parameters) can
then be used to extract constraints on the hadronic parameters
in Eq. (16).

5.1 Experimental inputs

For this study, the complete set of available results from the
BaBar and Belle experiments is used. The level of detail for
the publicly available results varies according to the decay
mode in consideration. In most cases, at least one ampli-
tude DP analysis of B0 and B+ decays is public [66], and
at least one input from each physical observable is available.
In addition, the conventions used in the various DP analyses
are usually different. Ideally, one would like to have access to
the complete covariance matrix, including statistical and sys-
tematic uncertainties, for all isobar parameters, as done for
instance in Ref. [38]. Since such information is not always
available, the published results are used in order to derive
ad hoc approximate covariance matrices, implementing all
the available information (central values, total uncertainties,
correlations among parameters). The inputs for this study are
the following:

– Two three-dimensional covariance matrices, cf. Eq. (10),
from the BaBar time-dependent DP analysis of B0 →
K 0

Sπ
+π− in Ref. [38], and two three-dimensional covari-

ance matrices from the Belle time-dependent DP analy-
sis of B0 → K 0

Sπ
+π− in Ref. [44]. Both the BaBar

and Belle analyses found two quasi-degenerate solutions
each, with very similar goodness-of-fit merits. The com-
bination of these solutions is described in Appendix A.3,
and is taken as input for this study.

– A five-dimensional covariance matrix, cf. Eq. (11), from
the BaBar B0 → K+π−π0 DP analysis [40].

– A two-dimensional covariance matrix, cf. Eq. (12), from
the BaBar B+ → K+π+π− DP analysis [39], and
a two-dimensional covariance matrix from the Belle
B+ → K+π+π− DP analysis [43].

– A simplified uncorrelated four-dimensional input, cf.
Eq. (13), from the BaBar B+ → K 0

Sπ
+π0 preliminary

DP analysis [41].

Besides the inputs described previously, there are other
experimental measurements on different three-body final
states performed in the quasi-two-body approach, which
provide measurements of branching ratios and CP asym-
metries only. Such is the case of the BaBar result on the

B+ → K+π0π0 final state [42], where the branching ratio
and the CP asymmetry of the B+ → K ∗(892)+π0 contri-
bution are measured. In this study, these two measurements
are treated as uncorrelated, and they are combined with the
inputs from the DP analyses mentioned previously.

These sets of experimental central values and covariance
matrices are described in Appendix A, where the combina-
tions of the results from BaBar and Belle are also described.

Finally, we notice that the time-dependent asymmetry in
B → KSπ

0π0 has been measured [49,50]. As these are
global analyses integrated over the whole DP, we cannot
take these measurements into account. In principle a time-
dependent isobar analysis of the KSπ

0π0 DP could be per-
formed and it could bring about some independent informa-
tion on B → K ∗0π0 intermediate amplitudes. Since this
more challenging analysis has not been done yet, we will not
consider this channel for the time being.

5.2 Selected results for CP asymmetries and hadronic
amplitudes

Using the experimental inputs described in Sect. 5.1, a fit to
the complete set of hadronic parameters is performed. We
discuss the fit results focusing on three aspects: the most
significant direct CP asymmetries, the significance of elec-
troweak penguins, and the relative hierarchies of hadronic
contributions to the tree amplitudes. As will be seen in the
following, the fit results can be interpreted in terms of two
sets of local minima, out of which one yields constraints on
the hadronic parameters in better agreement with the expecta-
tions from CPS/GPSZ, the measured direct CP asymmetries
and the expected relative hierarchies of hadronic contribu-
tions.

5.2.1 Direct CP violation in B0 → K �+π−

The B0 → K �+π− amplitude can be accessed both in the
B0 → K 0

Sπ+π− and B0 → K+π−π0 Dalitz-plot analyses.
The direct CP asymmetry ACP(B0 → K �+π−) has been
measured by BaBar in both modes [38,40] and by Belle
in the B0 → K 0

Sπ+π− mode [44]. All three measurements
yield a negative value: incidentally, this matches also the sign
of the two-body B0 → K+π− CP asymmetry, for which
direct CP violation is clearly established.

Using the amplitude DP analysis results from these
three measurements as inputs, the combined constraint on
ACP(B0 → K �+π−) is shown in Fig. 3. The combined value
is 3.0 σ away from zero, and the 68% confidence interval on
this CP asymmetry is 0.21 ± 0.07 approximately. This result
is to be compared with the 0.23 ± 0.06 value provided by
HFLAV [66]. The difference is likely to come from the fact
that HFLAV performs an average of the CP asymmetries
extracted from individual experiments, while this analysis
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Fig. 3 Constraint on the direct CP asymmetry parameter C(B0 →
K �+π−) = −ACP(B0 → K �+π−) from BaBar data on B0 →
K 0

Sπ
+π− (red curve), Belle data on B0 → K 0

Sπ
+π− (blue curve),

BaBar data on B0 → K+π−π0 (green curve) and the combination
of all these measurements (green shaded curve). The constraints are
obtained using the observables described in the text

uses isobar values as inputs which are averaged over the var-
ious experiments before being translated into values for the
CP parameters: since the relationships between these two sets
of quantities are non-linear, the two steps (averaging over
experiments and translating from one type of observables
to another) yield the same central values only in the case
of very small uncertainties. In the current situation, where
sizeable uncertainties affect the determinations from individ-
ual experiments, it is not surprising that minor discrepancies
arise between our approach and the HFLAV result.

As can be readily seen from Eq. (14), a non-vanishing
asymmetry in this mode requires a strong phase difference
between the tree T+− and penguin P+− hadronic parame-
ters that is strictly different from zero. Figure 4 shows the
two-dimensional constraint on the modulus and phase of
the P+−/T+− ratio. Two solutions with very similar χ2

are found, both incompatible with a vanishing phase dif-
ference. The first solution corresponds to a small (but non-
vanishing) positive strong phase, with similar

∣
∣VtsV �

tb P
+−∣

∣

and
∣
∣VusV �

ubT
+−∣

∣ contributions to the total decay amplitude,
and is called Solution I in the following. The other solution,
denoted Solution II, corresponds to a larger, negative, strong
phase, with a significantly larger penguin contribution. We
notice that Solution I is closer to usual theoretical expecta-
tions concerning the relative size of penguin and tree contri-
butions.

Let us stress that the presence of two solutions for
P+−/T+− is not related to the presence of ambiguities in
the individual BaBar and Belle measurements for B+ →
K+π+π− and B0 → K 0

Sπ
+π−, since we have performed

their combinations in order to select a single solution for each
process. Therefore, the presence of two solutions in Fig. 4 is

Solution I

Solution II
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Fig. 4 Two-dimensional constraint on the modulus and phase of the
P+−/T+− ratio. For convenience, the modulus is multiplied by the
ratio of CKM factors appearing in the tree and penguin contributions to
the B0 → K �+π− decay amplitude

a global feature of our non-linear fit, arising from the over-
all structure of the current combined measurements (central
values and uncertainties) that we use as inputs.

5.2.2 Direct CP violation in B+ → K �+π0

The B+ → K �+π0 amplitude can be accessed in a B+ →
K 0

Sπ+π0 Dalitz-plot analysis, for which only a prelimi-
nary result from BaBar is available [41]. A large, negative
CP asymmetry ACP(B+ → K �+π0) = −0.52 ± 0.14 ±
0.04+0.04

−0.02 is reported there with a 3.4 σ significance. This
CP asymmetry has also been measured by BaBar through
a quasi-two-body analysis of the B+ → K+π0π0 final
state [42], obtaining ACP(B+ → K �+π0) = −0.06 ±
0.24 ± 0.04. The combination of these two measurement
yields ACP(B+ → K �+π0) = −0.39 ± 0.12 ± 0.03, with a
3.2 σ significance (Fig. 5).

In contrast with the B0 → K �+π− case, in the canonical
parametrisation Eq. (16), the decay amplitude for B+ →
K �+π0 includes several hadronic contributions both to the
total tree and penguin terms, namely
√

2A+0 = VusV
∗
ubT

+0 + VtsV
∗
tb P

+0

= VusV
∗
ub(T

+− + T 00
C − N 0+)

+ VtsV
∗
tb(P

+− + PEW − PC
EW), (31)

and therefore no straightforward constraint on a single pair
of hadronic parameters can be extracted, as several degen-
erate combinations can reproduce the observed value of the
CP asymmetry ACP(B+ → K �+π0). This is illustrated in
Fig. 6, where six different local minima are found in the
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Fig. 5 Constraint on the direct CP asymmetry parameter C(B+ →
K �+π0) = −ACP(B+ → K �+π0) from BaBar data on B+ →
K 0

Sπ
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and the combination (green shaded curve). The constraints are obtained
using the observables described in the text

fit, all with similar χ2 values. The three minima with posi-
tive strong phases correspond to Solution I, while the three
minima with negative strong phases correspond to Solution
II. The relative size of the total tree and penguin contri-
butions is bound within a relatively narrow range: we get
|P+0/T+0| ∈ (0.018, 0.126) at 68% C.L.

5.2.3 Hierarchy among penguins: electroweak penguins

In Sect. 4.1, we described the CPS/GPSZ method designed
to extract weak phases from B → πK assuming some con-
trol on the size of the electroweak penguin. According to
this method, the electroweak penguin is expected to yield
a small contribution to the decay amplitudes, with no sig-
nificant phase difference. We are actually in a position to
test this expectation by fitting the hadronic parameters using
the BaBar and Belle data as inputs. Figure 7 shows the
two-dimensional constraint on rV P , in other words, the ratio
PEW/T3/2 ratio, showing two local minima. The CPS/GPSZ
prediction is also indicated in this figure. In Fig. 8, we provide
the regions allowed for |rV P | and the modulus of the ratio
|P+−/T+−|, exhibiting two favoured values, the smaller one
being associated with Solution I and the larger one with Solu-
tion II. The latter one corresponds to a significantly large
electroweak penguin amplitude and it is clearly incompati-
ble with the CPS/GPSZ prediction by more than one order of
magnitude. A better agreement, yet still marginal, is found
for the smaller minimum that corresponds to Solution I: the
central value for the ratio is about a factor of three larger than
CPS/GPSZ, and a small, positive phase is preferred. For this
minimum, an inflation of the uncertainty on |rVP| up to 30%
would be needed to ensure proper agreement. In any case, it

))|)0+ - N00 + T+-)/(TEW
C - PEW + P+-)((Pub

*
Vus/Vtb

*
V

ts
(|(V

10
Log

−1.0 −0.5 0.0 0.5 1.0 1.5

))
0+

 -
 N

00
 +

 T
+-

)/
(T

E
W

C
 -

 P
E

W
 +

 P
+-

ar
g

((
P

150−

100−

50−

0

50

100

150

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p-value

excluded area has CL > 0.95

BaBar + Belle

CKM
f i t t e r

))|0+ - N00 + T+-)/(TEW
C - PEW + P+-)((Pub

*
Vus/Vtb

*
V

ts
|(V

0 2 4 6 8 10 12 14 16 18 20

p
-v

al
u

e

0.0

0.2

0.4

0.6

0.8

1.0

BaBar + Belle

CKM
f i t t e r

Fig. 6 Top two-dimensional constraint on the modulus and phase of
the (P+− + PEW − PC

EW)/(T+− + T 00
C − N 0+) ratio. For conve-

nience, the modulus is multiplied by the ratio of CKM factors appear-
ing in the tree and penguin contributions to the B+ → K �+π0 decay
amplitude. Bottom one-dimensional constraint on the modulus of the
(P+− + PEW − PC

EW)/(T+− + T 00
C − N 0+) ratio

is clear that the data prefers a larger value of |rVP| than the
estimates originally proposed.

Moreover, the contribution from the electroweak penguin
is found to be about twice larger than the main penguin con-
tribution P+−. This is illustrated in Fig. 9, where only one
narrow solution is found in the PEW/P+− plane, as both
solutions I and II provide essentially the same constraint.
The relative phase between these two parameters is bound to
the interval (−25,+10)◦ at 95% C.L. Additional tests allow
us to demonstrate that this strong constraint on the relative
PEW/P+− penguin contributions is predominantly driven
by the ϕ00,+− phase differences measured in the BaBar
Dalitz-plot analysis of B0 → K+π+π0 decays. The strong
constraint on the PEW/P+− ratio is turned into a mild upper
bound when removing the ϕ00,+− phase differences from the
experimental inputs. The addition of these two observables
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as fit inputs increases the minimal χ2 by 7.7 units, which cor-
responds to a 2.6 σ discrepancy. Since the latter is driven by
a measurement from a single experiment, additional exper-
imental results are needed to confirm such a large value for
the electroweak penguin parameter.

In view of colour suppression, the electroweak penguin
PC

EW is expected to yield a smaller contribution than PEW to
the decay amplitudes. This hypothesis is tested in Fig. 10,
which shows that current data favours a similar size for the
two contributions, and a small relative phase (up to 40◦)
between the colour-allowed and the colour-suppressed elec-
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Fig. 9 Top two-dimensional constraint on the modulus and phase of
the complex PEW/P+− ratio. Bottom constraint on the

∣
∣PEW/P+−∣

∣

ratio, using the complete set of experimental inputs (red curve), and
removing the BaBar measurement of the ϕ00,+− phases from the
B0 → K+π+π0 Dalitz-plot analysis (green shaded curve)

troweak penguins. Solutions I and II show the same structure
with four different local minima.

5.2.4 Hierarchy among tree amplitudes: colour
suppression and annihilation

As already discussed, the hadronic parameter T 00
C is expected

to be suppressed with respect to the main tree parameter T+−.
Also, the annihilation topology is expected to provide negli-
gible contributions to the decay amplitudes. These expecta-
tions can be compared with the extraction of these hadronic
parameters from data in Fig. 11.

For colour suppression, the current data provides no con-
straint on the relative phase between the T 00

C and T+− tree
parameters, and only a mild upper bound on the modulus
can be inferred; the tighter constraint is provided by Solu-
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Fig. 10 Top two-dimensional constraint on the modulus and phase
of the PC

EW/PEW ratio. Bottom one-dimensional constraint on
Log10

(∣
∣PC

EW/PEW
∣
∣
)
, using the complete set of experimental inputs (red

curve), and removing the BaBar measurement of the ϕ00,+− phases
from the B0 → K+π+π0 Dalitz-plot analysis (green shaded curve)

tion I that excludes values of |T 00
C /T+−| larger than 1.6 at

95% C.L. The constraint from Solution II is more than one
order of magnitude looser.

Similarly, for annihilation, Solution I provides slightly
tighter constraints on its contribution to the total tree ampli-
tude with the bound |N 0+/T+−| < 2.5 at 95% C.L., while
the bound from Solution II is much looser.

5.3 Comparison with theoretical expectations

We have extracted the values of the hadronic amplitudes from
the data currently available. It may prove interesting to com-
pare these results with theoretical expectations. For this exer-
cise, we use QCD factorisation [14–17] as a benchmark point,
keeping in mind that other approaches (discussed in the intro-
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Fig. 11 Two-dimensional constraint on the modulus and phase of the
T 00

C /T+− (top) and N 0+/T+− (bottom) ratios

duction) are available. In order to keep the comparison simple
and meaningful, we consider the real and imaginary part of
several ratios of hadronic amplitudes.

We obtain our theoretical values in the following way. We
follow Ref. [16] for the expressions within QCD factorisa-
tion, and we use the same model for the power-suppressed
and infrared-divergent contributions coming from hard scat-
tering and weak annihilation: these contributions are for-
mally 1/mb-suppressed but numerically non-negligible, and
play a crucial role in some of the amplitudes. On the other
hand, we update the hadronic parameters in order to take
into account more recent determinations of these quantities;
see Appendix B. We use the Rfit scheme to handle theo-
retical uncertainties [6–8,67] (in particular for the hadronic
parameters and the 1/mb power-suppressed contributions),

123



 561 Page 14 of 26 Eur. Phys. J. C   (2017) 77:561 

and we compute only ratios of hadronic amplitudes using
QCD factorisation. We stress that we provide the estimates
within QCD factorisation simply to compare the results of
our experimental fit for the hadronic amplitudes with typical
theoretical expectations concerning the same quantities. In
particular we neglect next-next-to-leading order corrections
that have been partially computed in Refs. [57,79–82], and
we do not attempt to perform a fully combined fit of the the-
oretical predictions with the experimental data, as the large
uncertainties would make the interpretation difficult.

Our results for the ratios of hadronic amplitudes are shown
in Fig. 12 and in Table 1. We notice that for most of the ratios
good agreement is found. The global fit to the experimen-
tal data has often much larger uncertainties than theoretical
predictions: with better data in the future, we may be able to
perform very non-trivial tests of the non-leptonic dynamics
and the isobar approximation. The situation for PC

EW/PEW is
slightly different, since the two determinations (experiment
and theory) exhibit similar uncertainties and disagree with
each other, providing an interesting test for QCD factorisa-
tion, which, however, goes beyond the scope of this study.

There are two cases where the theoretical output from
QCD factorisation is significantly less precise than the con-
straints from the combined fit. For PC

EW/P+−, both numer-
ator and denominator can be (independently) very small in
QCD factorisation, and numerical instabilities in this ratio
prevent us from having a precise prediction. For P+−/PEW,
the impressively accurate experimental determination, as dis-
cussed in Sect. 5.2.3, is predominantly driven by the ϕ00,+−
phase differences measured in the BaBar Dalitz-plot anal-
ysis of B0 → K+π+π0 decays. Removing this input yields
a much milder constraint on P+−/PEW. On the other hand
in QCD factorisation, the formally leading contributions to
the P+− penguin amplitude are somewhat numerically sup-
pressed, and compete with the model estimate of power cor-
rections: due to the Rfit treatment used, the two contributions
can either compensate each other almost exactly or add up
coherently, leading to a ∼±100 relative uncertainty, which is
only in marginal agreement with the fit output. Thus we con-
clude that the P+−/PEW ratio is both particularly sensitive
to the power corrections to QCD factorisation and exper-
imentally well constrained, so that it can be used to pro-
vide insight on non-factorisable contributions, provided one
assumes negligible effects from New Physics.

6 Prospects for LHCb and Belle II

In this section, we study the impact of improved measure-
ments of Kππ modes from the LHCb and Belle II experi-
ments. During the first run of the LHC, the LHCb experiment
has collected large datasets of B-hadron decays, including
charmless B0, B+, Bs meson decays into tree-body modes.

LHCb is currently collecting additional data in Run-2. In par-
ticular, due to the excellent performances of the LHCb detec-
tor for identifying charged long-lived mesons, the experiment
has the potential for producing the most accurate charmless
three-body results in the B+ → K+π−π+ mode, owing to
high-purity event samples much larger than the ones collected
by BaBar and Belle. Using 3.0 fb−1 of data recorded during
the LHC Run 1, first results on this mode are already avail-
able [68], and a complete amplitude analysis is expected to be
produced in the short-term future. For the B0 → K 0

Sπ
+π−

mode, the event-collection efficiency is challenged by the
combined requirements on reconstructing the K 0

S → π+π−
decay and tagging the B meson flavour, but nonetheless
the B0 → K 0

Sπ
+π− data samples collected by LHCb are

already larger than the ones from BaBar and Belle. As it
is more difficult to anticipate the reach of LHCb Dalitz-plot
analyses for modes including π0 mesons in the final state,
the B0 → K+π+π0, B+ → K 0

Sπ
+π0 B+ → K+π0π0

and B0 → K 0
Sπ

0π0 channels are not considered here. In
addition, LHCb has also the potential for studying Bs decay
modes, and LHCb can reach B → KKπ modes with branch-
ing ratios out of reach for B-factories.

The Belle II experiment [69], currently in the stages of
construction and commissioning, will operate in an experi-
mental environment very similar to the one of the BaBar
and Belle experiments. Therefore Belle II has the potential
for studying all modes accessed by the B-factories, with
expected sensitivities that should scale in proportion to its
expected total luminosity (i.e., 50 ab−1). In addition, Belle
II has the potential for accessing the B+ → K+π0π0 and
B0 → K 0

Sπ
0π0 modes (for which the B-factories could

not produce Dalitz-plot results) but these modes will provide
low-accuracy information, redundant with some of the modes
considered in this paper: therefore they are not included here.

Since both LHCb and Belle II have the potential for study-
ing large, high-quality samples of B+ → K+π−π+, it is
realistic to expect that the experiments will be able to extract
a consistent, data-driven signal model to be used in all Dalitz-
plot analysis, yielding systematic uncertainties significantly
decreased with respect to the results from B-factories.

Finally for LHCb, since this experiment cannot perform
B-meson counting as in a B-factory environment, the branch-
ing fractions need to be normalised with respect to measure-
ments performed at BaBar and Belle, until the advent of
Belle II. This prospective study therefore is split into two
periods: a first one based on the assumption of new results
from LHCb Run1+Run2 only, and a second one using the
complete set of LHCb and Belle II results. The correspond-
ing inputs are gathered in Appendix C. We use the reference
scenario described in Table 11 for the central values, so that
we can guarantee the self-consistency of the inputs and we
avoid reducing the uncertainties artificially because of barely
compatible measurements (which would occur if we used the
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Fig. 12 Two-dimensional
constraints on the real and
imaginary parts of hadronic
ratios, respectively from left to
right and from top to bottom:
N 0+/T+−, PC

EW/PEW,
PC

EW/P+−, PC
EW/T+−,

P+−/PEW, PEW/T+−,
P+−/T+− and T 00

C /T+−. The
red crosses and dots indicate our
predictions based on QCD
factorisation. No prediction is
given for the ratio PC

EW/P+−
due to numerical instabilities
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Table 1 68% confidence
intervals for the real and
imaginary parts of hadronic
ratios according to our fit and
the corresponding predictions in
our implementation of QCD
factorisation (QCDF). No
prediction is given for the ratio
PC

EW/P+− due to numerical
instabilities (see text)

Quantity Fit result QCDF

Re
N 0+

T+− (−5.31, 4.73) 0.011 ± 0.027

Im
N 0+

T+− (−9.59, 7.73) 0.003 ± 0.028

Re
PC

EW

PEW
(0.69, 1.14) 0.17 ± 0.19

Im
PC

EW

PEW
(−0.48,−0.28) ∪ (−0.13, 0.22) ∪ −0.08 ± 0.14

(0.34, 0.60)

Re
PC

EW

P+− (1.29, 2.08) –

Im
PC

EW

P+− (−1.09,−0.75) ∪ (−0.51,−0.10) ∪ –

(−0.08, 0.16) ∪ (0.47, 0.83)

Re
PC

EW

T+− (−0.12, 0.34) 0.0027 ± 0.0031

Im
PC

EW

T+− (−0.42, 0.05) −0.0015+0.0024
−0.0025

Re
P+−

PEW
(0.49, 0.56) 3.9+3.2

−3.3

Im
P+−

PEW
(−0.03, 0.16) 1.8 ± 3.3

Re
PEW

T+− (0.0, 0.25) 0.0154+0.0059
−0.0060

Im
PEW

T+− (−0.40,−0.09) ∪ (−0.02, 0.02) −0.0014+0.0023
−0.0022

Re
P+−

T+− (0.023, 0.140) 0.053 ± 0.039

Im
P+−

T+− (−0.20,−0.04) ∪ (0.0, 0.01) 0.016 ± 0.044

Re
T 00

C

T+− (−0.26, 2.24) 0.13 ± 0.17

Im
T 00

C

T+− (−3.28, 0.74) −0.11 ± 0.15

central values of the current data and rescaled the uncertain-
ties). The expected uncertainties, obtained from the extrapo-
lations discussed previously, are described in Table 12.

The blue area in Fig. 13 illustrates the potential for the first
step of our prospective study (B-factories and LHCb Run1
+ Run2). For the input values used in the prospective, the
modulus of the P+−/T+− ratio will be constrained with a
relative 10% accuracy, and its complex phase will be con-
strained within 3 degrees (we discuss 68% C.L. ranges in the
following, whereas Fig. 13 shows 95% C.L. regions). Slightly
tighter upper bounds on the |T 00

C /T+−| and |N 0+/T+−|
ratios may be set, albeit the relative phases of these rations
will remain very poorly constrained. Assuming that the elec-
troweak penguin is in agreement with the CPS/GPSZ pre-
diction, its modulus will be constrained within 45% and its
phase within 14 degrees.

The addition of results from the Belle II experiment cor-
responds to the second step of this prospective study. As

illustrated by the green area in Fig. 13, the uncertainties on
the modulus and phase of the P+−/T+− ratio will decrease
by factors of 1.4 and 2.5, respectively. Owing to the addition
of precision measurements by Belle II of the B0 → K ∗0π0

Dalitz-plot parameters from the amplitude analysis of the
B0 → K+π−π0 modes, the T 00

C /T+− ratio can be con-
strained within a 22% uncertainty for its modulus, and within
10 degrees for its phase. Similarly, the uncertainties on the
modulus and phase of the PEW/T3/2 ratio will decrease by
factors 2.7 and 2.9, respectively. Concerning the colour-
suppressed electroweak penguin, for which only a mild upper
bound on its modulus was achievable within the first step of
the prospective, can now be measured within a 22% uncer-
tainty for its modulus, and within 8 degrees for its phase.
Finally, the less stringent constraint will be achieved for the
annihilation parameter. While its modulus can nevertheless
be constrained between 0.3 and 1.5, the phase of this ratio
may remain unconstrained in value, with just the sign of the
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Fig. 13 The expected two-dimensional constraints on the moduli and
phases of various ratios of hadronic parameters, using inputs from the
first step of the prospective study, based on results from the B-factories
and expected sensitivities for LHCb Run1 + Run2 (blue area); and using
inputs from the second step of the prospective study, based on the com-

plete set of results from LHCb and Belle II (green area). The red spots
in the figures represent the generation values obtained from Table 11.
From top to bottom and left to right, the hadronic ratios are: P+−/T+−,
PEW/T3/2, N 0+/T+−, PC

EW/T+−, and T 00
C /T+−, respectively
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phase being resolved. We add that one can also expect Belle
II measurements for B+ → K+π0π0 and B0 → KSπ

0π0,
however, with larger uncertainties, so that we have not taken
into account these decays.

In total, precise constraints on almost all hadronic param-
eters in the B → K �π system will be achieved using the
Dalitz-plot results from the LHCb and Belle II experiments,
with a resolution of the current phase ambiguities. These con-
straints can be compared with various theoretical predictions,
proving an important tool for testing models of hadronic con-
tributions to charmless B decays.

7 Conclusion

Non-leptonic B meson decays are very interesting processes
both as probes of weak interaction and as tests of our under-
standing of QCD dynamics. They have been measured exten-
sively at B-factories as well as at the LHCb experiment, but
this wealth of data has not been fully exploited yet, espe-
cially for the pseudo-scalar–vector modes which are acces-
sible through Dalitz-plot analyses of B → Kππ modes. We
have focused on the B → K ∗π system which exhibits a large
set of observables already measured. Isospin analysis allows
us to express this decay in terms of CKM parameters and six
complex hadronic amplitudes, but reparametrisation invari-
ance prevents us from extracting simultaneously informa-
tion on the weak phases and the hadronic amplitudes needed
to describe these decays. We have followed two different
approaches to exploit this data: either we extracted informa-
tion on the CKM phase (after setting a condition on some
of the hadronic amplitudes), or we determined of hadronic
amplitudes (once we set the CKM parameters to their value
from the CKM global fit [6–8]).

In the first case, we considered two different strategies.
We first reconsidered the CPS/GPSZ strategy proposed in
Refs. [64,65], amounting to setting a bound on the elec-
troweak penguin in order to extract an α-like constraint. We
used a reference scenario inspired by the current data but
with consistent central values and much smaller uncertainties
in order to probe the robustness of the CPS/GPSZ method:
it turns out that the method is easily biased if the bound
on the electroweak penguin is not correct, even by a small
amount. Unfortunately, this bound is not very precise from
the theoretical point of view, which casts some doubt on the
potential of this method to constrain α. We have then con-
sidered a more promising alternative, consisting in setting a
bound on the annihilation contribution. We observed that we
could obtain an interesting stable β-like constraint and we
discussed its potential to extract confidence intervals accord-
ing to the accuracy of the bound used for the annihilation
contribution.

In a second stage, we discussed how the data constrain
the hadronic amplitudes, assuming the values of the CKM
parameters. We performed an average of BaBar and Belle
data in order to extract constraints on various ratios of
hadronic amplitudes, with the issue that some of these data
contain several solutions to be combined in order to obtain a
single set of inputs for the Dalitz-plot observables. The ratio
P+−/T+− is not very well constrained and exhibits two
distinct preferred solutions, but it is not large and supports
the expect penguin suppression. On the other hand, colour
or electroweak suppression does not seem to hold, as illus-
trated by |PEW/P+−| (around 2), |PC

EW/PEW| (around 1)
or |T 00

C /T+−| (mildly favouring values around 1). We, how-
ever, recall that some of these conclusions are very dependent
on the BaBar measurement on ϕ00,+− phase differences
measured in B0 → K+π+π0: removing this input turns the
ranges into mere upper bounds on these ratios of hadronic
amplitudes.

For illustration purposes, we compared these results with
typical theoretical expectations. We determined the hadronic
amplitudes using an updated implementation of QCD fac-
torisation. A good overall agreement between theory and
experiment is found for most of the ratios of hadronic ampli-
tudes, even though the experimental determinations remain
often less accurate than the theoretical determinations in most
instances. Nevertheless, two quantities still feature interest-
ing properties. The ratio P+−/PEW could provide interesting
constraints on the models used to describe power-suppressed
contributions in QCD factorisation, keeping in mind the (pre-
cise) experimental determination of this ratio relies strongly
on the ϕ00,+− phases measured by BaBar, as discussed in
the previous paragraph. The ratio PC

EW/PEW is determined
with similar accuracies theoretically and experimentally, but
the two determinations are not in good agreement, suggest-
ing that this quantity could also be used to constrain QCD
factorisation parameters.

Finally, we performed prospective studies, considering
two successive stages based first on LHCb data from Run1
and Run2, then on the additional input from Belle II. Using
our reference scenario and extrapolating the uncertainties of
the measurements at both stages, we determined the con-
fidence regions for the moduli and phases of the ratios of
hadronic amplitudes. The first stage (LHCb only) would
correspond to a significant improvement for P+−/T+−
and PEW/T3/2, whereas the second stage (LHCb+Belle II)
would yield tight constraints on N 0+/T+−, PC

EW/T+− and
T 00

C /T+−.
Non-leptonic B-meson decays remain an important theo-

retical challenge, and any contender should be able to explain
not only the pseudo-scalar–pseudo-scalar modes but also the
pseudo-scalar–vector modes. Unfortunately, the current data
do not permit such extensive tests, even though they hint
at potential discrepancies with theoretical expectations con-
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cerning the hierarchies of hadronic amplitudes. However, our
study suggests that a more thorough analysis of B → Kππ

Dalitz plots from LHCb and Belle II could allow for a pre-
cise determination of the hadronic amplitudes involved in
B → K ∗π decays thanks to the isobar approximation for
three-body amplitudes. This will definitely shed some light
on the complicated dynamics of weak and strong interac-
tion at work in pseudo-scalar-vector modes, and it will pro-
vide important tests of our understanding of non-leptonic
B-meson decays.
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Appendix A: Current experimental inputs

The full set real-valued physical observables, derived from
the experimental inputs from BaBar and Belle, is described
in the following sections. The errors and correlation matrices
include both statistical and systematic uncertainties.

Appendix A.1: BaBar results

In this section, we describe the set of experimental inputs
from the BaBar experiment.

Table 3 Central values of the observables for the BaBar B+ →
K+π−π+ analysis

B+ → K+π−π+ Value

∣
∣
∣
∣
A(K

∗0
π−)

A(K ∗0π+)

∣
∣
∣
∣ 1.033 ± 0.047

B(K ∗0π+)(×10−6) 10.800 ± 1.389

– B0 → K 0
Sπ

+π− [38]. Two almost degenerate solu-
tions were found differing only by 0.16 negative-log-
likelihood (	NLL) units. The central values and corre-
lation matrix of the measured observables for both solu-
tions are shown in Table 2.

– B+ → K+π−π+ [39]. The central values of the observ-
ables for this analysis are shown in Table 3. A linear

correlation of 2% was found between

∣
∣
∣
∣
A(K

∗0
π−)

A(K ∗0π+)

∣
∣
∣
∣ and

B(K ∗0π+).
– B0 → K+π−π0 [40]. The central values and correlation

matrix of the measured observables for this analysis are
shown in Table 4.

– B+ → K 0
Sπ

+π0 [41]. The central values and correlation
matrix of the measured observables for this analysis are
shown in Table 5.

– B+ → K ∗+(892)π0 quasi-two-body contribution to the
B+ → K+π0π0 final state [42]. The measured branch-
ing ratio and CP asymmetry are shown in Table 6 and
they are used as uncorrelated inputs.

Appendix A.2: Belle results

In this section, we describe the set of experimental inputs
from the Belle experiment.

Table 2 Central values and total (statistical and systematic) correlation matrix for the global (top) and local (bottom, 	NLL = 0.16) minimum
solutions for the BaBar B0 → K 0

Sπ
+π− analysis

B0 → K 0
Sπ

+π− Global min Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
Im

[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
B(K ∗+π−)

Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
0.428 ± 0.473 1.00 0.90 0.02

Im
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
−0.690 ± 0.302 1.00 −0.06

B(K ∗+π−)(×10−6) 8.290 ± 1.189 1.00

B0 → K 0
Sπ

+π− Local min (	NLL = 0.16) Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
Im

[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
B(K ∗+π−)

Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
−0.819 ± 0.116 1.00 −0.19 −0.15

Im
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
−0.049 ± 0.494 1.00 −0.01

B(K ∗+π−)(×10−6) 8.290 ± 1.189 1.00
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Table 4 Central values and total (statistical and systematic) correlation matrix for observables from the BaBar B0 → K+π−π0 analysis

B0 → K+π−π0 Value
∣
∣
∣
A(K ∗−π+)
A(K ∗+π−)

∣
∣
∣ Re

[
A(K ∗0π0)
A(K ∗+π−)

]
Im

[
A(K ∗0π0)
A(K ∗+π−)

]
Re

[
A(K

∗0
π0)

A(K ∗−π+)

]

Re

[
A(K

∗0
π0)

A(K ∗−π+)

]

B(K ∗0π0)

∣
∣
∣
A(K ∗−π+)
A(K ∗+π−)

∣
∣
∣ 0.742 ± 0.091 1.00 0.00 0.03 −0.22 −0.11 −0.06

Re
[

A(K ∗0π0)
A(K ∗+π−)

]
0.562 ± 0.148 1.00 0.68 0.33 −0.01 0.44

Im
[

A(K ∗0π0)
A(K ∗+π−)

]
−0.227 ± 0.296 1.00 −0.07 0.00 −0.13

Re

[
A(K

∗0
π0)

A(K ∗−π+)

]

0.701 ± 0.126 1.00 0.25 0.55

Im

[
A(K

∗0
π0)

A(K ∗−π+)

]

−0.049 ± 0.376 1.00 −0.02

B(K ∗0π0)(×10−6) 3.300 ± 0.640 1.00

Table 5 Central values and total (statistical and systematic) correlation matrix for observables from the BaBar B+ → K 0
Sπ

+π0 analysis

B+ → K 0
Sπ

+π0 Value
∣
∣
∣
A(K ∗−π0)

A(K ∗+π0)

∣
∣
∣ Re

[
A(K ∗+π0)

A(K ∗0π+)

]
Im

[
A(K ∗+π0)

A(K ∗0π+)

]
Re

[
A(K ∗−π0)

A(K
∗0

π−)

]

Im

[
A(K ∗−π0)

A(K
∗0

π−)

]

B(K ∗+π0)

∣
∣
∣
A(K ∗−π0)

A(K ∗+π0)

∣
∣
∣ 0.533 ± 1.403 1.00 −0.26 0.01 −0.70 −0.22 −0.16

Re
[
A(K ∗+π0)

A(K ∗0π+)

]
1.415 ± 6.952 1.00 −0.23 0.12 −0.51 0.90

Im
[
A(K ∗+π0)

A(K ∗0π+)

]
−0.189 ± 3.646 1.00 −0.39 0.23 −0.28

Re

[
A(K ∗−π0)

A(K
∗0

π−)

]

−0.106 ± 2.687 1.00 0.23 0.03

Im

[
A(K ∗−π0)

A(K
∗0

π−)

]

−0.851 ± 4.278 1.00 −0.82

B(K ∗+π0)(×10−6) 9.200 ± 1.480 1.00

Table 6 Central values of the observables from the BaBar analysis
of B+ → K ∗+(892)π0 quasi-two-body contribution to the B+ →
K+π0π0

B+ → K ∗+π0 in B+ → K+π0π0 Value

B(K ∗+π0) (8.2 ± 1.5 ± 1.1) × 10−6

ACP(K ∗+π0) −0.06 ± 0.24 ± 0.04

– B0 → K 0
Sπ

+π− [44]. Two solutions were found dif-
fering by 7.5 	NLL. The central values and correlation
matrix of the measured observables for both solutions are
shown in Table 7.

– B+ → K+π−π+ [43]. The central values of the observ-
ables for this analysis are shown in Table 8. A nearly

vanishing correlation was found between

∣
∣
∣
∣
A(K

∗0
π−)

A(K ∗0π+)

∣
∣
∣
∣ and

B(K ∗0π+).

Appendix A.3: Combined BaBar and Belle results

The BaBar and Belle results for the B0 → K 0
Sπ

+π− and
B+ → K+π−π+ analyses shown previously have been
combined in the usual way for sets of independent measure-

ments. The combination for the B+ → K+π−π+ mode
is straightforward as the results exhibit only one solution,
as shown in Fig. 14. The resulting central values are shown
in Table 9. A vanishing linear correlation is found between∣
∣
∣
∣
A(K

∗0
π−)

A(K ∗0π+)

∣
∣
∣
∣ and B(K ∗0π+).

The combination of the BaBar and Belle measurements
for the B0 → K 0

Sπ
+π− mode is more complicated as the

results feature several solutions which are relatively close in
units of 	NLL. In order to combine this measurements we
proceed as follows:

– We combine each solution of the BaBar analysis with
each one of the Belle results.

– In the goodness of fit of the combination (χ2
min), we add

the 	NLL of each BaBar and Belle solution. In the case
of the global minimum the corresponding 	NLL is zero.

– Finally, we take the envelope of the four combinations as
the final result.

We find the following χ2
min for the four combinations:

1.1, 8.7, 9.5 and 98.3. As the closest combination from the
global minimum differs by 7.6 units in χ2

min, we have decided

123



Eur. Phys. J. C   (2017) 77:561 Page 21 of 26  561 

Table 7 Central values and total (statistical and systematic) correlation matrix for the global (top) and local solution (bottom, 	NLL = 7.5)
minimum solutions of the observables from the Belle B0 → K 0

Sπ
+π− analysis

B0 → K 0
Sπ

+π− Global min Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
Im

[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
B(K ∗+π−)

Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
0.790 ± 0.145 1.00 0.62 −0.04

Im
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
−0.206 ± 0.398 1.00 0.00

B(K ∗+π−)(×10−6) 8.400 ± 1.449 1.00

B0 → K 0
Sπ

+π− Local min (	NLL = 7.5) Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
Im

[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
B(K ∗+π−)

Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
0.808 ± 0.110 1.00 0.01 −0.06

Im
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
0.010 ± 0.439 1.00 0.00

B(K ∗+π−)(×10−6) 8.400 ± 1.449 1.00

Table 8 Central values of the observables from the Belle B+ →
K+π−π+ analysis

B+ → K+π−π+ Value

∣
∣
∣
∣
A(K

∗0
π−)

A(K ∗0π+)

∣
∣
∣
∣ 0.861 ± 0.059

B(K ∗0π+)(×10−6) 9.670 ± 1.061

)|+π0)/A(K*-π0*K(A|

0.6 0.7 0.8 0.9 1 1.1 1.2

6
10×)+ π0

B(
K*

6

8

10

12

14

16
Comb
BaBar
Belle

Fig. 14 Contours at 1 (solid) and 2 (dotted) σ in the

∣
∣
∣
∣
A(K

∗0
π−)

A(K ∗0π+)

∣
∣
∣
∣ vs.

B(K ∗0π+) plane for the BaBar (black) and Belle (red) results, as well
as the combination (blue)

to focus on the global minimum for the phenomenological
analysis. The combination for this global minimum is shown
in Fig. 15. The resulting central values and covariance matrix
are shown in Table 9.

These combined results for the B0 → K 0
Sπ

+π− and
B+ → K+π−π− modes are used with the BaBar results
for the B0 → K+π−π0 and B+ → K 0

Sπ
+π0 as inputs for

the phenomenological analysis using the current experimen-
tal measurements.

Appendix B: Two-body non-leptonic amplitudes in QCD
factorisation

We compute the B → K ∗π amplitudes in the framework
of QCD factorisation, using the results of Ref. [16]. We
take the semileptonic B → π and B → Kπ form factors
from computations based on light-cone sum rules [75,76].
The parameters for the light-meson distribution amplitudes
that enter hard-scattering contributions are consistently taken
from the last two references. On the other hand the first
inverse moment of the B-meson distribution amplitude λB is
taken from Ref. [77]. Quark masses are taken from the review
by the FLAG group [78]. Our updated inputs are summarised
in Table 10.

We stress that the calculations of Ref. [16] correspond to
Next-to-Leading Order (NLO). Since then, some NNLO con-
tributions have been computed [57,79–82], that we neglect
in view of the sizeable uncertainties on the input parameters:
this is sufficient for our illustrative purposes (see Sect. 5.3).

Appendix C: Reference scenario and prospective studies

Some of the experimental results collected in Appendix A
are affected by large uncertainties, and the central values are
not always fully consistent with SM expectations. This is not
a problem when we want to extract values of the hadronic
parameters from the data, but it makes rather unclear the
discussion of the accuracy of specific models (say, for the
extraction of weak angles) or the prospective studies assum-
ing improved experimental measurements; see Sects. 4 and
6.

For this reason, we design a reference scenario described
in Table 11. The values on hadronic parameters are cho-
sen to reproduce the current best averages of branching
fractions and CP asymmetries in B → K ∗π roughly. As
most observable phase differences among these modes are
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Table 9 Central values of the
observables from the
B+ → K+π−π+ (top) and
B0 → K 0

Sπ
+π− (bottom)

analysis obtained by combining
BaBar and Belle results

B+ → K+π−π+ Value

∣
∣
∣
∣
A(K

∗0
π−)

A(K ∗0π+)

∣
∣
∣
∣ 0.965 ± 0.037

B(K ∗0π+)(×10−6) 10.062 ± 0.835

B0 → K 0
Sπ

+π− Value Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
Im

[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
B(K ∗+π−)

Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
0.698 ± 0.120 1.00 0.58 −0.01

Im
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
−0.506 ± 0.146 1.00 −0.09

B(K ∗+π−)(×10−6) 8.340 ± 0.910 1.00

Fig. 15 Contours at 1 (solid)
and 2 (dotted) σ in the

Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
vs.

Im
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
(upper row,

left), Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
vs.

B(K ∗+π−) (upper row, right)

and Im
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
vs.

B(K ∗+π−) (lower row) planes
for the BaBar (black) and Belle
(red) results, as well as the
combination (blue)

)]-π+)/A(K*+π-(K*ARe[(q/p)
−1.5 1− −0.5 0 0.5 1 1.5 2 2.5

)]- π+
)/A

(K
*

+ π-
(K
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[(q
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1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

6
10×)- π+
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BaBar
Belle

)]-π+)/A(K*+π-(K*AIm[(q/p)
2− 1.5− 1− 0.5− 0 0.5 1 1.5

6
10×)- π+

B(
K*

2

4

6

8

10

12

14
Comb
BaBar
Belle

poorly constrained by the results currently available, we do
no attempt at reproducing their central values and we use the
values resulting from the hadronic parameters. The hadronic
amplitudes are constrained to respect the naive assumptions:
|PEW/T3/2| � 1.35%, |PC

EW| < |PEW| and |T 00
C | < |T+−|.

The best values of the hadronic parameters yield the values of
branching ratios and CP asymmetries gathered in Table 11.
As can be seen, the overall agreement is fair, but it is not
good for all observables. Indeed, as discussed in Sect. 5, the
current data do not favour all the hadronic hierarchies that we
have imposed to obtain our reference scenario in Table 11.

For the studies of different methods to extract CKM
parameters described in Sect. 4, we fit the values of hadronic
parameters by assigning small, arbitrary, uncertainties to the
physical observables: ±5% for branching ratios, ±0.5% for
CP asymmetries, and ±5◦ for interference phases.

For the prospective studies described in Sect. 6, we
estimate future experimental uncertainties at two different
stages. We first consider a list of expected measurements

from LHCb, using the combined Run1 and Run2 data. We
then reassess the expected results including Belle II mea-
surements. Our method to project uncertainties in the two
stages is based on the statistical scaling of data samples
(1/

√
Nevts), corrected for additional factors due to partic-

ular detector performances and analysis technique features,
as described below.

LHCb Run1 and Run2 data will significantly increase the
statistics mainly for the fully charged final states B0 →
K 0

S(→ π+π−)π+π− and B+ → K+π−π+, with an
expected increase of about 3 and 40, respectively [70,71]. For
these modes, we assume a signal-to-background ratio simi-
lar to the ones measured at B factories (this may represent
an underestimation of the potential sensitivity of LHCb data,
but this assumption has a very minor impact on the results
of our prospective study). The statistical scaling factor thus
defined can be applied as such to direct CP asymmetries, but
some additional aspects must be considered in the scaling
of uncertainties for other observables. For time-dependent
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Table 10 Input values for the hadronic parameters that enter QCD
factorisation predictions: moments of the distribution amplitudes for
mesons, decay constants, form factors and quark masses. Dimensionful

quantities are in GeV. The ±0 in second position means that all uncer-
tainties are considered as coming from a theoretical origin and they are
treated according to the Rfit approach. See the text for references

Input Value Input Value

α1(K ∗) 0.06 ± 0 ± 0.04 α1(K ∗,⊥) 0.04 ± 0 ± 0.03

α2(K ∗) 0.16 ± 0 ± 0.09 α2(K ∗,⊥) 0.10 ± 0 ± 0.08

f⊥(K ∗) 0.159 ± 0 ± 0.006 A0[B → K ∗](0) 0.356 ± 0 ± 0.046

α2(π) 0.062 ± 0 ± 0.054 F0[B → π ](0) 0.258 ± 0 ± 0.031

λB 0.460 ± 0 ± 0.110 m̄b 4.17

m̄s 0.0939 ± 0 ± 0.0011 mq/ms ∼0

Table 11 Values chosen for our reference scenario. The values on
hadronic parameters (left columns) are chosen to roughly reproduce
the reference values of branching fractions (in units of 10−6) and CP
asymmetries in B → K ∗π (right columns). The reference input values

come from the current HFLAV averages [66], except for ACP(B+ →
K ∗+π0), where the value is taken from Ref. [41]. The values of the
hadronic parameters yield the branching ratios and CP asymmetries of
the last column

Hadronic amplitudes Magnitude Phase (◦) Observable Measurement Value

T+− 2.540 0.0 B(B0 → K ∗+π−) 8.4 ± 0.8 7.1

T 00
C 0.762 75.8 B(B0 → K ∗0π0) 3.3 ± 0.6 1.6

N 0+ 0.143 108.4 B(B+ → K ∗+π0) 8.2 ± 1.8 8.5

P+− 0.091 −6.5 B(B+ → K ∗0π+) 10.1+0.8
−0.9 10.9

PEW 0.038 15.2 ACP(B0 → K ∗+π−) −0.23 ± 0.06 −0.129

PC
EW 0.029 101.9 ACP(B0 → K ∗0π0) −0.15 ± 0.13 +0.465

∣
∣
∣
Vts V ∗

tb P
+−

Vus V ∗
ubT

+−
∣
∣
∣ 1.809 ACP(B+ → K ∗+π0) −0.39 ± 0.12 −0.355

∣
∣T 00

C /T+−∣
∣ 0.300 ACP(B+ → K ∗0π+) +0.038 ± 0.042 +0.039

∣
∣N 0+/T 00

C

∣
∣ 0.187

∣
∣PEW/P+−∣

∣ 0.421
∣
∣PEW/(T+− + T 00

C )
∣
∣ /R 1.009

∣
∣PC

EW/PEW
∣
∣ 0.762

CP asymmetries, the difference in flavour-tagging perfor-
mances (the effective tagging efficiency Q) should be taken
into account. In the B-factory environment, a quality factor
QB−factories ∼ 30 [73,74] was achieved, while for LHCb a
smaller value is used (QLHCb ∼ 3 [72]), which entails an
additional factor (QB−factories/QLHCb)

1/2 ∼ 3.2 in the scal-
ing of uncertainties. For branching ratios, LHCb is not able
to directly count the number of B mesons produced, and it
is necessary to resort to a normalisation using final states
for which the branching ratio has been measured elsewhere
(mainly at B-factories). This additional source of uncertainty
is taken into account in the projection of the error. Finally,
in our prospective studies, we adopt the pessimistic view of
neglecting potential measurements from LHCb for modes
with π0 mesons in the final state (e.g., B0 → K+π−π0 and

B+ → K 0
Sπ

+π0), as it is difficult to anticipate the evolution
in the performances for π0 reconstruction and phase space
resolution.

Belle II [69] expects to surpass by a factor of ∼50 the total
statistics collected by the B-factories. As the experimental
environments will be very similar, we just scale the current
uncertainties by this statistical factor.

Starting from the statistical uncertainties from Babar and
scaling them according to the above procedure, we obtain our
projections of uncertainties on physical observables, shown
in Table 12, where the current uncertainties are compared
with the projected ones for the first (B-factories combined
with LHCb Run1 and Run2) and second (adding Belle II)
stages described previously.
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Table 12 Prospective scenarios for statistical uncertainties on the B → K �π observables. The extrapolations are based on the current statistical
uncertainties from BaBar results. The uncertainties on the branching fractions are given in units of 10−6

Observable Analysis Current uncertainty LHCb (Run1 + Run2) LHCb + Belle II

Re
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
B0 → K 0

Sπ
+π− 0.11 0.04 0.01

Im
[
q
p

A(K ∗−π+)
A(K ∗+π−)

]
B0 → K 0

Sπ
+π− 0.16 0.11 0.02

B(K ∗+π−) B0 → K 0
Sπ

+π− 0.69 0.32 0.09
∣
∣
∣
A(K ∗−π+)
A(K ∗+π−)

∣
∣
∣ B0 → K+π−π0 0.06 0.06 0.01

Re
[

A(K ∗0π0)
A(K ∗+π−)

]
B0 → K+π−π0 0.11 0.11 0.02

Im
[

A(K ∗0π0)
A(K ∗+π−)

]
B0 → K+π−π0 0.23 0.23 0.03

Re

[
A(K

∗0
π0)

A(K ∗−π+)

]

B0 → K+π−π0 0.10 0.10 0.01

Im

[
A(K

∗0
π0)

A(K ∗−π+)

]

B0 → K+π−π0 0.30 0.30 0.04

B(K ∗0π0) B0 → K+π−π0 0.35 0.35 0.05
∣
∣
∣
∣
A(K

∗0
π−)

A(K ∗0π+)

∣
∣
∣
∣ B+ → K+π−π+ 0.04 0.005 0.004

B(K ∗0π+) B+ → K+π−π+ 0.81 0.50 0.11
∣
∣
∣
A(K ∗−π0)

A(K ∗+π0)

∣
∣
∣ B+ → K 0

Sπ
+π0 0.15 0.15 0.02

Re
[
A(K ∗+π0)

A(K ∗0π+)

]
B+ → K 0

Sπ
+π0 0.16 0.16 0.02

Im
[
A(K ∗+π0)

A(K ∗0π+)

]
B+ → K 0

Sπ
+π0 0.30 0.30 0.04

Re

[
A(K ∗−π0)

A(K
∗0

π−)

]

B+ → K 0
Sπ

+π0 0.21 0.21 0.03

Im

[
A(K ∗−π0)

A(K
∗0

π−)

]

B+ → K 0
Sπ

+π0 0.13 0.13 0.02

B(K ∗+π0) B+ → K 0
Sπ

+π0 0.92 0.92 0.13
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