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INTRODUCTION

Recommender systems help users nd items they might like in large repositories, thus alleviating the information overload problem. Methods for recommending text items can be broadly classi ed into collaborative ltering (CF), content-based, and hybrid methods [START_REF] Ricci | [END_REF]. Among recommender systems, collaborative ltering systems are the most successful and widely used because they leverage past ratings from users and items, while content-based approaches typically build users (or items) pro les from items (or users) prede ned representations. Among collaborative recommender systems we are interested in those that represent users and items as vectors in a common latent recommendation space. Matrix factorization derivatives are a typical example of such models. The main assumption is that the inner product between a user and an item representation is correlated with the rating the user would give to the item. The main interest of these models is their potential for integrating di erent Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro t or commercial advantage and that copies bear this notice and the full citation on the rst page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci c permission and/or a fee. Request permissions from permissions@acm.org. SIGIR'17, August 7-11, 2017, Shinjuku, Tokyo, Japan © 2017 ACM. 978-1-4503-5022-8/17/08. . . $15.00 DOI: http://dx.doi.org/10.1145/3077136.3080722 sources of information [START_REF] Zhang | Collaborative Knowledge Base Embedding for Recommender Systems[END_REF] as well as their good performance, both in e ciency and e ectiveness [START_REF] Ricci | [END_REF]. The most successful approaches are based on learning-to-rank approaches such as [START_REF] Ste En Rendle | BPR: Bayesian personalized ranking from implicit feedback[END_REF][START_REF] Weimer | Co Rank Maximum Margin Matrix Factorization for Collaborative Ranking[END_REF].

Despite their successes, one limitation of those models is their lack of handling of uncertainty. Even when they are based on a probabilistic model, e.g. [START_REF] Ste En Rendle | BPR: Bayesian personalized ranking from implicit feedback[END_REF][START_REF] Salakhutdinov | Probabilistic Matrix Factorization[END_REF], they only suppose a Gaussian prior over the user and item embeddings but still learn a deterministic representation. The prior is thus only used as a regularization term on user and item representations.

Uncertain representation can have various causes, either related to the lack of information (new users or items, or users that did not rate any movie of a given genre), or to contradictions between user or item ratings. To illustrate the latter, let us take a user that likes only a part of Kung Fu movies, but with no clear pattern, i.e. no subgenre. With usual approaches, such a user will have a component set to zero for the direction of the space corresponding to Kung Fu. With our proposed approach, we would still have a zero mean, but with a high variance. Our hypothesis is that, because of these two factors, namely cold start and con icting information, training will result in learned representations with di erent con dences, and that this uncertainty is important for recommending.

Moreover, using a density rather than a xed point has an important potential for developing new approaches to recommendation. First, instead of computing a score for each item, the model can compute a probability distribution, as well as the covariance between two di erent item scores. This can be interesting when trying to diversify result lists, since this information can be leveraged e.g. by Portfolio approaches [START_REF] Wang | Portfolio theory of information retrieval[END_REF]: The model could propose diversi ed lists with di erent degrees of risk. Secondly, such models are interesting because they can serve as a basis for integrating di erent sources of external information, and thus serve as a better bridge between content-based approaches and collaborative ltering ones. Thirdly, time could be modeled by supposing that the variance of the representation increases with time if no new information (i.e. user ratings) are provided.

Our model use Gaussian embeddings which have been recently and successfully used for learning word [START_REF] Vilnis | Word Representations via Gaussian Embedding[END_REF], knowledge graph [START_REF] He | Learning to Represent Knowledge Graphs with Gaussian Embedding[END_REF] or nodes in a graph [START_REF] Santos | Multilabel Classi cation on Heterogeneous Graphs with Gaussian Embeddings[END_REF] embeddings. More precisely, each user or item representation corresponds to a Gaussian distribution where the mean and the variance are learned. Said otherwise, instead of a xed point in space, a density represents each item or user. The variance term is a measure of uncertainty associated to the user/item representation.

In the following, we rst describe the model, and then show experimentally that it performs very well compared to state-of-theart approaches on three di erent datasets. Our contributions are (1) the use of a new type of representations for items and users in collaborative ltering; (2) extensive experimental work that shows the good performance of the model; (3) qualitative analysis to show how the variance component is used in the model.

MODEL

Our model is learned through a pairwise learning-to-rank criteria that was rst proposed by Rendle et al. [START_REF] Ste En Rendle | BPR: Bayesian personalized ranking from implicit feedback[END_REF] for collaborative ltering (Bayesian Personalized Ranking, BPR). Formally, they optimize the maximum a posteriori of the training dataset D, i.e. p (Θ|D) ∝ p (D |Θ) p (Θ) where D represents the set of all ordered triples (u, i, j) -the user u ∈ U prefers item i ∈ I to item j ∈ I, and Θ, the model parameters. The factor p (Θ) corresponds to the prior on the item and user representations (a Gaussian prior in [START_REF] Ste En Rendle | BPR: Bayesian personalized ranking from implicit feedback[END_REF]). Then, using the standard hypothesis of the independence of samples given the model parameters, we have

p (D|Θ) = (u,i, j ) ∈ D p (i > u j |Θ) (1) 
In [START_REF] Ste En Rendle | BPR: Bayesian personalized ranking from implicit feedback[END_REF], the probability that user u prefers item i to item j, noted by i > u j, is given by the sigmoid function of the di erence of the inner products, that is:

p (i > u j |Θ) = σ x i • x u + b i -x j • x u -b j (2)
where b i (resp. b j ) is the bias for item i (resp. j).

The Gaussian Embeddings Ranking Model. In this work, while we start with Eq. ( 1), the di erent variables x • (• is either a user u or an item j) are random variables, denoted X • , and not elements of a vector space. We can hence estimate directly probability p (i > u j |Θ) of the inner product X u • X i being higher than X u • X i .

We start by supposing that user and item representations follow a normal distribution: for any user u and item i,

X i ∼ N (µ i , Σ i ) and X u ∼ N (µ u , Σ u )
We suppose that Σ • = diag(σ •1 , . . . , σ •N ) is a diagonal covariance matrix to limit the complexity of the model (N is the dimension of the latent space): in practice, we have 2N parameters for each user, and 2N + 1 for each item (+1 because of the bias). The variance is associated with each element of the canonical basis of the vector space. In practice, we hypothesize that this helps the model to learn meaningful dimensions, since it forces the use of the canonical latent space basis.

Since X i and X u are random variables, their inner product is also a random variable, and we do not need to use the sigmoid function of Eq. ( 2) as for BPR to compute the probability that user u prefers i to j. We can instead directly use the random variables de ned above, which leads to:

p (i > u j |Θ) = p X i • X u + b i > X j • X u + b j |Θ = p X u • X j -X i Z ui j < b i -b j Θ
where b i and b j are the item biases 1 . To compute the above equation, we use the following two simpli cations: 1 In this work, we did not consider them to be random variables, but they could be (1) Item representations are independent given the model parameters. This implies that the di erence X j -X i follows a normal distribution N µ j -µ i , Σ i + Σ j (2) We approximate the inner product distribution by a Gaussian using moment matching (mean and variance), using the results from [START_REF] Gerald | Means and Variances of Stochastic Vector Products with Applications to Random Linear Models[END_REF] who de ned the moments of the inner product of two Gaussian random variables; with our notations, the two rst moments of Z ui j are de ned as:

E Z ui j = µ u (µ j -µ i ) (3) 
Var

Z ui j = 2µ u Σ i + Σ j µ u + µ j -µ i Σ u (µ j -µ i ) + tr Σ u Σ j + Σ i = k σ ik + σ jk 2µ 2 uk + σ uk + σ uk µ jk -µ ik 2 (4) 
The above assumptions allow us to write:

p (i > u j |Θ) ≈ b i -b j -∞ N x; E Z ui j , Var Z ui j dx (5)
which is the Normal cumulative distribution function. This function can be easily di erentiated with respect to the µ •k and σ •k (• is a user or an item) since it can be rewritten using the error function (ERF), which is trivially derivable. From Equations ( 5) and ( 4) and ignoring the biases, we can see that the di erence between the inner products µ u • µ i and µ u • µ j is controlled by the variance of the user and the item (especially for the components of the means that have a high magnitude) -the larger, the closer to 0.5 the probability. This is the main di erence with other matrix factorization-based approaches.

Finally, we have to de ne the prior distribution over the parameters Θ, i.e. the means and variances. As we consider only a diagonal covariance matrix, we can consider an independent prior for each mean and variance, i.e. for any µ •k and Σ •kk . In this case, using a normal-gamma prior is a natural choice since it is the conjugate distribution of a normal. More speci cally, we suppose that

µ •k , Σ -1 •kk ∼ NormalGamma (ν, λ, α, β ) (6) 
with ν = 0, λ = 1, α = 2 and β = 2 -these parameters do not change much the solution, and were chosen so that user and item representations are not too much constrained. In the absence of data, this would set, for each component, the mean to 0 and the variance to 1, which corresponds to the mode of the normal-gamma distribution.

Loss function. Plugging in Eq. ( 6) and ( 1) gives

L = log p (Θ) + (u,i, j ) ∈D S log p (i > u j |Θ) + = •,i       1 2 -α log (Σ •i ) - 2β + λµ 2 •i 2Σ •i       -c i b 2 i + (u,i, j ) ∈D log p (i > u j |Θ)
where • is a user or an item, + = means equal up to a constant, and p (i > u j |Θ) is given by Eqs. ( 5), ( 3) and ( 4), and where we suppose a normal prior for the biases (to avoid over tting). The parameters Ordering items. We could have used pairwise comparison from our model since the relation i > u j ⇐⇒ p (i > u j |Θ) > 0.5 de nes a total order over items, but it does not make any di erence in the ranking if p (i > u j |Θ) equals 0.51 or 0.99, and this di erence could be due to the sole di erence between variances. To avoid this problem, we order items by their probability of having a positive score, i.e. s ui = p(X u • X i + b i > 0) 2 . This ordering preserves the variance information in contrast to the pairwise comparison -a score with a high variance will be associated with a score s ui close to 0.5.

EXPERIMENTS

We experimented with three di erent datasets extracted respectively from the Yahoo! Music ratings for User Selected and Randomly Selected songs, version 1.03 , the MovieLens 100k dataset 4 and the Yelp Dataset Challenge 5 . The Yahoo! dataset contains ratings for songs. The original rating data includes 15,400 users, and 1,000 songs for approximately 350,000 ratings. The MovieLens dataset contains ratings for movies. The original rating data includes 943 users, and 1,682 movies for approximately 100,000 ratings. The Yelp dataset contains ratings for businesses. The original rating data includes 1,029,432 users, and 144,072 businesses for approximately 4.1 million ratings.

We experimented with the following models, which are all based on a learning-to-rank criterium (except for MP): (MP) Most popular ranking where items are ranked based on how often they have been seen in the past -while simple, this baseline is always competitive. There is no hyper-parameter to optimize for this procedure; (SM) Soft margin (hinge) ranking loss, using stochastic gradient descent [START_REF] Weimer | Improving maximum margin matrix factorization[END_REF] and the implementation from [START_REF] Gantner | MyMediaLite: A Free Recommender System Library[END_REF] optimizing all possible hyper-parameters; (BPRMF) Bayesian Personalized Ranking [START_REF] Ste En Rendle | BPR: Bayesian personalized ranking from implicit feedback[END_REF] on which our model cost function is based, using the implementation from [START_REF] Gantner | MyMediaLite: A Free Recommender System Library[END_REF] and optimizing all possible hyper-parameters; (Co Rank) A state-of-the art [START_REF] Weimer | Co Rank Maximum Margin Matrix Factorization for Collaborative Ranking[END_REF] ranking algorithm for recommender systems that optimizes an upper bound of nDCG 6 . We chose the hyper-parameters based on [START_REF] Weimer | Co Rank Maximum Margin Matrix Factorization for Collaborative Ranking[END_REF]; GER Our model named Gaussian Embeddings Ranking. The number of dimensions was set among 5, 10, 20, 50, 100, 200, 500 and 1000.

Train Size → 10 20 50 Model ↓ N@1 N@5 N@10 N@1 N@5 N@10 N@1 N@5 N@10 Yahoo! MP 53.0 59.1 67. We followed mostly the experimental procedure of [START_REF] Weimer | Co Rank Maximum Margin Matrix Factorization for Collaborative Ranking[END_REF]. More precisely, the dataset has been preprocessed as follows. For each dataset, and for each user, a xed amount (10, 20, or 50) of items are kept to train the model, 10 for the validation set and the rest for testing. Users with fewer than 30, 40, 70 ratings were removed to ensure that we at least 10 ratings were available for testing. We also removed items that were not rated by at least 5 users. The statistics of the training datasets are shown in Table 1. The validation set is used to select the best hyper-parameters for GER 7 , SM and BPRMF. Finally, for evaluation, we re-rank the judged items using the evaluated model, and use a metric for ranked lists of items, namely nDCG at ranks 1, 5 and 10. The reported results are the average of 5 di erent experiments, with 5 di erent train/validation/test splits.

Results are reported in Table 2. There are roughly three groups of models: (1) Soft Margin (SM) that performed the worst; (2) BPRMF and most popular (MP); (3) GER and Co Rank (CR). Most popular (MP) performs well because of the chosen experimental evaluation where only items seen by the user are evaluated and ranked.

Our model (GER) outperforms the others on the MovieLens and Yelp dataset. It is usually above Co Rank (nDCG di erence between 0.01 and 0.08), with the exception of the Yahoo dataset for train sizes 20 and 50 (nDCG di erence between 0.001 and 0.02). Overall, GER is performing very well on three datasets with di erent characteristics in terms of rating behavior and number of ratings. 

ANALYSIS

We now turn to the analysis of results, based on the study of the learned representations for the Yahoo dataset. We used the hyperparameters that were selected on the validation set, and looked at the set of mean-variance couples, i.e. the (µ •k , Σ •k ) for k ∈ {1, . . . , N } and • ∈ U ∪ I.

In Figure 1, we plotted the di erent couples (µ •k , Σ •k ), as well as the histogram of mean and variance. We can see that the model exploits the di erent ranges of mean (-0.3 to 0.3) and, more importantly, variance (0.4 to 1.2) around the priors. This was satisfying since it was not obvious that the variance component would be used by the model, i.e. that it would deviate from its prior.

To have a deeper insight on the use of the variance, in Figure 2, we plotted violin (density) plots of the variance of users and items, depending on the latent space dimension (5 to 1000), and on the training size (10 to 50). We can observe that when the amount of training data increases, the median of the σ •k decreases while the variance of the σ •k increases. This corresponds to our hypotheses: the former shows that more evidence reduces the uncertainty on the representation, while the latter shows that more training data induces more con icting ratings and hence an increase in some of the variances -this is con rmed by the case of item representations that receive more ratings. Finally, we can observe that one the dimension increases too much, most of the density of the σ •k is centered around the prior -which could imply that most of the dimensions were simply not used.

CONCLUSION

In this paper, we proposed a collaborative recommender system where user and items correspond to distributions in a latent space, rather than to a deterministic point for other representation-based models, allowing to cope with the inherent uncertainty due to lack of information, or to con icting information. We show on three datasets that our model outperforms state-of-the-art works. We analyzed qualitatively the results showing that the variance distribution was correlated with space dimension and train size.

Moreover, this type of model has various advantages that we have not exploited yet: (1) the integration of di erent sources of information, exploiting the uncertainty of each source; (2) the use of the variance for handling time (the representation becomes more and more uncertain if no new information is provided); and (3), the diversi cation of proposed rankings (e.g. Portfolio theory can be used to produce rankings with various risks).

Figure 1 :

 1 Figure 1: User (left) and item (right) learned rst component representation plots for T50 and a representation dimension of 50.

Figure 2 :

 2 Figure 2: Violin (density) plots for the variance of users (left) and items (right) for latent space dimensions T10 (top) and T50 (bottom).

Table 1 :

 1 Datasets statistics by number of training examples (10, 20 or 50 ratings by user). Θ = Σ • , µ • •∈U ∪I are optimized with stochastic gradient update, picking a random triple at each step, and updating the correspond means and variances (for user u, and items i and j).

	Dataset	10	Users 20	50	10	Items 20	50	10	Ratings 20	50
	Yahoo!	3,386 1,645 286 1,000 1,000 995 158,868 99,915 32,759
	MovieLens 743 643 448 1,336 1,330 1,307 94,491 91,053 80,643
	Yelp	13,775 8,828 3,388 44,877 39,355 27,878 980,528 790,859 466,522

Table 2 :

 2 Collaborative Ranking results. nDCG values (×100) at di erent truncation levels are shown within the main columns, which are split based on the amount of training ratings.

		3 52.5 58.3 66.4 53.6 57.8 64.0
	BPRMF	52.8 59.0 67.2 52.2 58.3 66.4 52.2 57.7 63.5
	SM	50.9 56.7 65.4 49.7 55.6 64.2 49.9 54.1 60.3
	CR	53.5 60.3 68.2 57.8 61.7 68.9 56.0 60.0 65.6
	GER	53.5 60.3 68.3 53.8 60.7 68.2 54.3 59.6 65.3
	MovieLens	
	MP	66.0 64.7 65.8 68.4 65.3 66.3 69.1 67.4 67.5
	BPRMF	66.1 64.6 65.7 66.3 64.3 65.8 66.9 65.0 66.2
	SM	55.9 57.5 60.3 58.3 59.6 61.6 58.6 60.4 62.5
	CR	69.0 67.3 68.6 69.7 68.5 69.5 71.4 69.4 70.6
	GER	70.3 67.7 70.0 72.0 69.5 71.1 72.5 71.3 71.5
	Yelp	
	MP	40.7 41.5 46.9 39.5 39.9 44.7 37.4 37.6 41.4
	BPRMF	40.8 41.3 46.8 39.6 39.8 44.6 37.3 37.2 40.9
	SM	37.3 38.3 44.4 35.8 36.9 41.9 33.4 34.1 38.0
	CR	47.1 46.9 51.1 46.5 46.6 50.4 46.2 45.8 48.6
	GER	55.2 52.2 56.2 57.4 53.5 56.4 58.2 53.7 55.3

We use the same moment matching approximation to compute the inner product distribution.

This dataset is available through the Yahoo! Webscope data sharing program http: //webscope.sandbox.yahoo.com/.

Available at http://grouplens.org/datasets/movielens/100k/.

See https://www.yelp.com/dataset_challenge for more information.

https://github.com/markusweimer/co rank

We observed that a dimension of 50 generally gives good results independently of the dataset, while c (bias regularization) ≈ 10 -5 give good results on MovieLens and Yelp, but needs to be higher (≈ 10 -3 ) on Yahoo to achieve good results.
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