G. Gerald, . Brown, C. Herbert, and . Rutemiller, Means and Variances of Stochastic Vector Products with Applications to Random Linear Models, Management Science, vol.24, issue.2, 1977.

B. Ludovic-dos-santos, P. Piwowarski, and . Gallinari, Multilabel Classiication on Heterogeneous Graphs with Gaussian Embeddings, pp.978-981, 2016.

Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-thieme, MyMediaLite, Proceedings of the fifth ACM conference on Recommender systems, RecSys '11, 2011.
DOI : 10.1145/2043932.2043989

S. He, K. Liu, G. Ji, and J. Zhao, Learning to Represent Knowledge Graphs with Gaussian Embedding, Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM '15, 2015.
DOI : 10.1145/2505515.2505677

C. Steeen-rendle, Z. Freudenthaler, L. Gantner, and . Schmidt-thieme, BPR: Bayesian personalized ranking from implicit feedback, Uncertainty in Artiicial Intelligence, pp.452-461, 2009.

F. Ricci, L. Rokach, B. Shapira, K. Paul, and B. , Recommender Systems Handbook, 2011.

R. Salakhutdinov and A. Mnih, Probabilistic Matrix Factorization, Proceedings of Advances in Neural Information Processing Systems, pp.1257-1264, 2007.

L. Vilnis and A. Mccallum, Word Representations via Gaussian Embedding, ICLR, 2014.

J. Wang and J. Zhu, Portfolio theory of information retrieval, Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '09, 2009.
DOI : 10.1145/1571941.1571963

M. Weimer, A. Karatzoglou, Q. Viet-le, and A. Smola, CooRank Maximum Margin Matrix Factorization for Collaborative Ranking, Advances in Neural Information Processing Systems, pp.1-3, 2007.

M. Weimer, A. Karatzoglou, and A. Smola, Improving maximum margin matrix factorization, Machine Learning, vol.6, issue.2, pp.263-276, 2008.
DOI : 10.1007/978-3-540-45167-9_12

URL : https://hal.archives-ouvertes.fr/hal-00482747

F. Zhang, N. Yuan, D. Lian, X. Xie, and W. Ma, Collaborative Knowledge Base Embedding for Recommender Systems, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, 2016.
DOI : 10.1145/2339530.2339611