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Drop-on-coilable-fibre systems exhibit negative stiff-
ness events and transitions in coiling morphology†

Hervé Elettro∗a,b, Fritz Vollrathc, Arnaud Antkowiaka,d , and Sébastien Neukircha

We investigate the mechanics of elastic fibres carrying liquid droplets. In such systems, buckling
may localize inside the drop cavity if the fibre is thin enough. This so-called drop-on-coilable-fibre
system exhibits a surprising liquid-like response under compression, and a solid-like response
under tension. Here we analyze this unconventional behavior in further details and find theoretical,
numerical and experimental evidences of negative stiffness events. We find that the first and
main negative stiffness regime owes its existence to the transfer of capillary-stored energy into
mechanical curvature energy. The following negative stiffness events are associated with changes
in the coiling morphology of the fibre. Eventually coiling becomes tightly locked into an ordered
phase where liquid and solid deformations coexist.

1 Introduction
In systems where energy has been stored1 or is continuously sup-
plied2, force and deformation may operate in opposite directions,
resulting in a so-called negative stiffness. Active biological materi-
als3 or systems under fluid loading4 have been shown to exhibit
such a behavior. Locally negative stiffness appears as soon as
the force-displacement curve of a system in non-monotonic. For
example, it is encountered during the buckling of structures in
specific geometries such as cylindrical shells5,6, beams on elastic
foundations7, elastic ribbons8, or metamaterials9.

Here we show that drop-on-coilable-fibre systems also experi-
ence regimes of negative stiffness, mainly where capillary-stored
energy is transferred into mechanical energy. Drop-on-fibre sys-
tems have a long history, from the textile industry10 to the coating
of glass fibres11,12. Other examples include the wetting of fibres
networks13 or the influence of capillary forces on fibre elastic de-
formation14,15. Elastocapillarity16, the investigation of the de-
formation of elastic materials and structures by surface tension,
lies at the interface between Physics17 and Engineering18 and is
used as a way to functionalize and design new systems and mate-
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rials19,20. Recently, taking inspiration from spider-silk fibres, we

Fig. 1 Thin fibres may buckle and coil inside a liquid drop. A soft ther-
moplastic PolyUrethane fibre (Young modulus E = 17MPa) with radius
r = 2.75µm is spooled within a silicone oil drop of diameter D = 191µm 21.

demonstrated that sufficiently thin fibres can locally buckle and
coil within liquid drops, see fig. 1 and Elettro et al. 21 . We further
took advantage of the phenomena to design a highly extensible
drop-on-coilable-fibre system. In the following we show that in
such a system, the active contribution of wetting energy gives rise
to a subcritical buckling transition during which the stiffness of
the system is negative. We further investigate the consequences of
subcriticality and show that it generates hysteresis in the mechan-
ical response of the system (Section 2). Additionally we show that
the plateau tension contains coherent oscillations that consist of
alternating regimes of positive and negative stiffnesses. These
regimes are correlated with the drop deformation and the coiling
morphology. Packing morphology of a filament in a cavity22 has
been studied as a model for DNA viral capsids23,24. Morphogen-
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esis of filaments in flexible cavities is also relevant in several bio-
logical systems25. Stoop et al. 26 studied experimentally and nu-
merically the packing of thin wires in spherical cavities, followed
by Vetter et al. 25 , who have recently shown that an ordered-to-
disordered transition may occur for a filament in an elastic cavity
by changing the confinement flexibility25,27. Schulman et al. 28

investigated the bending of microfibres around liquid droplets,
while Roman and Bico 16 studied the deformation of the liquid
drop as the rod is wrapping around it with one end free, thus re-
stricting to ordered coiling through the release of twist26. Here
we show that the packing morphology of the drop-on-coilable-
fibre systems changes as the in-drop fibre length is increased and
switches from disordered to ordered (Section 3).

2 A subcritical buckling transition
Subcritical transitions are discontinuous transitions, as opposed
to supercritical transitions where the order parameter grows
smoothly from zero. Subcritical transitions are present in a num-
ber of fields (e.g. Turing bifurcation in reaction-diffusion sys-
tems29, transition to turbulence30). They imply dependance on
the loading history, i.e. hysteresis. Buckling transitions may ei-
ther be supercritical or subcritical depending on geometry: buck-
ling of cylindrical shells5 or ribbons8 are subcritical (discontin-
uous), while thin plates and slender beams buckle supercriti-
cally31. Metabeams may also buckle subcritically due to strong
nonlinearities in their mechanical response9. In this section we
show that drop-on-coilable-fibre systems experience subcritical
buckling as part of their unique conformation: in-drop buckling
involves both the transfer of wetting energy into mechanical en-
ergy and the presence of a non-constant system length, which is
reminiscent of beam buckling in sliding sleeves32.

Fg

Constant drop  length D

Fg Fg

Fg

T = Tmin

T = TP

a
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large T

L
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Fig. 2 The subcritical nature of the coiling mechanism derives from the
specific mechanics of in-drop capillary buckling. (a): The fibre is under
large tension, preventing it from coiling locally. (b): The tension reaches
a minimum Tmin and buckling begins. The drop retains its size D, while
swallowing the fibre. (c): The in-drop fibre length ` over which coiling
occurs increases from D (in case (a)) to D+ ∆ (in cases (b) and (c)),
which decreases the system resistance.

As shown in Elettro et al. 21 , the drop-on-coilable-fibre system
displays a classic solid-like behavior in tension and a remarkable

liquid-like behavior in compression. In the solid-like regime, see
fig. 2(a), the system behaves like a spring, that is the applied ten-
sion T is linearly related to the elongation |∆| through the Young’s
modulus E of the fibre, T = EA|∆|/L, where A is the area of the
cross section of the fibre, and L the length of the fibre in its rest
state. In the liquid-like regime, fig. 2(c), the system behaves like
a soap film, that is it adapts its length while staying in a state of
constant tension T ≈ TP with21

TP = Fγ −
1
2

πE
r4

D2 (1)

where Fγ = 2πr γ cosθY is the meniscus force, γ the liquid-vapor
interface energy, θY the contact angle of the liquid on the solid, r
the radius of circular cross-section of the fibre, I = πr4/4 its sec-
ond moment of area (EI being the fibre resistance to bending),
and D is the drop length, measured as the meniscus-to-meniscus
distance. For large drops on small fibres, the drop length D is
close to the (almost spherical) drop diameter11. In the con-
sidered range of drop/fibre sizes, the departure from sphericity
does not exceed 10% and justifies a spherical drop assumption at
first order. Eq. 1 results from an analysis in the moderate post-
buckling regime and can be interpreted in terms of energies: per
unit length of wetted fibre, the left-hand side is the work of the
external applied tension while the right-hand side is the differ-
ence between the wetting and the bending energies (coiling being
favorable when this difference is positive).

2.1 Force undershoot during in-drop buckling

We then consider a spherical drop of diameter D resting on a long
fibre of length L�D. For an given capillary force Fγ , a typical in-
drop buckling experiment starts with a drop resting on a fibre held
taut under large tension T , fig. 2(a). As we gradually decrease T ,
the fibre remains straight until T reaches Tmin and the portion of
fibre inside the drop buckles, fig. 2(b). Inside the drop the fibre
is subject to a compressive force P = Fγ − T , and as tension T
is decreased, compression P increases until buckling is reached.
The buckling threshold Pbuck = Fγ −Tmin depends on the capillary
force Fγ and detailed calculations yield33

√(
Fγ −Tmin

) D2

EI
+

√
TminD2

EI
tan

[
1
2

√(
Fγ −Tmin

) D2

EI

]
= 0 (2)

where we see that the portion of fibre that buckles has length D,
that is buckling tends to be localized inside the drop. We note
that for low capillary force Fγ , we have Tmin = 0 as Fγ = π2 EI/D2,
while for large capillary forces Fγ � EI/D2 we have Tmin ' Fγ −
4π2EI/D2.

As buckling grows, additional fibre length enters the drop by
sliding along the meniscii in such a way that the drop length D (i.e
the distance between the two meniscii) remains constant. This
increase in in-drop fibre length ` yields a decrease in bending
resistance of the system. We compute the behaviour of the system
in this incipient buckling regime. For simplicity reasons, we work
under the assumption that the capillary force Fγ is large compared
to the bending force EI/D2, in which case the drop meniscii can
be viewed as sliding clamps33. When a clamped beam of length
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` is buckling under a compressive force P, it undergoes an end-
shortening ∆ and in the incipient buckling regime (small ∆/`) we
have34,35

P`2/EI = 4π
2 +2π

2 ∆

`
(3)

In the drop-on-fibre experiment, fig. 2, the compressive force is
P = Fγ −T and the length of the system under buckling is `= D+

∆. Replacing ` and developping eq. (3) for small end shortening
∆/D� 1 yields

PD2

EI
= (Fγ −T )

D2

EI
' 4π

2−6π
2 ∆

D
(4)

Eqs. (3) and (4) show that while classical buckling is supercritical
(positive stiffness ∂P/∂∆ in eq. (3)), in-drop buckling is subcriti-
cal (negative stiffness ∂P/∂∆ in eq. (4)). This change in nature is
due to the non-constant fibre length over which buckling occurs.
Consequently, as the fibre buckles in the drop, fig. 2(b), eq. (4)
shows that T is increasing with the end-shortening ∆: the tension
is reduced to T = Tmin to trigger buckling and is then expected
to shoot back upwards after buckling. Eventually the tension sta-
bilizes on the plateau value TP given by eq. (1), with TP > Tmin,
see fig. 2(c) and fig. 3. The presence of a drop thus modifies
the nature of the buckling transition from supercritical (in classic
slender beams/fibres) to subcritical (in drop-on-coilable-fibre sys-
tems). This behavior is deeply related to the fact that the drop-on-
coilable-fibre system is a liquid-solid hybrid: the meniscii act as
fixed sliding sleeves and force additional fibre to enter the drop,
exchanging wetting energy into curvature energy.

Several factors may influence the buckling threshold, for ex-
ample the applied end rotation or the weight of the drop. End
rotation is prevented by holding the fibre at one extremity while
letting the other end free for a few seconds before attachment, in
order to relax twist. The influence of twist, that builds up during
fibre coiling, is analyzed in section 3. The influence of the drop
weight M g is characterized by comparing it to the capillary force
Fγ : introducing Cgrav = Mg

2Fγ
, we have Cgrav < 2% for drop/fibre

sizes used in the present work. The effect of gravity is analyzed
in more details in Elettro 36 .

In fig. 3, we show an experimental force-displacement curve
of a drop-on-coilable-fibre system, along with a comparison with
numerical simulations. The numerical simulations model the fi-
bre as an elastic filament, obeying Kirchhoff equilibrium equa-
tions37. The filament is in interaction with a spherical drop with
two compressive point forces at the meniscii locations and a soft-
wall barrier potential forbidding exit at any other point. The equi-
librium of the system is solved using two-points boundary-value
problem techniques (shooting method in Mathematica, and col-
location method using the Fortran AUTO code). Note that the
weight of the drop and the self-contact of the filament are not
taken into account in the model. The numerical simulations only
use externally measured parameters (e.g. drop length, fibre ra-
dius, surface tension) and no fitting parameter. Sensor drifting
and force offset during deposition of the drop imply that our ex-
perimental force data lacks an absolute reference. Consequently
we globally adjust it so that the average value of the plateau ten-
sion corresponds to eq. (1) (see Materials and Methods section).

Force undershoot
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Fig. 3 Drop-on-coilable-fibre systems present an alternance of regimes
of positive and negative stiffnesses. Comparison between numeri-
cal computations (black line) and experimental data (green line) on
a TPU/silicone oil system (drop length 62± 2µm, TPU fibre diameter
1.9± 0.4µm and dimensionless capillary force fγ = 41± 20 > f th

γ = π2,
see Section 2.2). The one coil period and the initial negative stiffness
regime are well reproduced by the numerical model. Adapted from our
previous work in Elettro et al. 21 .

Figure 3 shows that the model recovers the force undershoot, the
presence of negative and positive stiffnesses intervals, and the pe-
riodicity in end-shortening seen in the experiments.

On the one hand, the combination of eqs. (1) and (2) yields
theoretical values for the force undershoot ∆T = TP− Tmin, and
on the other hand it is measured experimentally as the difference
between the minimum force and the average value of the plateau
tension. This definition of the force undershoot as a relative quan-
tity eludes the problem of sensor drifting exposed above. For each
drop/fibre couple, the undershoots are measured three times to
ensure reproducibility. We record force-displacement curves for
different drop lengths D, and we extract the force undershoot
from each curve, see fig. 4. When the system is subjected to
a global compressive force T < 0, global buckling occurs if the
compression −T exceeds a threshold ∼ EI/L2. As L is large, this
threshold is indeed very low (piconewtons for centimetric soft
microfibres) and we conclude that the drop-on-fibre system is vir-
tually unable of sustaining any global compressive force (T < 0).
Consequently in-drop buckling is not possible as soon as param-
eters are such that Tmin < 0. For a given fibre, Fγ is known and
positive and a critical drop length Dac can be computed by set-
ting Tmin = 0 in eq. (2): Dac = π

√
EI/Fγ , with drops of length

D < Dac being unable to initiate buckling of the fibre. At D = Dac,
Tmin = 0 and the force undershoot is maximum and equal to the
plateau value TP given by eq. (1) with Fγ = π2 EI/D2

ac, that is
T ac

P = (π2− 2)EI/D2
ac, or T ac

P = (1− 2/π2)Fγ . As D is increased
the force undershoot decreases as 1/D2. Fig. 4 shows the excel-
lent agreement between the analytical and the experimental val-
ues, especially considering the absence of any fitting parameter.

All force measurements shown so far are displacement-
controlled experiments. In the following, we shall consider force-
controlled experiments. Due to the specific force signature of
drop-on-coilable-fibre systems, the two types of experiments lead
to different behaviours.
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Fig. 4 Top: Force-displacement curves for different drop sizes on a
2± 0.4µm diameter fibre. Colors correspond to dimensionless capillary
forces fγ , from 28 (green) to 236 (red). Bottom: Force undershoot as a
function of drop length D for the same fibre. The theoretical prediction,
solid line, is in excellent agreement with the experimental data consider-
ing the absence of any fitting parameter. The value T ac

P is calculated from
eq. (1) with Fγ such that eq. (2) is fulfilled with Tmin = 0: Fγ = π2EI/D2.

2.2 Mechanical hysteresis
Here we perform experiments where the drop length D is var-
ied. This is equivalent to force-controlled experiments since the
dimensionless force fγ = Fγ D2/EI ∝ D2 is the control parameter
for a given fibre. We consider drop-on-fibre systems held in a very
low state of tension T � EI/D2, and report the coiling activity as
a function of the drop length D. For small D, fγ is too small to
induce coiling but, as drops with increasing D are considered, in-
drop buckling is observed as soon as fγ exceeds π2 (see Eq. 2 with
Tmin = 0 and Fγ > 0), that is we have activation of in-drop coiling
if D > Dac with

Dac =

√
π2Er3

8γ cosθY
(5)

Experiments with increasing D values are reported on fig. 5,
where the coiling activity is plotted against the drop length D, and
where we clearly see the activation threshold lying at D/Dac = 1.
Coiling activity is defined as zero when coiling is not possible and
one when it is. Indeed, when the wetting energy overcomes the
curvature energy, coiling becomes energetically favorable and will
not stop until the drop is filled, case that has not been reached
within our experimental range, even after coiling several cm of
fibre in a 100 µm drop. Once activated, the drop-on-coilable-fibre
system is in a state of constant tension, the plateau tension TP

being given by Eq. 1. For such a coiled system, if we now de-
crease the drop length D while keeping other parameters fixed,
the plateau tension TP is going to decrease. As the system is vir-

tually unable of sustaining any global compressive force (T < 0),
TP has to remain positive, and we anticipate a coiling deactivation
when TP = 0, that is D < Ddeac with

Ddeac =
Dac√
π2/2

=

√
Er3

4γ cosθY
(6)

The deactivation drop-length is thus smaller than the activation
length by a factor π√

2
' 2.2, resulting in two different thresh-

olds. We experimentally study the deactivation of in-drop buck-
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Fig. 5 Coiling activity as a function of the dimensionless drop length D
Dac

(=
√

fγ
π2 ). Transitions for activation and deactivation are different, dis-

playing a mechanical hysteresis. Empty triangles represent experiments
at increasing drop size while inverted filled triangles are for evaporat-
ing drops, decreasing in size. The fibre is made of TPU and measures
5.8± 0.4µm in diameter. The scale is the same on all pictures. Inset
(a) show a drop sitting on a straight fibre, while insets (b) and (c) show
a coiled system during evaporation: in (b) the drop size D = 165µm in
length, whereas in (c) D = 103µm.

ling by use of evaporation. An ethanol microdrop-laden mist is
sent onto a TPU fibre in a confinement chamber. Ethanol drops
large enough to induce coiling are deposited on a TPU fibre. After
coiling is achieved, the ethanol mist flow rate is slowly decreased,
so that drops evaporate in a quasistatic manner. Quasistatic is
defined in reference to the timescale for coiling rearrangement,
which is here on the order of hundreds of milliseconds. The drop
size is recorded optically throughout evaporation.

We thus start with a coiled system in the activated zone D>Dac

and let evaporation take place. We observe that coiling remains
even when D <Dac, see fig. 5, but that the drop envelope strongly
deforms and that coiling rearranges to an ordered configuration
(see section 3). The smallest measured coiling diameter is in
very good quantitative agreement with the deactivation diame-
ter Ddeac given in eq. (6). Further evaporation, D < Ddeac, leads
to the formation of toroidal coiling held by a liquid film, which
eventually snaps and leaves the coiling only bridged by fibre self-
adhesion, see fig. 6. Schulman et al. 28 reported similar observa-
tions of “dry coils”, prepared by winding a polymeric (SIS) fibre
on the outer surface of a droplet and then removing the liquid.
Further mechanical manipulation of the evaporated sample even-
tually leads to irreversible uncoiling.
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Fig. 6 The evaporation of a droplet containing a coiled fibre leaves highly
regular dry coils (left). Residual end rotation may lead to twist instabilities,
forming a lemniscate-shaped coil (right).

The subcritical nature of the in-drop buckling bifurcation thus
leads to two different thresholds for coiling activation and deac-
tivation, and to the manifestation of hysteresis: a system with
Ddeac < D < Dac may be either coiled or not, depending of the
loading history.

3 Coiling morphologies and drop deforma-
tion

In addition to the essentially flat shape of the plateau, fig. 3 shows
existence of oscillations in the moderate post-buckling regime
∆/(π D) = O(1). These oscillations have smaller amplitude than
the initial undershoot peak, and decrease as the capillary force Fγ

is increased, to become essentially flat (below sensor resolution)
if Fγ > 300EI/D2. Moreover they are structured with a period πD
for the end-shortening ∆, each cycle corresponding to the addi-
tion of one coil inside the drop. Numerical computations38 show
that these cycles come from in-drop rearrangement of the coil-
ing and that 3D and planar configurations alternate, depending
on the value of the in-drop fibre length (see also supplementary
video # 1). We indeed observe that the typical coiling morphol-
ogy of a drop-on-coilable-fibre system oscillates between a fully
ordered state and a fully disordered state, both extremes shown
on fig. 7.

Fig. 7 Polarized light reveals the different coiling morphologies a TPU
fibre/silicone oil drop system may adopt: disordered (phase I, left) or
ordered (phase II, right). The coiling morphology depends on the precise
in-drop fibre length.

So far the liquid drop has been considered as a rigid sphere.
However observations reveal that the drop envelope may undergo
strong deformation when interacting with the internal coiling.
Hence in the following we consider the packing of a fibre within
a deformable liquid drop and study the influence of the deforma-
bility on the coiling morphology.

Axisymmetry breaking When the fibre is straight (as in fig. 8-
1) and the fluid is wetting, the drop adopts a well known undu-
loidal shape matching the Young’s contact angle in the vicinity of
the fibre11 and is symmetric with respect to the (horizontal) fi-
bre axis for intermediate contact angles. In presence of coiling,
the fibre pushes outwards on the liquid interface with a force F
of magnitude F ∝

∂

∂R

( 1
2

EI
R2

)
= EI

R3 per unit length of fibre. This
pressure field is not isotropic and may lead to asymmetric defor-
mation of the liquid interface. Indeed fig. 8 reveals the change of
symmetry axis of the system as more fibre is added in the drop:
the initial horizontal axis of symmetry (1) is kept as long as the
coiling remains disordered (2). Eventually internal pressure from
the fibre is too strong and leads to a deformed drop (3) with
an axis of symmetry perpendicular to the horizontal: a localized
stretch of the drop envelope represents an opportunity for the in-
drop fibre to lower curvature energy. Coiling is then locked in an
ordered state as more fibre is added (4).

Fig. 8 As the in-drop fibre length increases (from 1 to 4), the initial ax-
isymmetry of the drop may be broken, resulting in an ellipsoidal shape.
(3) and (4) are rotated views of the same drop, illustrating loss of sym-
metry with respect to the fibre axis. We coin the axisymmetric system
(1) and (2) phase I, and the ellipsoidal system (3) and (4) phase II. Here
fγ = 24.7±5, R0 = 61±2µm and r = 2.5±0.4µm, and the transition from
phase I to phase II occurs near 24 coils. Experimental measures of the
drop deformation is reported on fig. 10.

Quantification of the drop deformation We consider a drop of
initial length 2R0 and start increasing the in-drop fibre length `,
using the apparent coil number n= `

2πR0
as bifurcation parameter.

We quantify the ordering of the coiling with an orientational order
parameter S commonly used in the field of liquid crystals39

S = 〈P2(cosψ)〉=
〈

3cos2 [ψ−〈ψ〉]−1
2

〉
(7)

with S = 0 (S = 1) corresponding to the fully disordered (or-
dered) case, and where ψ is the measured angle between the
fibre axis at each coil and the initial fibre axis, and 〈·〉 denotes
the spatial average. In fig. 10 we plot S(n) and δR(n) where
δR(n) = (R(n)−R0)/R0 and 2R(n) is the measured maximum drop
length, together with the theoretically computed δRth(n).

As n is increased from n = 0, two different regimes can be iden-
tified in the system. For low values of the coil number n (here typ-
ically n . 20), coiling is mainly disordered (S = 0) except during

Journal Name, [year], [vol.],1–9 | 5



short ordered intervals (S = 1), as underlined by the strong fluc-
tuations of order parameter during phase I (red curve in fig. 10).
These bursts of ordered coiling have been described in our recent
theoretical work38. While in phase I, the system keeps its initial
horizontal axis of symmetry and we model the liquid interface as
a sphere, see fig. 9-left, whose radius R(n) increases due to the ad-
dition of fibre volume. For small δR, conservation of total volume
leads to

δRI(n) =
R(n)−R0

R0
=

1
3

V (n)−V0

V0
=

1
3

πr2`
4
3 πR3

0
=

π

2
n
(

r
R0

)2
(8)

with r is the fibre radius, ` the total in-drop fibre length, V (n) =
(4/3)π R3(n) the volume enclosed by the liquid interface, and n =

`
2πR0

the apparent coil number.
As the coil number exceeds a threshold (this threshold is n? =

24± 3 for the system of fig. 10), the system switches to contin-
uous fully ordered coiling, phase II, see fig. 8-3 and 4. Here n?

is defined experimentally as the center of the transition to con-
stant phase II. We model the liquid interface as two spherical
caps of major (minor) axis 2R (2H), see fig. 9-right. The total

Sphere

Disordered coiling

2RI(n)
Spherical caps

Ordered coiling

2H

2RII(n)

S=0Phase I Phase II S=1

Fig. 9 Spherical cap model of the drop deformed by ordered in-drop fibre
coiling. The extreme states are fully disordered coiling in a sphere (phase
I, left) and fully ordered coiling in spherical caps (phase II, right).

energy of the system is the addition of the bending energy of the
fibre 1/2(EI/R2)` and the surface energy of the liquid interface
2πγ(R2 +H2). Minimizing this energy with regard to R and H un-
der the constraint of fixed volume πH (R2+H2/3), we find that for
small surface perturbation the deformation of the drop is given by

δRII(n) =
R−R0

R0
' n

4 γR3
0

EI +3n
(9)

We assume that for intermediate coiling morphologies, the drop
deformation is the addition of the phase I deformation plus a ra-
tio of the phase II deformation, this ratio being given by the or-
der parameter S. We thus write δRth = δRI +S · δRII. Combining
eqs. (8) and (9) yields the theoretical drop deformation for any
coiling morphology

δRth(n) =
π

2
n
(

r
R0

)2
+S(n)× n

4 γR3
0

EI +3n
(10)

Eq. (10) is a generalization for any coil number and any order
parameter of the results of Roman & al.16.

We tested experimentally eq. (10) for a large number of drop-

on-fibre systems. Drop deformation is measured optically as a
change of length along the main fibre axis. As the fibre that lies
outside the drop is taut throughout our experiments, in-drop fi-
bre length ` is measured with the end shortening, ` = ∆. The
order parameter is measured by following optically the direction
of each coil when crossing a reference line taken to be the ini-
tial fibre axis. Careful repeating of each measurement leads to
errors of ±0.1, although smaller for well defined coiling (S = 0
and S = 1) as well as for large coiling numbers. For statistical
reasons, we restrict to systems with at least n = 5 coils. Fig. 10
shows comparison between theory and experiment for a typical
measurement.The error bars on the theoretical prediction corre-
spond to the measurement error on the order parameter S, which
is an input parameter. The present model has been tested against

Alternance of Phase I/Phase II

Small deformation

Phase II

Large deformation

n*n*n*n*n*

Fig. 10 Comparison between the measured deformation (bottom blue
curve) and the theoretical prediction (middle black curve) from eq. (10).
The top red curve is the measured order parameter S. Here fγ = 24.7,
R0 = 61±2µm and r = 2.5±0.4µm. For n< 22, coiling alternates between
phase I and phase II in a regular manner, well captured by our recent nu-
merical simulations 38. Drop deformation and coiling rearrangements are
strongly correlated, as shown by the corresponding peaks linked by verti-
cal dashed lines. A lock-in transition occurs at n? = 24, leaving continuous
ordered coiling and an highly deformed drop.

several drop-on-coilable-fibre systems where the radius r of the
TPU fibre and the initial radius R0 of the silicone oil drop have
been varied. The average difference between theoretical predic-
tion and observed deformation is 15%. Although convenient, the
use of a simple setup to assess the order parameter S is quite chal-
lenging. This could be improved by the use of X-ray computed to-
mography, which allows full 3D reconstruction in fine resolution.

We finally remark that the lock-in threshold n? on the coil num-
ber, for which the system enters continuous phase II, could be
computed by comparing the energies of both phases. Such a
comparison would need an estimation of the twist energy of the
system in both phases. Up to now this twist energy has been ne-
glected but we anticipate to be somewhat different in phases I
and II, leading to an energy barrier between the two states. Using
a rough estimation of this twist energy barrier as a fraction η of
the bending energy (see the Appendix ’Derivation of drop defor-
mation and morphology transition’), we find that the threshold
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from phase I to phase II should happen at

n? = k(η)
γ R3

0
EI

∝
R0

r
Fγ D2

EI
(11)

where k(η)∼ O(1) is a dimensionless number and D = 2R0. Con-
sequently for systems moderately above the in-drop buckling
threshold Fγ = π2 EI/D2, the transition to ordered coiling will
happen for a coil number of order 10 to 100. In contrast, sys-
tems far above the buckling threshold may have their transition
to ordered coiling prevented as the system may reach the close-
packing limit. Estimating this limit40 as n ∝ R2/r2, we see that a

system where the fibre radius r satisfies r < rc ∝

√
γ

E R0 will likely
not experience the transition to ordered coiling.

4 Conclusion
In conclusion, we showed that the possibility of transferring wet-
ting energy into mechanical energy leads to events of negative
stiffness regimes in drop-on-coilable-fibre systems. Consequences
include force undershoots in displacement-controlled setups, and
mechanical hysteresis in force-controlled setups. In both cases,
quantitative agreement between experiments, theory and numer-
ics has been reached. We observed that further occurrences of
negative stiffness regimes are linked to changes in the coiling
morphology, and showed that a lock-in transition may eventu-
ally occur, underlining the link between the in-drop fibre length
and the drop deformation. Drop-on-coilable-fibre systems thus
open new possibilities as complex actuators in light of their un-
conventional mechanical response. For instance, accurate control
may yield new routes to 3D microfabrication and reconfigurable
coil-to-cage devices in liquid environments.
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Appendix: Materials and Methods
We prepare microfibres with Thermoplastic PolyUrethane (TPU)
from BASF (reference 1185A). We use melt spinning to draw fi-
bres: after TPU pellets are molten on a hot plate at 230◦C, a
small amount of liquid TPU is then quickly stretched, followed by
quenching at room temperature. The obtained fibres have a ra-
dius that lies between 1 and 10 µm, depending on the stretching
speed. The goal radius is usually achieved within a 2 µm range.
The local radius variations are at most by 10% over an extended
region of several thousands radii, which corresponds to the typi-
cal maximum in-drop fibre length. The fibre and drop diameters
are measured optically with a 3 megapixels Leica DFC-295 cam-
era mounted on a Leica macroscope (VZ85RC, 400x zoom, 334

nm/pixel picture resolution) and a remote-controlled micro-step
motor. We either used a Phlox 50x50 mm backlight (60000 Lux)
or an optical fibre with LED lamp (Moritex MHF-M1002) with cir-
cular polarizer. The use of polarized light strongly enhances the
visibility of the fibre inside of the drop due to birefringence of
TPU microfibres. We measured contact angles by superimposing
optical images of drops on fibres to corresponding calculated pro-
files, and found θY = 23± 2◦ for the TPU/silicone oil setup and
θY = 19± 2◦ for the TPU/ethanol setup. We used γ = 21.1mN/m
for silicone oil/air interface and γ = 22.1mN/m for ethanol/air in-
terface. For evaporation-controlled experiments, we use a mega-
sonic transducer activated at 1.6 MHz (Beijing Ultrasonics) to
produce a cloud of micronic droplets, with sizes in the 3–5 µm
range (inferred optically) and controllable outflow. Due to the
low intensity of the forces (typically hundreds of nN for our mi-
crofibres), we use capacity deflection force sensors (FemtoTools
FT-FS100, 5 nN-100µN range at 20 Hz). While highly sensi-
tive, these sensors have the drawback of drifting slowly with time
around 10 nN/min. This only adds slightly to the measurements
errors in rapidly performed tests, typically less than five minutes.
In longer tests, the drift can lead to substantial offsets and affects
our ability to evaluate absolute force values. Consequently the
theoretical value of the plateau tension, given by eq. (1), is used
to tare the experimental data on fig. 3. However, the drift is com-
pensated for graphical purpose only, and does not affect measure-
ments in fig. 4-bottom, as force undershoots are relative quanti-
ties. The force sensor is mounted on a linear micro-positioner
(SmarAct SLC-1730, repeatability 0.5 µm) and all the tests are
displacement-controlled and performed at a quasi-static speed of
12 µm/s. Young’s modulus of the fibres are measured through
tensile tests and found to be 17± 2 MPa and do not depend on
conditions of preparation. By brushing a fibre with a viscous sil-
icon oil drop (Rhodorsil 47V1000) hanging from a syringe tip,
we obtain an array of drops of different sizes. The activation of
in-drop buckling is tested by compression of the resulting sample.

Appendix: Derivation of drop deformation
and morphology transition

We consider the ordered phase II and detail the calculations for
the deformation of the drop envelope under the spherical cap
model, see fig. 9. The total potential energy of the system is the
addition of the bending energy of the fibre Eb(R) = 1/2(EI/R2)`,
the twist energy of the fibre Et , and the surface energy of the
two spherical caps ES(R,H) = 2πγ(R2 + H2). We have a con-
straint of fixed liquid volume expressed as (1/3)πH (3R2 +H2) =

(4/3)πR3
0, where R0 is the radius of the undeformed spherical

drop. As the twist energy Et is difficult to evaluate we first do not
take it into account, and introduce the lagrangian of the system
as L (R,H) = Eb(R) +ES(R,H)− λ (1/3πH[3R2 +H2]− 4/3πR3

0),
where λ is the Lagrange multiplier associated to volume conser-
vation and is identified to the pressure inside the drop. The equi-
librium of the system is then given as a stationary point of L :
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∂L

∂H
= 0 = 4πγH−λπ(R2 +H2) (12a)

∂L

∂R
= 0 =−EI `

R3 +4πγR−2πRλH (12b)

We work under the assumption that the deformation of the in-
terface is small, that is when R and H are both near R0 and
the pressure λ is near 2γ/R0. We then write R = R0(1+ ε) and
H = R0 +εH1 with |ε| � 1. Volume conservation yields H1 =−R0,
that is H = R0(1− ε). System (12) is then solved and we obtain
λ = (2γ/R0)(1− ε) and

ε =
`EI

8πγR4
0 +3`EI

=
nEI

4γR3
0 +3nEI

(13)

where we see that for ε to be small, we need the capillary force
γR0 to be large compared to the bending force EI/R2

0, and the coil
number n = `/(2πR0) not to be too large.

We conclude that when twist energy Et is neglected, we have
a unique equilibrium at ε > 0 (ordered coiling) and no equilib-
rium at ε = 0 (disordered coiling), but we reckon that taking the
twist energy into account might change the situation and stabilize
the ε = 0 state. The twist energy is larger in the ordered coiling
configuration than in the disordered coiling configuration for the
following reason. In the experiments the fibre is held at both
extremities, therefore imposing a constraint of zero Link, that is
zero end rotation of the ends41,42. As a rod deforms in space the
Writhe is a real number which measures the circumvolution of
the center line in 3D. The more windings, the higher the Writhe.
An estimation of the Writhe is obtained by (i) looking at the rod
from a given point of view and projecting the rod shape on a plane
perpendicular to the view axis, (ii) counting the number of cross-
ings on the projection, and (iii) start again with every view axis
and average the result. The Twist is the integral along the rod
of the local twist. An important feature of twisted rod mechanics
is that, if both extremities of the rod are held fixed, as the rod
deforms in space its Writhe and its Twist change but at all times
the sum of the Twist and the Writhe stays constant, equal to the
Link43. In the disordered coiling configuration we estimate the
Writhe to be small due to a statistical balance of positive and neg-
ative crossings. Hence the Twist, and therefore the twist energy,
is to be small. However in the ordered coiling configuration the
Writhe is almost that of a regular spool with n turns, Writhe ≈ n.
We then have Twist ≈ −n, in order for the sum to be zero. The
twist energy of the ordered coiling configuration is then larger
than the twist energy of the disordered coiling configuration. It
is difficult to be more quantitative without performing complete
numerical simulations. Here we simply estimate the difference
in twist energy is equal to a fraction η of the bending energy
EII

t −EI
t ' (1/2)η (EI/R2

0)`, with η ∼ O(0.1). This estimation fol-
lows from numerical results from Stoop et al. 26 and38.

We now consider the total potential energy V = Eb +Et +Es in
both disordered coiling, V I , and ordered coiling, V II . We evaluate
V I at R = H = R0 and V II at R = R0(1 + ε) and H = R0(1− ε)

when ε given by eq. (13). We then compute the first order of

the difference V II −V I:

V II −V I ' 2π EI n
R0

(
η

2
− nEI

4γR3
0 +3nEI

)
(14)

For small n, twist energy makes the disordered configuration fa-

vorable (V II−V I > 0), but as n reaches a threshold n? = 4η

2−3η

γR3
0

EI
the ordered configuration becomes favorable (V II −V I < 0).
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